БИМЕТАСОМАТОЗ И ГЕОДИНАМИКА РАССЛОЕННЫХ (ПОЛОСЧАТЫХ) КОМПЛЕКСОВ ОФИОЛИТОВ ПРЕДОСТРОВОДУЖНЫХ ПАЛЕОЗОН

Юркова Р.М., Воронин Б.И.

Институт проблем нефти и газа РАН, Москва, Россия e-mail: bivrrnyrzb@mtu-net.ru

BIMETASOMATISM AND GEODYNAMICS OF ULTRABASIC-BASIC BANDING OPHIOLITE COMPLEXES IN FOREARC ZONES

Yurkova R.M., Voronin B.I.

Institute of Oil and Gas Problems RAS, Moscow, Russia e-mail: bivrmyrzb@mtu-net.ru

The paper discuses the metasomatism evolution of ophiolite ultrabasic-basic banding complex in the northvestern Pacific fringing. At the stage of discrete formation of banding complex in depth from 20-30 to 10-12 km. formed different-temperature bimetasomatic layers: 1. apogabbronorite (T = 900°C) composed with bronzite, diopside and the pargasitic hornblende; 2. apolherzolite (T = 550-700°C) typically comprising diopside, pargasitic hornblende, grossular, andradite and hertzinite; 3. aposerpentinite, including antigorite, lizardite, pentlandite, chromspinellide. Hightemperature mineral associations were formed due to polycyclic intrusion of basic (gabbro-noritic) magma to lherzolite, verlite and apodunite-harzburgite serpentinite bands throung the dyke channels, connected with uprising ophiolite diapir in the primitive island arc—trench transitional zone.

Объектами для изучения послужили ультрабазит-базитовые полосчатые комплексы офиолитов северо-западной части активной континентальной окраины Тихого океана: Сахалин, Камчатка и Корякский хребет. При обобщении и анализе результатов исследований, в сопоставлении с литературными материалами по этой проблеме, реконструирована последовательность этапов формирования офиолитовых ассоциаций в зоне перехода – примитивная островная дугажелоб – над сейсмофокальной зоной. [8]. Начало формирования офиолитов связано с подъемом крупного мантийного диапира ультрабазитов дунит-гарцбургитового состава. Глубина – 40-50 км, T = 600-700°C. Этап отмечен псевдоморфной серпентинизацией с образованием антигорита, и природных сплавов железо-никель [8]. Серпентинитовые диапиры в результате адиабатического всплывания разогретого пластичного глубинного вещества к поверхности, сопровождаемого декомпрессией и интенсивным плавлением при растяжении свода поднимающегося диапира в зоне перехода - островная дуга-желоб - были последовательно пронизаны полициклическими разноглубинными магматическими комплексами: полосчатый, дайковый, спилит-кератофировый. Ультраосновная магма лерцолитового состава внедрилась в псевдоморфно серпентинизированные ультрабазиты по дайкоподобным каналам. На контакте магматических тел с серпентинитами возникли высокотемпературные (T = 990°C), биметасоматические слои (оливин, бронзит, диопсид).

Формирование полосчатой серии пород происходило при полициклическом внедрении по дайкоподобным каналам основной габброноритовой магмы в лерцолитовые, верлитовые, аподунит-гарцбургитовые серпентинитовые полосы в условиях растяжения свода поднимающегося мантийного диапира. Предполагается динамическая кристаллизация магмы с образованием пироксенитов [9]. Интервалы глубин от 20-30 до 10-12 км. Лерцолиты, чередующиеся с габброноритами, верлитами и пироксенитами, в полосчатом комплексе сложены энстатитом (% – 88,0 En; 10,5 Fs; 1,5 Wo) или низкожелезистым бронзитом (% – 83,5 En; 16,0 Fs; 0,5 Wo), диопсидом (% – 46,0 En; 3,0 Fs; 51,0 Wo) и оливином. Оливин в породах полосчатого комплекса отличается от оливинов дунит-гарцбургитового комплекса более высоким содержанием фаялитовой молекулы (16,5%). Хромшпинелиды в лерцолитах (и верлитах) представлены низкохромистыми высоко-алюминиевыми разностями ($Mg_{0,67}Fe^{2+}_{0,32}$)_{0,99}($Al_{1,61}Cr_{0,39}$)_{2,0}О₄, отвечающими по составу плеонасту и плеонастцейлониту. Сходные по составу шпинель и энстатит содержатся в лерцолитах, драгированных в разломе Яп на продолжении Япского желоба [1]. В этих условиях были сформиро-

