РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ В ЦИРКОНАХ ИЗ ПОРОД УЛЬТРАМАФИТ-МАФИТОВОГО КОМПЛЕКСА ЮГО-ЗАПАДНОЙ ТУВЫ

Ойдуп Ч.К.*, Леснов Ф.П.**, Палесский С.В.**, Королюк В.Н.**

*Тувинский институт комплексного освоения природных ресурсов СО РАН, Кызыл, oydup ch@mail.ru

**Институт геологии и минералогии СО РАН, Новосибирск, felix@uiggm.nsc.ru

Исследовано распределение главных компонентов, а также редкоземельных элементов (РЗЭ) в акцессорных цирконах из пород Хаялыгского и Бирдагского мафит-ультрамафитовых массивов (ЮЗ Тува). Массивы сложены преобладающими лейко- и мезократовыми, реже меланократовыми амфибол-содержащими габброидами, среди которых залегают ксенолиты в различной мере преобразованных ультрамафитовых реститов (плагиоклазсодержащие гарцбургиты и лерцолиты, клинопироксениты, горнблендиты), а также гибридных оливиновых габброноритов. Породы массивов секутся отдельными дайками плагиогранитов. В большинстве образцов пород обнаружены зерна цирконов. Они представлены прозрачными, полупрозрачными, бледно-ро-

зовыми и коричневатыми разновидностями. По их образцу из амфиболового габбро Хаялыгского массива U-Pb методом ранее был определен изотопный возраст массива -447,4±1,3 млн. лет [3]. Цирконы (табл. 1, см. на след. странице) имеют следующий химический состав (мас. %): SiO₂ (31,88-33,27), ZrO₂ (64,7-67,4), HfO₂ (0,85-1,55), ZrO₂/HfO₂ (41,9-78,1), причем минерал из плагиогранитов отличается пониженными содержаниями ZrO₂ и более низкими значениями ZrO₂/HfO₂ [2]. В некоторых зернах под электронным микроскопом выявлены микровключения апатита, плагиоклаза, кварца, а также хлорита (в микротрещинах), часть зерен имеет микропористую структуру. Зерна цирконов, за исключением содержащих микровключения, проанализированы на РЗЭ (табл. 1). По суммарным содержаниям эти цирконы сравнимы с их образцами из некоторых перидотитов, но выше, чем в минерале из кимберлитов. Им

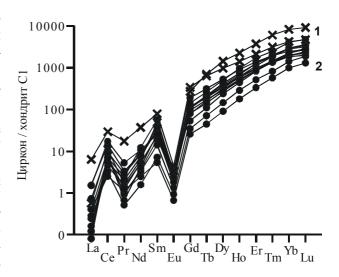


Рис. 1. Распределение хондрит-нормированных содержаний РЗЭ в цирконах из пород Хаялыгского и Бирдагского массивов (2), а также из секущих их даек плагиогранитов (1).

свойственны интенсивные положительные аномалии Се и отрицательные аномалии Еu (рис. 1), что свидетельствует об их кристаллизации в окислительных условиях. В целом пока имеются весьма ограниченные данные о редкоземельном составе цирконов из мафитовых и особенно из ультрамафитовых пород [1].

Работа выполнена при поддержке РФФИ (грант № 09-05-00091а).

ЛИТЕРАТУРА

- 1. *Леснов Ф.П.* Редкоземельные элементы в ультрамафитовых и мафитовых породах и их минералах. Кн. 2. Второстепенные и акцессорные минералы. Новосибирск: Академическое издательство «ГЕО», 2009. 190 с.
- 2. Ойдуп Ч.К., Леснов Ф.П., Королюк В.Н. Распределение главных компонентов в цирконах из пород ультрамафит-мафитового комплекса Юго-Западной Тувы // Металлогения древних и современных океанов-2009. Модели рудообразования и оценка месторождений. Миасс: ИМин УрО РАН, 2009. С. 276-281.
- 3. *Ойдуп Ч.К.*, *Леснов Ф.П.*, *Козаков И.К. и др.* Первые данные по изотопному возрасту мафит-ультра-мафитового комплекса Юго-Западной Тувы (U-Pb метод по цирконам // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Иркутск: ИЗК СО РАН, 2006. С. 69-72.

