ГЕНЕЗИС И ВЕЩЕСТВЕННЫЕ ОСОБЕННОСТИ КИТОЙСКОГО ГРАНИТОИДНОГО КОМПЛЕКСА В ПРИСАЯНСКОМ ВЫСТУПЕ ФУНДАМЕНТА СИБИРСКОЙ ПЛАТФОРМЫ

Левицкий И.В., Левицкий В.И.

Институт геохимии СО РАН, Иркутск, ilevit@igc.irk.ru

Присаянский краевой выступ фундамента Сибирской платформы сложен: 1) гранулитовыми метаморфическими комплексами - шарыжалгайским и китойским, объединяемыми в Прибайкальскую гранулит-гнейсовую область (ПрГГО); 2) низкометаморфизованными образованиями – Онотским и Таргазойским зеленокаменными поясами (ЗП), тоналит-трондьемит-гранадиоритовым (ТТГ) ассоциациями Восточно-Сибирской гранит-зеленокаменной области (ВСГЗО). Для ТТГ получены оценки возраста в интервале 3,3-3,4 млрд. лет (U-Pb метод по цирконам) и они относятся к древнейшим образованиям мира [5]. В шарыжалгайской серии преобладают двупироксеновые плагиосланцы и плагиогнейсы, гиперстеновые и гиперстен-биотитовые плагиогнейсы, редко встречаются – мраморы, метаультрабазиты. Надежный возраст пород шарыжалгайской серии полученный U-Pb методом по цирконам чарнокитов и гиперстеновых плагиогнейсов составляет 2,8 млрд. лет [6], но известны оценки возраста Rb-Sr метода – 3,4-3,7 млрд. лет [2] и U-Pb SHRIMP-метода по цирконам – 3,2-3,4 млрд. лет. В китойской метаморфической серии доминируют биотитовые и гиперстеновые плагиогнейсы, меньше развиты двупироксеновые плагиосланцы и амфиболиты, велика доля мраморов, тогда как количество метаэффузивов 20 %, а возраст, полученный изохронным Rb-Sr методом по гнейсам, составляет 2,7-2,8 млрд. лет [2]. Модельные (T_м(DM)) возраста для шарыжалгайской и китойской серий варьируют от 2,9 до 3,6 млрд. лет.

В 70 гг. XX века сначала в шарыжалгайской, а потом и в китойской метаморфических сериях был выделен китойский гранитоидный комплекс, представленный эндербитами, чарнокитами, мигматитами, гранитами с постепенными переходами между собой, что свидетельствует об их формировании при проявлении ультраметаморфических процессов (гранитизации) путем преобразований сланцев и гнейсов под воздействием глубинных мантийных флюидов. До настоящего времени не было единого мнения о его составе, распространении, критериях выделения. Протяженность комплекса 300 км, а мощностью до 10 км в Иркутном, Китойском и Булунском блоках Присаянского краевого выступа фундамента Сибирской платформы [3].

В результате наших исследований установлено, что китойский комплекс сложен не только наложенными на метаморфические породы мигматитами и гранитами в шарыжалгайской и китойской сериях ПрГГО, но и развит по тоналит-трондемитовым ассоциациям ВСГЗО. Он приурочен к зонам сочленения ПрГГО и ВСГЗО. Их состав варьирует в зависимости от субстрата и степени его преобразования. Наиболее широко распространены эндербиты, плагиоклазовые и калишпатовые мигматиты, чарнокиты, автохтонные и аллохтонные граниты, развитые по сланцам и гнейсам гранулитовой фации в шарыжалгайской серии Иркутного (мощность тел до 100 м), китойской серии Китойского (массивы до 1-2 км²) и ТТГ Китойского и Булунского (10 км²) блоков. Кроме того, во всех блоках встречаются мигматит-граниты, а в двух последних милониты и катаклазиты, субстрат которых и стратиграфическое положение иногда установить трудно. Среди пород китойского комплекса выделяют как слабо преобразованные метаморфиты или ТТГ, так и продукты их интенсивных преобразований – плагиоклазовые и калишпатовые мигматиты, граниты и пегматиты (табл. 1), развитые по ортопородам (табл. 1, выб. 1-4, 7, 9-11) и парапородам (табл. 1, выб. 5-6). По щелочнометалльности их составы варьируют от низкощелочных до субщелочных, а по геохимическим параметрам они относятся к ультраметаморфическому типу гранитов [5] – обогащены Ti, Al, K, Ba, LREE, Zr, Cr, Ni. Возраст комплекса, полученный U-Pb методом по цирконам в шарыжалгайской серии для пегматитов равен 2557±28 млн. лет, для гранитов – 2562±20 млн. [4], а в китойской серии – 2535±7 млн. лет [1]. По данным Rb-Sr изохронного метода возраст калишпатовых мигматитов и гранитов в ТТГ Онотского ЗП - 2,64 млрд. лет. Возраст формирования китойского ультраметаморфического комплекса может составлять 2,53-2,64 млрд. лет.

