менной структуре составляющими многоярусные шарьяжные ансамбли, с чередованием в них офиолитово-голубосланцевых и осадочных аккреционных комплексов, отражающих принципиально разные стороны эволюции задуговых океанических бассейнов. Кстати, пример Корякского нагорья с его двумя, в какой-то мере сходными между собой, но в то же время отличными офиолитовыми поясами, прекрасно иллюстрирует своеобразие существовавших здесь окраинноморских бассейнов – Западно-Корякского периконтинентального (типа Охотского или Берингова морей) и Восточно-Корякского более океаничного (типа Филиппинского или Каролинского морей). Существование в первом из них отдельных блоков с утолщенной субконтинентальной корой, отторгнутых в ходе рифтогенеза от более древних континентальных окраин, возможно и составляет главную причину их различной эволюции.

ЛИТЕРАТУРА

1. Журавлев А.Ю. Археоциаты нижнего кембрия крайнего Северо-Востока СССР // Кембрий Сибири и Средней Азии. М.: Наука, 1988. С. 97-110.

2. *Кайгородцев Г.Г.* О возрасте кремнисто-вулканогенных образований междуречья Майн-Великая // Материалы по геологии и полезным ископаемым Северо-Востока СССР. Магадан: Магаданск. книж. издво, 1964. Вып. 17. С. 104-115.

3. Очерки тектоники Корякского нагорья / Ред. Ю.М.Пущаровский, С.М.Тильман. М.: Наука, 1982. 220 с.

4. *Разницын Ю.Н*. Тектоническая расслоенность литосферы молодых океанов и палеобассейнов. Тр. ГИН, Вып. 560. М.: Наука, 2004. 270 с.

5. *Чехов А.Д.* Строение и развитие кайнозоид Северо-Востока Азии. Магадан: СВКНИИ ДВО РАН, 1992. 95 с.

6. Чехов А.Д. Тектоническая эволюция Северо-Востока Азии (окраинноморская модель). М.: Научный мир, 2000. 204 с.

7. Чехов А.Д. Офиолиты Корякского нагорья и индикаторы условий их формирования // Офиолиты: геология, петрология, металлогения и геодинамика: Материалы международной конференции (XII Чтения памяти А.Н.Заварицкого). Екатеринбург: Ин-т геологии и геохимии УрО РАН, 2006. С. 253-256.

8. Щипанский А.А. Субдукционные и мантийно-плюмовые процессы в геодинамике формирования архейских зеленокаменных поясов. М.: Издательство ЛКИ, 2008. 560 с.

9. Johnston S.T., Borel G.D. The odyssey of the Cache Creek terrane, Canadian Cordillera: Implications for accretionary orogens, tectonic setting of Panthalassa, the Pacific superwell, and break-up of Pangea // Earth and Planetary Science Letters. 2007. V. 253. P. 415-428.

10. Ophiolites in Earth History / Eds. Y.Dilek, P.T.Robinson // Geological Society Special Publication. London. 2003. No. 218. 704 p.

НАРАНСКИЙ ОФИОЛИТОВЫЙ КОМПЛЕКС (ЗАПАДНАЯ МОНГОЛИЯ), ПЕТРОЛОГИЯ И ХРОМИТОНОСНОСТЬ: НОВЫЕ ДАННЫЕ

Чистяков А.В.

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва, Россия e-mail: chist@igem.ru

NARANSKY OPHIOLITE COMPLEX (WESTERN MONGOLIA), PETROLOGY AND CHROMITE-MINERALIZATION: NEW DATA

Chistyakov A.V.

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Moscow, Russia e-mail: chist@igem.ru

New data on petrology of Naransky ophiolite massif (Western Mongolia) are presented. It is shown that the intrusion is close to Urals chromite-bearing ones, and are also perspective for chromite deposits.

Рис. 1. Схема строения Наранского базит-гипербазитового массива (по [1], с упрощениями). 1 – ультраосновные породы главного гипербазитового плутона и сателлитных тел, 2 – вебстериты и другие породы переходной зоны, 3 – габбро и габбронориты габброидного массива и сателлитных тел. Белое поле – вмещающие породы. На врезке – местоположение массива на территории Монголии.

Огромные, близкие к линейному типу, пояса альпинотипных офиолитов являются составной частью почти всех позднедокембрийско-фанерозойских областей развития складчатости. Становление данных ассоциаций связывается с режимом растяжения, при котором ультрабазиты офиолитовой ассоциации рассматриваются как автохтонными образования. Начиная с позднего протерозоя, офиолитовые ассоциации активно проявлялись в различных геодинамических обстановках. Данные ассоциации наблюдаются как в переделах СОХ, так и как продукты вулканизма в пределах «задуговых» морей в областях спрединга континентальных и океанических плит.

Наранский базит-гипербазитовый массив входит в состав Хантайширинского офиолитового комплекса и расположен в Западной Монголии, в 15 км юго-восточнее города Алтай, в пределах восточного фланга одноименного хребта (рис. 1, врезка).

