обрамления Сибирского кратона и критерии поисков сульфидно-никелевых руд // Руды и металлы. 2006. № 6. С. 26-30.

3. *Мехоношин А.С., Колотилина Т.Б., Павлова Л.А*. Первая находка минералов ЭПГ в сульфидных рудах ультрабазитов Ийско-Кукшерского прогиба // Докл. РАН. 2008. Т. 419. № 3. С. 384-386.

4. Симонов В.А., Колобов В.Ю., Пейве А.А. Петрология и геохимия геодинамических процессов в Центральной Атлантике. Новосибирск: Изд-во СО РАН, НИЦ ОИГГМ, 1999. 224 с.

АКЦЕССОРНАЯ СУЛЬФИДНАЯ МИНЕРАЛИЗАЦИЯ ПЛАТИНОНОСНОГО ПОЯСА (НА ПРИМЕРЕ КОСЬВИНСКОГО ДУНИТОВОГО ТЕЛА КЫТЛЫМСКОГО МАССИВА)

Молошаг В.П., Гараева А.А., Нечкин Г.С., Воронина Л.К.

Институт геологии и геохимии УрО РАН, Екатеринбург, Россия e-mail: moloshag@igg.uran.ru

THE ACCESSORY SULFIDE MINERALIZATION OF THE URAL PLATINUM BELT (ON EXAMPLE OF KOS'VA DUNITE BODIES, KYTLYM MASSIF)

Moloshag V.P., Garaeva A.A., Nechkin G.S., Voronina L.K.

Institute of Geology and Geochemistry UB RAS, Ekaterinburg, Russia e-mail: moloshag@igg.uran.ru

Accessory base metal sulfide minerals, native copper, platinum group minerals (PGM) and amalgams have bean studied and described in ultramafites of the Kos'va dunite body, Kytlym massif. A new sulfide is representative by solid-solution between heaslewodite $(Ni,Fe)_{3\pm x}S_2$ and intermediate $Cu_{1\pm x}Fe_{1\pm y}S$ solid-solution was described in association with sulfides and PGM. This mineral was obtained by experimental work under 760°C [6]. Its composition may be used for determination of sulfur fugacity.

Результаты изучения минералогии элементов платиновой группы (ЭПГ) с помощью современных методов в Кытлымском и других массивов Платиноносного пояса, отражены в цикле работ 2002-07 гг. опубликованных Е.В. Пушкаревым с соавторами [4]. В последующих публикациях Ю.А. Волченко с соавторами 2005-07 выполнено описание текстур ЭПГ-содержащих хромититов в дунитах и пироксенитах, а также подтверждены ранее опубликованные результаты исследований состава минералов ЭПГ [1]. Наряду с известным коренным выходом клинопироксенитовой жилы с палладий-платиновой минерализацией, открытой Н.В. Бутыриным в 1948 году, установлены новые проявления данного типа минерализации в аллювии и коренном залегании [2, 5]. В предлагаемой статье основное внимание уделено составу акцессорных сульфидов меди, железа и никеля (base-metal sulfide), поскольку они присутствуют в парагенетической ассоциации с минералами ЭПГ, а также могут быть индикаторами условий их образования.

Акцессорные сульфиды представлены хизлевудитом $Hz - (Ni,Fe)_{3-X}S_2$, пентландитом Pn – $(Ni,Fe)_9S_8$, моносульфидным твердым раствором Mss – $(Fe,Ni)_{1\pm X}S$, промежуточным твердым раствором Iss – (Fe,Cu)S и – твердыми растворами Hz-Iss, Mss-Iss четверной системы Fe-Ni-Cu-S [6]. Особенностью состава хизлевудита и образуемыми им твердыми растворами, является дефицит металлов по сравнению с идеальным соотношением металлов к сере, что отражено в таблицах 1, 2, где приведены составы их представительных образцов. Для существенно никелевой низко-температурной модификации это соотношение составляет 3 : 2, при преобладании никеля что отвечает формуле Ni_3S_2 . Впервые обнаруженные нами твердые растворы хизлевудита Hz-Iss ранее получены экспериментальным путем при температуре 760°C [6]. Исходя из наличия изо- и тетраферроплатины в парагенезисе с названными сульфидами и данных упомянутой работы можно заключить, что логарифм летучести серы примерно составлял –5.5. Состав представителься

