—— ГЕОХИМИЯ —

УДК 552.313.1 (470.5)

АНКАРАМИТЫ – НОВЫЙ ТИП МАГНЕЗИАЛЬНЫХ, ВЫСОКО-КАЛЬЦИЕВЫХ ПРИМИТИВНЫХ РАСПЛАВОВ В МАГНИТОГОРСКОЙ ОСТРОВОДУЖНОЙ ЗОНЕ НА ЮЖНОМ УРАЛЕ

© 2018 г. Е. В. Пушкарев^{1,*}, А. В. Рязанцев², И. А. Готтман¹, член-корреспондент РАН К. Е. Дегтярев², В. С. Каменецкий³

Поступило 09.06.2017 г.

Приведена характеристика геологического положения, минерального и химического составов анкарамитов, образующих лавовые потоки, фрагменты которых обнаружены в меланже западной периферии Магнитогорской зоны на Южном Урале. Приведены данные о составах вкрапленников и основной массы эффузивов. Это позволяет заключить, что анкарамиты можно отнести к типу первичных островодужных магм, не претерпевших дифференциации и ранее не выделявшихся в составе вулканогенных формаций Урала. Показано, что анкарамиты могут представлять первичные расплавы, родоначальные для дунит-клинопироксенит-габбровых комплексов Урало-Аляскинского типа. Обнаружение анкарамитов в палеозойских островодужных формациях Урала указывает на верлитовый состав мантии, из которой они были выплавлены.

DOI: 10.7868/S0869565218100171

Анкарамиты впервые выделил А. Лакрои [12] на Мадагаскаре в 1916 г. при описании меланократовых эффузивов основного состава с обильными вкрапленниками авгита и оливина в мелкозернистой основной массе, состоящей из клинопироксена, плагиоклаза, титаномагнетита, флогопита. Эти породы характеризуются $CaO/Al_2O_3 > 1$, что существенно выше, чем в большинстве ультраосновных и основных пород, связанных с плавлением примитивной или деплетированной мантии, в которой $CaO/Al_2O_3 = 0.8-0.9$. По этому критерию анкарамиты относятся к типу высокоизвестковистых пород [7, 15]. За последние 25 лет было установлено, что высококальцевые ультраосновные, основные эффузивы и дайки часто встречаются в островных дугах Тихого, Индийского океанов [7]. Высказанное исследователями предположение, что анкарамиты – особый класс примитивных островодужных магм, было подкреплено изучением высококальциевых расплавных включений во вкрапленниках магнезиального оливина, хромита из базальтов разных провинций [8, 15]. В это же время были

¹Институт геологии и геохимии им. А.Н. Заварицкого Уральского отделения Российской Академии наук, Екатеринбург

проведены эксперименты, моделирующие выплавление анкарамитовых расплавов из верлитового мантийного субстрата при (1-2) ГПа [14]. Изучая ход кристаллизации анкарамитов комплекса Бриджет Ков на Аляске, Н.Т. Ирвин предположил, что это родоначальный расплав для дунит-клинопироксенит-габбровых интрузий Урало-Аляскинского типа [9]. Геологическая история Урала в палеозое включает масштабную эпоху островодужного развития, которая привела к формированию Тагильской, Магнитогорской вулканогенных зон и во многом определила металлогению складчатого пояса. Однако в опубликованной литературе отсутствуют сведения о том, что среди разнообразных эффузивов встречаются магнезиальные породы, обогащённые Са ([4, 6] и др.). Поэтому находка примитивных анкарамитов в Магнитогорской зоне на Южном Урале влечёт за собой важные следствия для понимания состава уральской палеомантии, эволюции островодужного вулканизма и формирования мафит-ультрамафитовых комплексов Урало-Аляскинского типа.

Анкарамиты были обнаружены на участке 600 × 200 м в долине между хребтами Ирендык и Аратау, примерно в 500 м к северо-западу от д. Абзаково Учалинского района. Тела анкарамитов залегают среди серпентинитов тектонического меланжа в западном борту Магнитогорской вулканогенной зоны на Южном Урале, примыкающей с востока к зоне Главного уральского разлома

 $^{^{2}}$ Геологический институт Российской Академии наук, Москва 3 University of Tasmania, Australia