Таблица I

Содержания редкоземельных элементов (2/т) и главных компонентов (% мас.) в цирконах из пород Хаялыгского и Бирдагского ультрамафит-мафитовых массивов

							Номера с	Номера образцов	•					
JIEMEHTBI	Mx-56	Mx-6a	99-xW	Mx-10a	Mx-12a	Mx-126	Mx-13a	Mx-15a	Mx-156	Mx-27a	Mx-276	Mx-27B	Mx-44a	Mx-446
La	90,0	0,03	0,10	0,10	0,03	0,04	0,070	0,020	0,020	0,38	0,37	0,18	1,56	0,14
Ce	2,02	4,58	1,62	4,18	2,91	4,71	3,473	5,286	4,471	21,6	10,93	80,9	18,68	6,97
Pr	0,05	60,0	0,11	0,10	0,14	0,12	0,201	0,065	0,236	0,32	0,51	0,28	1,68	0,16
Nd	0,75	1,71	1,18	1,57	2,41	2,52	3,493	1,955	5,796	3,99	5,07	3,95	17,63	2,93
Sm	1,10	2,95	0,83	2,19	3,72	3,51	4,868	3,922	8,727	4,83	3,93	5,77	12,19	7,57
Eu	0,54	1,46	0,39	0,78	1,06	1,24	1,389	1,066	1,789	1,76	1,45	1,89	2,58	1,95
Gd	7,07	16,11	5,23	10,95	23,01	21,32	23,854	22,664	38,583	19,40	16,46	29,14	68,80	55,46
Tb	2,65	5,98	1,67	4,09	7,15	65,7	7,485	800'8	11,770	1£'9	5,33	69'6	23,56	25,92
Dy	36,99	81,67	22,98	60,37	86,75	62'86	90,780	107,7	135,3	74,50	66,89	127,8	245,6	360,8
Ho	16,18	34,27	10,16	24,89	32,88	38,26	35,48	41,69	51,17	29,36	27,45	54,37	78,79	127,45
Er.	85,40	182,4	55,42	136,7	151,2	209,2	158,5	204,2	228,5	140,8	144,5	283,9	346,8	613,2
Tm	20,82	47,17	14,53	34,91	33,84	51,08	36,853	48,53	49,29	35,05	37,05	65,29	79,07	153,4
AV	232	481	163	368	304	481	332	460	904	318	368	299	<i>L</i> 69	1359
Lu	47,01	91,00	32,79	72,97	50,27	86,47	55,72	29,08	89'99	16'09	86,69	120,0	117,7	229,8
Сумма	453	056	310	722	669	9001	754	986	6001	502	092	1373	1712	2944
Ce/Ce*	8,29	13,6	3,28	90,6	5,79	10,49	4,59	21,92	5,54	5,90	5,04	5,24	2,46	9,79
Eu/Eu*	0,045	0,051	0,043	0,040	0,027	0,034	0,032	0,027	0,025	0,048	0,047	0,036	0,021	0,021
SiO_2	33,02	32,87	32.97	33,06	33,14	33,25	32,97	33,19	33,31	32,99	33,01	32,93	32,79	32,73
ZrO_2	65,70	66,28	65.63	66,07	90,59	65,15	65,74	85,38	65,45	55,53	65,51	65,30	64,74	64,91
HfO_2	1,23	1,16	1,03	1,20	1,29	1,27	1,12	1,17	1,16	1,08	1,21	1,21	1,31	1,55
Сумма	99,95	100,31	99,63	100,33	99,49	29,66	99,83	99,74	99,92	69,65	99,73	99,44	98,84	99,19
ZrO_2/HfO_2	53,42	57,14	63,72	55,06	50,43	51,30	58,70	55,88	56,42	69'09	54,14	53,97	49,42	4188
Порода	Горнб-	Габ	aoopo]	Габбро амфиболовые	риболовые					Плагиограниты	раниты
,	JICH CHILL	MCJIAHON	Medianonparobbic											
Массив				~	Хаялыгский	Y.					_	Бирдагский		

 $\mathit{Примечаниe}$. Анализы на ZrO_{2} и SiO_{2} (рентгеноспектральный метод) и $\mathit{P3}$ Э (метод $\mathit{LA~ICP-MS}$) выполнены в Аналитическом центре MFM $\mathit{CO~PAH}$ (г. Новосибирск).

108 Тезисы докладов. Том II