Таблица 1 Изотопный состав стронция в плагиоклазах габброноритов

Номер образца	42	28-1	528	512	512	115-1	115-5	120
Тип породы	магматический					метаморфический		
Состав плагиоклазов (%An) в исследованной навеске*	85-88	85-88	83-92	92-94	92-94	95-100	95-100	95-100
Типы плагиоклазов, % масс. Негранулированные Гранулированные С включениями пренита То же, серицита	60 10 0 30	10 75 15 0	10 85 5 0	10 85 15 0	10 75 15 0	95 5 Нет "	95 5 Нет "	95 5 Нет "
Зерна пренита	Нет	+	Нет	+	++	"	"	"
⁸⁷ Sr/ ⁸⁶ Sr (±0.00006-0.00010)	0,7044	0,7051	0,7049	0,7050	0,7050	0,7040	0,7039	0,7038
Содержание Еи, г/т	Не опр.	0,047	0,056	Не опр.	Не опр.	0,127	0,226	0,094

Примечание: (*) Фракция 0,1-0,05 мм весом 120-300 мг; (+) — единичные зерна; (++) — 15-10% объема фракции; содержание Eu — по данным [4]. Анализы изотопного состава стронция выполнены в лаборатории абсолютного возраста Γ ИН PAH.

ваны разнотемпературные биметасоматические слои: 1) апогабброноритовые ($T=900^{\circ}\mathrm{C}$), состоящие из бронзита, диопсида и паргаситовой роговой обманки; 2) аполерцолитовые ($T=550-700^{\circ}\mathrm{C}$), для которых характерны диопсид, паргаситовая роговая обманка, гроссуляр-андрадит, герцинит. Присутствие герцинита может свидетельствовать об условиях повышенных давлений. Апосерпентинитовые слои включают лизардит, пентландит, хромшпинелид. Габбронориты и пироксениты подверглись автометаморфической амфиболитизации ($T=700-800^{\circ}\mathrm{C}$) с образованием в разных сочетаниях эденита, эденитовой, магнезиальной и чермакитовой роговых обманок, а также магнезиогастингсита.

Габбронориты, экранированные серпентинитами в твердопластическом состоянии, были перекристаллизованы в условиях гранулитовой метаморфической фации ($T = 830-880^{\circ}$ C). В результате возникли следующие ассоциации минералов: анортит, бронзит-гиперстен, диопсид-салит, магнетит. Судя по ориентировке метаморфической полосчатости пород, расположению наложенных двойниковых полос, перекристаллизация габброноритов была стимулирована деформациями типа сдвига и скольжения, направленными вдоль контакта этих пород с ультрабазитами. Об экранировании свидетельствует малая степень наложенных минеральных преобразований перекристаллизованных габброноритов по сравнению с неперекристаллизованными магматическими типами этих пород. Экранирование, по-видимому, кроме того, содействовало сохранению относительно низких значений изотопных отношений стронция в перекристаллизованных габброноритах (табл. 1). Эти значения выше верхнего предела отношений ⁸⁷Sr/⁸⁶Sr в базальтах срединно-океанических хребтов и характерны для пород большинства современных островных дуг и активных континентальных окраин [7]. Разрушение ламеллей диопсида при перекристаллизации бронзита привело к повышению роли катионов Са в плагиоклазах и Fe во вновь сформированных пироксенах. Эти тенденции могли быть усилены при контактово-реакционных взаимоотношениях с ультрабазитами. Для перекристаллизованных габброноритов характерна отчетливая отрицательная аномалия Еu, что может свидетельствовать об их некумулятивном генезисе. Для неперекристаллизованных габброноритов устанавливается как положительная, так и отрицательная аномалии этого элемента [4]. Стоит упомянуть о соотношении содержаний европия и анортитовой молекулы в плагиоклазах этих пород. Намечающаяся зависимость может быть случайной. Сведения приводятся в порядке сбора данных (табл. 1). В зонах локально повышенных температур (T = 700-800°C) и давлений (P > 5кбар) полистадийно в условиях динамотермального метаморфизма были сформированы гранатовые амфиболиты и эклогитоподобные породы, горнблендиты, плагиоклазовые амфиболиты и бластомилониты в виде полосовидных и линзовидных тел, ориентированных субсогласно с полосчатостью (табл. 2). Для зон разлинзования внутри полос-