^{*}E-mail: pushkarev.1958@mail.ru

Рис. 1. Схема распространения структур и комплексов в северо-западном секторе Магнитогорской зоны на Южном Урале [1]. 1, 2 – зона Уралтау: 1 – кварциты, сланцы рифея, 2 – кремни, песчаники, алевролиты (D₁); 3 – базальты, кремни, брекчии (D₁₋₂); 4 – массивы "лерцолитового" типа и связанные с ними меланжи; 5 – массивы "гарцбургитового" типа; 6 - серпентинитовые меланжи, связанные с массивами гарцбургитового типа; 7 – базальты, кремни, туффиты (O_{2-3}); 8 – поляковская свита (O_{1-3}), базальты, кремни; 9-тектонически перемешанные в меланже блоки поляковской свиты (О1-3) и нижней толщи баймак-бурибайской свиты (D₁ems), базальты, кремни, ассоциирующие дайки; 10 – лавы, туфы дифференцированной базальт-андезит-дацит-риолитовой серии (D₁ems); 11-ирендыкская свита (D₂ef), базальты, андезибазальты, их туфы и перекрывающие вулканогенно-осадочные свиты среднего-верхнего девона; 12-кремни, песчаники, алевролиты, туффиты (D₃); 13 – тектонические границы; 14 – местоположение изученных анкарамитов. Мафит-ультрамафитовые массивы: Н – Нуралинский, Т – Татлембетовский.

(рис. 1). В составе меланжа, помимо вулканических пород Магнитогорской зоны, принимают участие блоки девонских известняков и кремней, базальтов ордовика, силура и фрагменты офиолитовых комплексов. В литературе эта зона выделяется как Присакмаро-Вознесенская, а её формирование

Рис. 2. Микрофотография анкарамиты Пе1494 порфировой структуры. Срх-I – порфировые вкрапленники хромдиопсида I типа, Срх-II – порфировые вкрапленники диопсида II типа, Орх – хлоритовые псевдоморфозы по вкрапленникам оливина (или ортопироксена), CrSp – порфировые вкрапленники хромита, Serp – ксенолит серпентинитов. Проходящий свет.

связывают с тектоническим скучиванием при коллизии Магнитогорской островной дуги с краем Восточно-Европейского палеоконтинента [1]. На изученном участке анкарамиты образуют дайки в серпентинитах и пластовые тела, тесно ассоциированные с лавами трахиандезитов. Мощность пластовых тел от нескольких десятков сантиметров до нескольких метров, протяжённость до 60–70 м. В трахиандезитах, налегающих на анкарамиты, зафиксированы структуры пахоэхоэ, указывающие, что это поверхность лавового потока. Мы предполагаем, что пластовые тела анкарамитов тоже фрагменты лавовых потоков. В краевых частях тел анкарамитов и трахиандезитов отчетливо проявлены зоны закалки.

Анкарамиты порфировой структуры (рис. 2). Суммарное количество вкрапленников 30-35%. Вкрапленники представлены клинопироксеном (15–30%), хромитом (<1%), оливином (или ортопироксеном) (до 5–8%). Последние полностью замещены хлоритом и распознаются только по внешнему габитусу кристаллов. Основная масса анкарамитов имеет криптокристаллическую структуру со средним размером микролитов 10–50 мкм. Главный минерал в основной массе – клинопироксен (30–50%), интерстиции между которым сложены амфиболом, клиноцоизитом.

Порфировые вкрапленники клинопироксена по размеру и характеру зональности можно разделить на два типа. І тип – крупные кристаллы (от 2 мм до

Шлиф	Пе1490-2-1		Пе1466-1-6			Пе1490-1-2		Пе1466	
Компонент	Центр	Край	Центр	Кайма	Край	Центр	Край	Центр	Край
№ п/п	1	2	3	4	5	6	7	8	9
SiO ₂	54,93	53,25	54,84	53,92	53,38	51,57	54,45	н.опр	н.опр
TiO ₂	0,06	0,12	0,03	0,02	0,11	0,15	0,06	0,15	0,16
Al_2O_3	0,42	1,32	0,45	0,86	1,47	2,65	0,63	4,25	4,92
Cr_2O_3	0,51	0,03	0,55	0,2	0,02	0,06	0,53	63,82	62,31
FeO*	2,94	8,49	2,74	4,97	8,03	8,53	5,06	19,40	20,11
MnO	0,01	0,17	0,13	0,33	0,24	0,22	0,23	0,15	0,08
MgO	19,3	17,84	18,8	15,78	16,58	15,01	19,55	11,15	11,10
CaO	22,21	19,13	22,04	23,6	20,07	21,26	19,33	н.опр	н.опр
Na ₂ O	0,1	0,1	0,09	0,2	0,12	0,15	0,09	н.опр	н.опр
Сумма	100,48	100,43	99,67	99,88	100,02	99,59	99,93	98,92	98,68
Mg/(Fe+Mg)	0,92	0,79	0,93	0,85	0,79	0,76	0,88	0,56	0,56