Наранский массив представляет собой в плане линзобразное тело в целом субширотного простирания протяженностью около 38 км при ширине до 10 км и мощности 0.5-5.5 км (рис. 1). Вмещающими породами массива являются метаморфизованные вендско-нижнекембрийские вулканогенно-осадочные образования. Главный объем массива слагает наиболее древний интрузив гипербазитового состава, занимающий до 80% обнаженной площади. Далее по разрезу следует переходная «полосчатая» зона мощностью около 500 м, представленная чередованием габброидов и пироксенитов, и габброидный интрузив, возрастные соотношения которого с ультрабазитами однозначно не определены. К-Аг изохронный возраст габброидного массива составляет 275±12 млн. лет [1], а геологические взаимоотношения показывают, что он прорывает ультрабазитовый массив. Кроме того наблюдаются сателлитные тела ультраосновного и основного составов. Все составные части образуют вместе морфологически единый полигенный базит-гипербазитовый массив [1].

Главный гипербазитовый массив представляет собой мощную, тектонически ограниченную протрузию. Согласно полевым наблюдениям, породы, слагающие гипербазитовое тело, довольно однообразны и представлены главным образом массивными гарцбургитами, реже лерцолитами, с содержанием пироксенов от первых до 20-40 об.% (табл. 1). Породы в различной степени серпентинизированы, и в большинстве случаев первичные магматические минералы в них либо вовсе отсутствуют, либо наблюдаются в виде единичных реликтов. На выветрелой поверхности данные породы светло-серые с буроватым оттенком и в большинстве случаев имеют пят-

№ обр.	2013	2014/1	2094	2117/2	2093	2101	2116	2113	2114/2	2115	2117	2118	2120/3
№ пп	1	2	3	4	5	6	7	8	9	10	11	12	13
SiO ₂	40.92	41.67	39.81	46.42	43.38	44.53	45.77	47.82	53.33	55.07	55.97	54.22	56.53
TiO2	0.01	0.01	0.01	0.03	0.02	0.00	0.03	0.10	0.09	0.12	0.12	0.22	0.16
Al ₂ O ₃	0.34	0.33	0.25	1.80	0.95	0.22	1.64	14.90	6.26	2.40	4.93	16.86	17.17
Fe ₂ O ₃	0.85	1.11	1.25	1.53	1.69	1.05	1.52	1.31	1.78	2.00	1.39	1.49	0.93
FeO	4.86	6.32	7.13	8.71	9.64	6.01	8.64	7.49	10.13	11.41	7.93	8.49	5.31
MnO	0.13	0.13	0.12	0.17	0.11	0.13	0.15	0.16	0.21	0.24	0.17	0.18	0.11
MgO	52.28	49.45	51.22	38.81	43.23	47.90	40.45	13.91	22.87	21.31	24.89	8.33	8.07
CaO	0.30	0.84	0.06	2.41	0.82	0.06	1.68	13.74	5.04	7.21	4.39	7.34	9.04
Na ₂ O	0.24	0.14	0.12	0.12	0.13	0.09	0.11	0.43	0.24	0.21	0.17	2.65	2.64
K ₂ O	0.05	0.01	0.01	0.01	0.03	0.00	0.01	0.12	0.04	0.02	0.02	0.22	0.04
Cr	1205	2889	1525	3237	4763	2491	2905	374	2256	1926	2416	145	1318
V	25	22	11	60	64	24	53	126	119	179	146	210	170
Со	101	117	135	110	98	110	115	43	81	73	71	40	59
Ni	2251	2426	2868	1154	1818	2647	1160	127	663	436	407	58	255
Cu	16	13	12					17	11	32		31	66
Zn	65	65	57	66	58	65	57	65	97	89	81	79	62
Rb	6	6	6	5	5	5	4	3	3	3	5	6	3
Sr	5	7	6	6	9	10	12	55	39	0	85	180	44
Ba	16	46	26	32			32	47	17	26	45	60	66
Y	5	5	4	5	6	4	7	8	7	8	9	11	11
Nb				5	4	3	5				7	4	2
Zr	12	11	12	13	11	13	13	11	15	6	18	23	17

Представительные анализы пород Наранского массива

Таблица 1

Примечания. Анализы выполнены в ЦХЛ ИГЕМ РАН методом РФА и приведены к 100%. 1-3 – дуниты, 4 – лерцолит, 5-7 – гарцбургиты, 8-11 – вебстериты, 12, 13 – габброиды. Главные окислы приведены в мас.%, редкие компоненты – в ррт. В табл. 1 и 2 – пустые ячейки соответствуют содержаниям ниже предела чувствительности прибора.

нистую структуру, что обуславливается присутствием выделений пироксенов размером до 1 см. Подчиненную роль играют дуниты, представленные светло-буроватыми массивными породами, часто с акцессорным хромшпинелидом, проявленным на выветрелой поверхности в виде единичных черных кристаллов. Наряду с микроритмичностью чередование горизонтов дунитов и гарцбургитов прослеживается и в масштабах всего гипербазитового массива.