Таблица 2 Содержание окислов (мас. %) и ионов петрогенных элементов в минералах эклогитоподобной породы по данным электронно-зондового микроанализа

Компоненты	1	2	3	4	Компоненты	1	2	3	4
SiO ₂	45,24	50,86	38,57	39,28	Fe ²⁺	0,98	0,17	1,20	1,61
TiO ₂	0,79	0,25	0,00	0,04	Mn	0,02	0,02	0,04	0,00
Al ₂ O ₃	12,24	3,80	22,70	22,23	Mg	3,44	0,82	1,19	0,21
$C_{\Gamma_2}O_3$	0,00	0,13	0,00	0,10	Ca	1,82	0,92	0,60	0,77
FeO	8,04	5,32	18,82	24,36	Na	0,56	0,02	0,00	0,05
MnO	0,16	0,04	0,61	0,00	К	0,00	0,00	0,00	0,00
MgO	15,79	14,61	10,38	1,77	Сумма	7,57	2,01	5,03	4,72
CaO	11,73	22,99	7,34	9,07					
Na ₂ O	1,96	0,27	0,00	0,29	Mg/(Mg+ Fe)	0,78	0,83	0,50	0,12
K ₂ O	0,07	0,02	0,02	0,01					
Сумма	96,02	98,29	98,44	97,15	En	Не опр.	43,00	Не опр.	Не опр.
					Fs	"	9,00	"	"
Ионы	23(0)	6(0)	12(0)	12(0)	Wo	"	48,00	"	"
Si	6,57	1,91	2,95	3,13	Альмандин	"	Не опр.	40,00	62,00
Al ^{IV}	1,43	0,09	0,05	0,00	Пироп	"	"	40,00	8,00
Сумма	8,00	2,00	3,00	3,13	Спессартит	"	"	1.00	0,00
					Са-компонент	"	"	19,00	30,00
Al^{VI}	0,66	0,08	2,00	2,08					
Ti	0,09	0,005	0,00	0,00					
Cr	0,00	0,00	0,00	0,00					

Примечание: 1 – эденитовая роговая обманка; 2 – диопсид; 3 – гранат; 4 – гранат апогаббноритового филлонита. Анализы выполнены в лаборатории ГИН РАН.

чатых комплексов характерны филлониты, в том числе гранатсодержащие, сформированные за счет гранатовых амфиболитов и эклогитоподобных пород. Порфиробласты. альмандина в филлонитах отличаются низким содержанием пироповой молекулы (табл. 2). Уменьшение содержаний пиропового минала в гранате по сравнению с исходными породами можно связать с его перекристаллизацией в условиях более низкотемпературного динамотермального метаморфизма.