				- 1			
№ обр.	фаза	Fe	Pt	Cu	S	Ni	Сумма
1026	Hz	33.48	0.04	0.07	29.56	34.63	99.78
968	Mss	0.32	0.21	66.28	33.69	0.16	100.66
968	Pn	38.48	0.00	0.00	33.86	27.76	100.10
960	Hz-Iss	1.93	0.00	56.21	28.09	14.22	100.44
960	Pt-Hz-Iss	7.35	32.19	30.73	23.10	8.60	100.98
983	Hz	54.42	0.03	0.59	24.37	18.87	98.28
983	Hz	54.05	0.00	1.27	25.78	19.41	100.51
983	Hz-Iss	43.25	0.00	21.33	20.19	14.97	99.74
961-1	Mss-Iss	8.44	0.00	35.63	34.03	22.15	100.27
961-2	Mss-Iss	14.02	8.98	10.53	32.51	25.02	96.45
961-3	Mss-Iss	9.14	0.06	32.18	33.82	23.35	99.21

Состав акцессорных сульфидов, вес. %

Примечание. Анализы, представленные в таблицах 1-5, выполнены на микроанализаторе JXА-5. Содержания Ir, Os ниже чувствительности метода. Весовые количества % Pd и Hg в образцах 961-2 и 961-3 составляют (4.24; 1.14) и (0.65; 0.00) соответственно.

Обозначения: $Hz - (Ni, Fe)_{3-\chi}S$ хизлевудит, $Pn - (Ni, Fe)_{g}S_{8}$ пентландит, $Mss - (Fe, Ni)_{1+\chi}S$ моносульфидный твердый раствор; Iss – (Fe, Cu)S промежуточный твердый раствор; Hz-Iss, Mss-Iss – серии твердых растворов четверной системы Fe-Ni-Cu-S [6].

Таблица 2

Таблица 1

Состав акцессорных сульфидов ат. %										
№ обр.	фаза	Fe	Pt	Cu	S	Ni	ΣΜ	S	Х	
1026	Hz	28.37	0.01	0.05	43.64	27.93	2.5827	2.0000	0.4173	
968	Mss	0.27	0.05	49.59	49.96	0.13	1.0526	1.0000	_	
968	Pn	31.06	—	—	47.62	21.32	9.2944	8.0000	-	
960	Hz-Iss	1.69	-	43.42	43.00	11.89	2.3226	2.0000	0.6774	
960	Pt-Hz-Iss	8.00	9.97	29.37	43.78	8.90	2.5710	2.0000	-	
983	Hz	47.18	0.01	0.45	36.80	15.57	2.6106	2.0000	0.3894	
983	Hz	45.60	-	0.94	37.88	15.58	2.6370	2.0000	0.3630	
983	Hz-Iss	38.82	-	16.82	31.57	12.79	2.7302	2.0000	0.2698	
961-1	Mss-Iss	7.03	—	26.09	49.34	15.68	1.0894	1.0000	-	
961-2	Mss-Iss	12.88	2.35	8.51	52.03	21.87	0.9347	1.0000	_	
961-3	Mss-Iss	7.69	0.01	23.78	49.54	18.68	1.0743	1.0000	_	

Примечание. Атомные количества % Рд и Нд в образцах 961-2 и 961-3 составляют (2.05; 0.29) и (0.29; 0.00) соответственно.

Таблица З

Состав интерметаллидов платины

№ обр.	формула	Fe	Pt	Cu	Ir	Pd	Hg	Os	Ni	Сумма
1026	Pt2FeCu	10.08	75.28	12.73	0.00	020	0.00	0.00	0.00	99.26
1073	Pt2FeCu	17.55	67.71	12.27	0.00	1.18	0.00	0.00	0.70	99.41
1073	Pt2FeCu	15.13	71.33	11.49	0.00	0.91	0.00	0.00	0.70	99.56
1073	PtFe	20.73	75.01	1.56	0.89	1.11	0.00	0.00	0.35	99.65
961	Pt2FeCu	10.97	72.47	13.85	0.00	0.00	0.00	0.00	1.21	98.51
1081	Pt2FeCu	13.15	74.30	10.28	0.00	1.45	0.00	0.00	0.61	99.79
1081	(Pt, Ir,.) ₃ Fe	7.99	48.69	3.46	30.52	4.10	0.00	2.33	0.54	97.63
968	Pt2FeCu	11.72	69.08	14.42	0.00	0.00	0.00	3.71	0.06	98.99
979	Pt2FeCu	14.61	73.22	10.62	0.00	0.59	0.00	0.00	0.00	99.04

ных образцов интерметаллидов платины приведен в табл. З. Косвенным подтверждением данной умеренной оценки летучести серы является отсутствие железо-никелевых интерметаллидов и борнита в ассоциации с исследуемыми минералами. Заслуживает внимания достаточно часто

Таблица 4

№ обр.	Fe	Pt	Cu	Pd	Ni	Сумма
1026	0.67	0.03	98.44	0.00	0.15	99.28
1026	0.32	0.00	98.07	0.00	0.00	98.39
968	0.22	0.30	97.88	0.29	0.17	98.86
968	0.23	0.20	98.02	0.00	0.15	98.61
983	11.32	0.00	88.41	0.00	0.00	99.73

Состав самородной меди

Примечание. Содержания Ir, Os, Hg, S ниже чувствительности метода.