Гипербазитовый массив подвергся существенной тектонической переработке и в настоящее время представляет собой систему в различной степени измененных дунит-гарцбургитовых

№ обр.	SiO ₂	TiO ₂	Al_2O_3	Cr_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	ZnO
2013	0.24	0.03	21.37	44.99	2.39	17.98	0.30	10.88	0.31
2015	0.02	0.03	21.23	50.08	1.15	12.30	0.13	14.96	0.02
2058	0.09	0.08	11.85	58.45	1.28	17.45	0.28	10.65	0.14
2084/2		0.10	12.07	56.97	2.38	16.61	0.40	10.40	0.15
2093		0.07	28.03	42.63	0.00	16.21	0.28	12.93	0.18
2094		0.08	13.19	56.39	1.66	17.91	0.44	10.31	0.12
2114	0.04	0.92	20.30	35.12	12.56	22.04	0.38	8.82	0.18
2123		0.15	10.32	44.04		39.22	0.57	3.18	0.34
2123	0.02	0.22	13.00	35.78		45.18	0.57	2.52	0.26
2115		2.24	8.12	28.37		53.03	0.48	2.74	0.14

Составы хромшпинелидов из пород Наранского массива

Таблица 2

1 – гарцбургиты и верлиты, 2 – дуниты, 3 – пироксениты, 4 – габброиды. Выделены поля для пород массивов Приполярного Урала: А – Пайерского блока Войкаро-Сыньинского (по данным [3]) и Б – Рай-Из [4]; В – Кимперсайского массива [1].

блоков. Многочисленные зоны разломов прослеживаются по участкам интенсивной серпентинизации с полным замещением исходных минералов ультрабазитов серпентином, образующим также жилы мощностью до 20 см. К зонам разломов иногда приурочены маломощные (сантиметры-первые метры) дайки преимущественно диабазового (порфириты) состава..

На границе гипербазитового и габброноритового тел наблюдается переходная зона переслаивания пироксенитов, гипербазитов и габброидов. Структурные взаимоотношения этих пород имеют очень сложный характер, что, вероятно, связано с процессами взаимодействия расплава, обеспечившего формирование главного габброноритового тела и гипербазитового масси-

Рис. 3. Составы хромшпинелидов из пород Наранского массива (А) и средние составы хромшпинелидов из хромитоносных офиолитовых массивов Урала (Б, по [3]). 1-6 – Рай-Из; 7-9 – Кимперсайский массив.

ва. Габбронориты существенно изменены, пироксены в них полностью замещены амфиболом. Однако частично сохраняется первичная магматическая габбровая структура породы.

При микроскопическом изучении пород ультрабазитового массива установлено, что дуниты почти нацело сложены в значительной степени серпентинизированным оливином (Fo₉₂₋₉₃) с единичными зернами акцессорных хромшпинелидов (табл. 2). В гарцбургитах и лерцолитах оливин также существенно серпентинизирован, а содержание пироксенов существенно варьирует от первых до 30-40 об.%. Состав оливина в этих породах несколько более железистый (Fo₈₈), а пироксены представлены авгитом (En₄₄₋₄₅) и бронзитом (En₈₅₋₈₆). Клино- и ортопироксены из вебстеритов переходной зоны имеют составы En₄₅₋₄₈ и En₇₉₋₈₀ соответственно, а интерстициальный плагиоклаз отвечает An₉₀₋₉₁.

Наранский массив по своим геохимическим характеристикам сопоставим с хромитоносными офиолитовыми массивами Урала (рис. 2, 3). В пределах ультрабазитовой части Наранского массива выявлено более 30 хромититовых рудопроявлений. Густота вкрапленности хромшпинелидов варьирует от убогой до густовкрапленной и сплошной. В целом все рудопроявления по геологической позиции в пределах массива можно разделить на три группы. Первую группу составляют проявления густовкрапленных и сплошных массивных руд. отмечаемых в зонах интенсивной тектонической переработки. Вторую составляют руды, приуроченные к блокам дунитов. Здесь наблюдаются как густовкрапленные. так и шлировые руды. К третьей группе можно отнести участки с проявлением хромитовой минерализации в зоне меланжа. Наибольший интерес представляет вторая группа проявлений. т.к. в данном случае рудные тела в наименьшей степени подверглись деформации. Дальнейшие работы по обнаружению и картированию хромититовых тел возможно позволят выявить в Наранском массиве промышленные концентрации хромитов.

Работа выполнена при финансовой поддержке проекта РФФИ № 07-05-00496.

ЛИТЕРАТУРА

1. Леснов Ф.П. Наранский полигенный базит-гипербазитовый плутон (Западная Монголия) // Гипербазитовые ассоциации складчатых областей. Новосибирск, 1982. С. 58-95.

2. Магматические горные породы. Т. 5. Ультраосновные породы / Ред. Е.Е. Лазько и Е.В. Шарков. М.: Наука, 1988. 504 с.

3. Макеев А.Б. Минералогия альпинотипных ультрабазитов Урала. СПб.: Наука, 1992. 197 с.

4. Макеев А.Б. Брянчанинова Н.И. Топоминералогия ультрабазитов Полярного Урала. СПб.: Наука, 1999. 252 с.