Таблица 1 Средний химический (мас. %) и редкоэлементный (г/т) состав пород китойского комплекса в шарыжалгайской (1-4) и китойской (5-7) сериях, ТТГ (8-12)

№№ пп	1(4)	2 (83)	3 (28)	4 (14)	5 (8)	6 (23)	7(40)	8 (9)	9(44)	10(23)	11(29)
SiO_2	65,1	68,3	72,8	66,4	74,7	69,0	74,2	65,7	72,8	70,1	73,8
TiO ₂	0,83	0,60	0,16	0,76	0,20	0,48	0,16	0,67	0,26	0,42	0,05
Al_2O_3	15,2	14,5	14,0	14,0	11,5	14,8	13,5	14,9	13,9	14,8	14,5
Fe_2O_3	3,3	1,8	0,8	1,5	2,0	1,9	0,1	1,6	2,4	1,0	0,3
MgO	1,8	1,3	0,4	2,4	0,5	1,1	0,3	2,7	0,5	1,0	0,2
CaO	4,4	2,8	1,3	1,5	1,4	2,4	1,0	3,3	1,2	2,1	0,8
K_2O	1,7	3,9	6,2	4,8	3,2	3,4	6,4	1,9	5,0	3,1	5,0
Na ₂ O	3,7	3,2	2,9	2,1	2,9	3,9	2,6	3,0	3,1	4,0	4,0
Rb	55	96	185	167	108	118	157	83	132	113	208
Ba	594	1238	1179	947	676	788	1383	370	947	586	476
Sr	311	353	233	152	101	318	172	206	230	308	143
La	87	61	34	64	101	55	31	46	74	37	10
Y	16	15	27	47	67	26	12	18	29	11	8
Zr	211	242	131	270	426	230	118	181	214	201	76
Pb	13	21	25	38	27	22	48	21	25	19	56
Cr	57	37	19	97	24	40	16	129	12	16	7
Ni	29	18	12	41	19	27	12	61	8	10	5

Примечание. 1 – эндербит; 2, 6, 9 – калишпатовые мигматиты; 3,7,10 – граниты; 11 – пегматиты; 4-5 – мигматиты по парагнейсам; 8 – слабо измененные $TT\Gamma$.

Выполненные петролого-геохимические и изотопно-геохронологические исследования китойского комплекса позволили подтвердить его ультраметаморфическую гранитоидную генетическую природу и региональное распространение, установить формирование не только по породам шарыжалгайской и китойской серий гранулитовой фации, но и по тоналит-трондьемитовым ассоциациям. Все это является основой для его выделения в структурно-вещественной шкале докембрия как подразделения и отображения на геологических картах нового поколения Приса-янского краевого выступа фундамента Сибирской платформы.

Работа выполнена при поддержке гранта РФФИ 09-05-00563 и 08-05-00322.

ЛИТЕРАТУРА

- 1. Гладкочуб Д.П., Донская Т.В., Мазукабзов А.М. и др. Возраст и геодинамическая интерпретация гранитоидов китойского комплекса (юг Сибирского кратона) // Геология и геофизика. 2005. Т. 46 (11). С. 1139-1150.
- 2. *Левицкий В.И*. Петрология и геохимия метасоматоза при формировании континентальной коры. Новосибирск: Геос. 2005. 343 с.
- 3. Магматические формации юга Восточной Сибири и Северной Монголии / Объяснительная записка к карте масштаба 1:500000, Ред. Абрамович Г.Я. 1989. 119 с.
- 4. *Сальникова Е.Б., Котов А.Б., Левицкий В.И. и др.* Возрастные рубежи высокотемпературного метаморфизма в кристаллических комплексах шарыжалгайского выступа фундамента Сибирской платформы: результаты U-Pb датирования единичных зерен циркона // Стратиграфия. Геологическая корреляция. 2007. Т. 15. № 4. С. 3-19.
 - 5. Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М. Наука. 1977. 279 с.
- 6. *Aftalion M, Bibikova E., Bowes D.R. et al.* Timing of Early Proterozoic collisional and extensional events in the Sharyzhalgay granulite-gneiss-charnockite-granite complex, Lake Baikal, USSR (U-Pb, Rb-Sr, and Sm-Nd isotopic study) // Jour. Geol. 1991. V. 99. P. 851-862.

18 Тезисы докладов. Том II