Таблица 5

Амальгамы и ртутьсодержащие интерметаллиды

№ обр.	Fe	Pt	Cu	Ir	Pd	Hg	Os	S	Ni	Сумма
1026	5.75	27.31	5.02	0.00	1.43	35.96	4.33	0,00	0.00	96.80
1026	1.75	0.46	36.40	0.00	17.50	37.66	4.67	0.20	0.54	99.18
1026	15.34	55.40	0.96	3.98	1.02	7.90	8.44	0.05	1.12	94.21
961	7.77	0.94	6.94	0.00	24.74	59.57	0.00	0.00	0.00	99.97
968	0.13	0.62	1.76	0.00	30.34	63.41	3.11	0.00	0.22	99.59
968	0.48	0.64	10.56	0.00	25.35	58.94	1.98	0.00	0.38	98.33
968	4.57	0.33	11.29	0.00	24.78	54.99	1.78	0.00	0.38	98.14
968	4.79	30.20	27.70	0.00	15.70	18.18	1.77	0.00	1.11	99.44
961	7.77	0.94	6.94	0.00	24.74	59.57	0.00	0.00	0.00	99.97

встречающаяся в данной ассоциации самородная медь, которая может содержать примеси палладия и платины (табл. 4).

Наряду с этим в клинопироксенитах Бутыринской жилы нами обнаружена ранее неизвестная в коренных и россыпных месторождениях платины на Урале природная амальгама палладия – потарит (Pd,Cu)Hg [2, 5]. Состав данного минерала отличается разнообразием примесей и широким диапазоном изменения их концентрации (табл. 5). Потарит является одной из ведущих минеральных форм палладия, что подтверждено также исследованиями Ю.А. Волченко с соавторами [1]. Среднее содержание ртути в гипербазитах данных массивов составляет 1.5·10⁻⁶ %, но в отдельных участках отмечаются спорадически повышенные значения, достигающие п·10⁻⁵ %, которые интерпретируются с позиций позднего, наложенного поступления ртути по зонам глубинных разломов [3]. Эти представления согласуются с поздним внедрением клинопироксенитовых жил, содержащих палладиевую и ртутную минерализацию, в дуниты.

Таким образом, состав акцессорных сульфидных минералов и интерметаллидов платины в перспективе может служить одним из индикаторов физико-химических условий платиноидной минерализации.

ЛИТЕРАТУРА

1. Волченко Ю.А., Иванов К.С., Коротеев В.А., Оже Т. Структурно-вещественная эволюция комплексов Платиноносного пояса Урала при формировании хромит-платиновых месторождений уральского типа. Часть II // Литосфера. 2007. № 4. С. 73-101.

2. Молошаг В.П., Хачай О.А., Гараева А.А., Нечкин Г.С., Неустроева И.И., Воронина Л.К. Минералого-геохимические особенности распределения палладий-платиновой минерализации в дунитах (на примере дунитового тела Косьвинского плеча) // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 375-378.

3. Озерова Н.А. Ртуть и эндогенное рудообразование. М.: Наука, 1986. 232 с.

4. *Пушкарев Е.В., Аникина Е.В., Гарути Дж., Заккарини* Ф. Хром-платиновое оруденение нижнетагильского типа на Урале: структурно-вещественная характеристика и проблема генезиса // Литосфера. 2007. № 3. С. 28-65.

5. Хачай О.А., Молошаг В.П., О.Ю.Хачай, Новгородова Е.Н., Доломанский Ю.К. Комплексный геолого-геофизический подход к изучению процесса россыпеобразования на флангах Лобвинского месторождения платины // Геофизический журнал. 2005. Т. 27. № 4. С. 667-677.

6. *Peregoedova A., Ohnenstetter M.* Collectors of Pt, Pd and Rh in a S-poor Fe-Ni-Cu sulfide system at 760°C: Experimental data and application to ore deposits // Canadian Mineralogist. 2002. V. 40. P. 527-561.