Анализ строения, состава и минеральных преобразований рассмотренных ультрабазитбазитовых комплексов свидетельствует об их магматическо-метаморфическом происхождении. При этом вскрывается полигенетическая природа полосчатых комплексов, в которых габбронориты являются образованиями, неодновременными с лерцолитами и вмещающими их аподунитгарцбургитовыми серпентинитами. Габбронориты и лерцолиты внедрились в серпентиниты на разных уровнях глубинности (Р-Т-условий). В этом смысле полосчатые комплексы можно расценивать как полигенные базит-гипербазитовые плутоны [3]. Лерцолиты, исходя из состава шпинелей, могли быть закристаллизованы в условиях повышенных давлений. Если учесть температуру (950°C) равновесного образования орто- и клинопироксенов, рассчитанную по геотермометру Л.Л. Перчука [5], и исходить из границ устойчивости фации шпинелевых перидотитов, то формирование лерцолитов полосчатого комплекса можно предполагать на глубинах 30-55 км при давлениях 8-16 кбар [10]. Как было показано ранее, в этих условиях возможно существование серпентинитов [8]. Габбронориты по оценкам, приведенным ранее, были закристаллизованы при T = 880-925°C. Исходя из условий устойчивости плагиоклаз-пироксеновых парагенезисов, место формирования их определяется глубинами 20-30 км и давлениями до 7-8 кбар [2, 10]. Для достижения этих условий необходимо предположить протрудирование серпентинит-лерцолитовой ассоциации пород в более высокие уровни мантии и литосферы, возможно происходившее одновременно с внедрением габброноритового расплава. Если опираться на альтернативную схему кристаллизации габброидных серий в восходящем потоке магмы в узких камерах-каналах с полибарическим фракционированием в присутствии водосодержащего флюида [9, 6], то внедрение магмы, сформировавшей габбронориты (и лерцолиты), можно представить по типу дайковых пакетов. Это представление согласуется с данными о встречных крутых падениях полосчатости и субсогласным с ней простиранием более поздних дайковых тел. Формирование полосчатости могло быть обусловлено внедрением дифференцированного расплава по типу «дайка в дайку» с образованием эндоконтактовых и высокотемпературных биметасоматических зон
в виде относительно меланократовых тонких (1-1,5 см) полос. Для пород промежуточного состава (верлиты, пироксениты) на данном уровне изученности можно предполагать как высокотемпературное биметасоматическое, так и магматическое (в частности, динамическая кристаллизация из расплава) происхождение [9]. Формирование гранулитовых (перекристаллизованных)
габброноритов, эклогитоподобных пород, высокотемпературных гранатовых и плагиоклазовых
амфиболитов было связано с глубинным локальным постсолидусным (800°С) динамометаморфизмом габброноритов и биметасоматических пород ультраосновного состава. Эти преобразования совпадали по времени с автометаморфическими изменениями габброноритов в зонах, не
затронутых воздействием интенсивных напряжений. Изменение условий локального динамотермального метаморфизма происходило от высокотемпературных (800°С) и высокобарических (15
кбар) до низкотемпературных субповерхностных (филлониты), что согласуется с концепцией
протрузивно-диапирового становления офиолитовых ассоциаций [8].

ЛИТЕРАТУРА

- 1. Геология дна Филиппинского моря. М.: Наука, 1980. 259 с.
- 2. Ефимов А.А. Габбро-гипербазитовые комплексы Урала и проблема офиолитов. М.: Наука, 1984. 229 с.
- 3. Леснов Φ .П. Петрохимия полигенных базит-гипербазитовых плутонов складчатых областей. Новосибирск: Наука, 1986. 135 с.
 - 4. Пейве А.А. Строение и структурное положение офиолитов Корякского хребта. М.: Наука, 1984. 99 с.
 - 5. Перчук Л.Л. Сосуществующие минералы. Л: Недра, 1971. 413 с.
- 6. *Савельева Г.Н.* Габбро-ультрабазитовые комплексы офиолитов Урала и их аналоги в современной океанической коре. М.: Наука, 1987. 242 с.
- 7. *Шараськин А Я*. Строение и тектоно-магматическая эволюция дна Филиппинского моря // XXVII Междунар. геол. конгр. Т. 6. Ч. 3. История и происхождение окраинных и внутренних морей. М.: Наука, 1984. С. 44-56.
- 8. *Юркова Р.М., Воронин Б.И.* Подъем и преобразование мантийных углеводородных флюидов в связи с формированием офиолитового диапира // Генезис углеводородных флюидов и месторождений. М.: ГЕОС, 2006. С. 56-67
- 9. *Irving A.* Petrology and geochemistry of composite ultramafic xenoliths in alcalic basalts and implications for magmatic processes within the mantle // Amer. J. Sci. 1980. V. 280. P. 389-426.
- 10. O'Hara M.J. Mineral paragenesis in ultrabasic rocks // Ultramafic and related rocks. N.Y.: Blackwall, 1967. P. 393-408.