Таблица. 1. Представительные анализы порфировых вкрапленников клинопироксена и хромита, мас.%

Примечание. 1–5 – порфировые вкрапленники клинопироксена I типа (пояснения в тексте); 6, 7 – порфировые вкрапленники клинопироксена II типа; 8, 9 – порфировые вкрапленники хромита. Центр – центр вкрапленника, кайма – промежуточная кайма, обрастающая ядро, край – край вкрапленника. FeO^{*} – всё Fe в виде FeO. Анализы выполнены на рентгеновском анализаторе Cameca SX-100 в ЦКП "Геоаналитик" ИГГ УрО РАН, Екатеринбург (аналитик Д.А. Замятин).

4 см) яблочно-зелёного хромдиопсида (рис. 2, табл. 1). Он характеризуется высокой магнезиальностью Mg/(Mg + Fe) = 0.93 - 0.87 и низким уровнем глинозёма (<0,6%). Содержания Cr₂O₂ 0,5–0,7 мас.%. Вкрапленники I типа обрастаются узкими каймами более железистого пироксена (табл. 1). II тип – мелкие зёрна в 0,5-2 мм (рис. 2). Ядра в них темно-зелёные, представлены диопсидом с Mg/(Mg + Fe) == 0,75-0,80. По составу они сходны с каймами вкрапленников I типа. Ядра обрастаются магнезиальным хромдиопсидом I типа (табл. 1), вокруг которых снова начинает кристаллизоваться более железистый диопсид. Возможно, что нарушение зональности в клинопироксенах II типа связано с конвективным перемешиванием расплава, когда поздние вкрапленники попадают в более примитивный и магнезиальный расплав. Возможно также поступление в магматическую камеру новой порции магнезиального анкарамитового расплава, который инициирует повторную кристаллизацию пироксена І типа. Клинопироксены из основной массы охватывают весь диапазон составов клинопироксена из анкарамитов. Общий ход эволюции клинопироксена идёт в сторону уменьшения магнезиальности и концентраций Cr при одновременном увеличении содержаний Al, Ti, Na. Это направление контролируется фракционированием оливин-клинопироксеновой котектики и является типичным для островодужных анкарамитов [7, 8] и ультрамафитов из комплексов Урало-Аляскинского типа [2, 5, 9]. Хромит образует вкрапленники до 3 мм (рис. 2). Он характеризуется высокими магнезиальностью $Mg/(Mg + Fe^{2+}) = 0,60-0,56$ и хромистостью Cr/(Cr+Al) = 0,89–0,91 (табл. 1). Вкрапленники хромита содержат включения форстерита и раскристаллизованные расплавные включения, валовой состав которых близок к анкарамиту [10], что подтверждает первичный характер эффузивных пород.

Составы анкарамитов Магнитогорской зоны (табл. 2) на классификационных диаграммах [13]

Рис. 3. Классификационная диаграмма (Na₂O+K₂O) – MgO для высокомагнезиальных вулканических пород [13].

ПУШКАРЕВ и др.

	,							
№ п/п	1	2	3	4	5	6	7	8
Компонент	Пе1465	Пе1466	Пе1467	Пе1492	Пе1566	190	191	192
SiO ₂	46,08	45,43	46,14	43,89	46,32	47,90	47,83	48,80
TiO ₂	0,16	0,17	0,18	0,15	0,13	0,00	0,00	0,00
Al_2O_3	6,02	6,60	7,01	6,24	6,36	10,69	10,05	9,78
Fe_2O_3	5,41	4,74	3,98	5,95	3,89			
FeO	3,50	4,20	5,00	2,80	4,20	9,38*	9,85*	9,46*
MnO	0,19	0,20	0,24	0,29	0,20	0,00	0,00	0,00
MgO	18,44	17,70	16,60	17,68	15,05	16,26	17,44	16,64
CaO	16,50	16,79	17,08	20,01	21,12	15,77	14,82	15,32
Na ₂ O	0,10	0,10	0,11	0,07	0,18	0,00	0,00	0,00
K_2O	0,04	0,01	0,01	0,00	0,02	0,00	0,00	0,00
P_2O_5	0,12	0,11	0,13	0,12	0,06	0,00	0,00	0,00
ппп	3,40	3,70	3,50	3,10	2,50			
Сумма	99,94	99,75	99,97	100,30	100,04	100,00	100,00	100,00
Mg/(Fe + Mg)	0,80	0,79	0,78	0,80	0,78	0,76	0,76	0,76
CaO/Al ₂ O ₃	2,74	2,54	2,44	3,21	3,32	1,48	1,48	1,57

Таблица 2. Химический состав анкарамитов Магнитогорской зоны Южного Урала, мас.%

Примечание. 1–5 – валовые составы анкарамитов, анализы выполнены рентгенфлюоресцентным методом на СРМ-35, XRF 1800, 6–8 – составы основной массы анкарамита Пе1466, 190–192 – номера спектров измерений. Анализы основных масс приведены к 100%. 9,38^{*} и др. – всё Fe в форме FeO. Анализы выполнены в ЦКП "Геоаналитик" ИГГ УрО РАН, Екатеринбург.

Рис. 4. Диаграмма CaO-Al₂O₃-MgO* (где MgO* = $MgO + 0.5Fe_2O_3 + 0.55FeO)$ [2, 5]. *1,* 2 – анкарамиты Магнитогорской зоны: *1* – валовые составы пород; *2* – составы основной массы; *3* – составы расплавных вкючений из вкрапленников магнезиального оливина и хромшпинелида [7, 8, 15]; *4* – поле анкарамитов юго-западной Пацифики [7, 8, 15]; *5* – средние составы базальтов [5]. Толстая пунктирная линия – тренд дунит-клинопироксенит-габбровых комплексов Урало-Аляскинского типа [2, 5]. В диаграмму встроена система диопсид-анортитоливин с котектическими линиями, соответствующими 1 атм (тонкая пунктирная линия) и 20 кбар (тонкая сплошная линия), по [5].

соответствуют пикритам и характеризуются содержаниями SiO₂ 43-48%, MgO 15-19% (рис. 3). Сумма щелочей и концентрация двуокиси Ті в породах не более 0,2-0,3%. Однако в отличие от пикритов, которые имеют $CaO/Al_2O_3 < 1$, в анкарамитах $CaO/A_2O_3 > 1$ [8], что отражает высокую долю клинопироксена в породах. В анкарамитах Магнитогорской зоны доля клинопироксена не менее 50-60%, что в отсутствие плагиоклаза определяет высокое CaO/Al₂O₃ = 2,4-3,2 (табл. 2), близкое к клинопироксенитам. Соответствие анкарамитов первичному расплаву подтверждается отсутствием существенных различий между валовым составом породы и основной массы, что является важным критерием при оценке степени дифференциации. Состав основной массы анкарамитов определялся в полированных шлифах по участкам между порфировыми вкрапленниками на СЭМ JSM-6390-LV в ЦКП "Геоаналитик" ИГГ УрО РАН. По содержанию MgO составы анкарамитов и основных масс практически совпадают (рис. 2). Основные массы обладают более высокими SiO₂, Al₂O₃, меньшими магнезиальностью, CaO/Al₂O₃ по сравнению с породами (табл. 2), но различия эти невелики. Так, на диаграмме (рис. 4), отражающей соотношение в породах CaO, Al₂O₃, MgO*, составы основных масс анкарамитов Магнитогорской зоны расположены в поле анкарамитов островных дуг Тихого океана и совпадают с составами высококальциевых расплавных включений во вкрапленниках магнезиального оливина и хромита [7, 8, 15]. Это позволяет утверждать, что анкарамиты Магнитогорской зоны соответствуют первичным магнезиальным, высококальциевым расплавам, не прошедшим существенной дифференциации. Породы и расплавы такого состава впервые выделяются в составе островодужных вулканогенных формаций Урала.

Способность анкарамитов продуцировать значительные объёмы клинопироксена в котектических пропорциях с оливином и хромитом позволяет рассматривать анкарамиты как наиболее подходящий вариант первичных расплавов для дунитклинопироксенит-габбровых комплексов Урало-Аляскинского типа [2, 5, 9, 11]. На рис. 4 видно, что анкарамиты, основные массы из них и составы высококальциевых расплавных включений расположены вдоль линии оливин-клинопироксеновой котектики при ~ 20 кбар, параллельно тренду дунит-клинопироксенит-габбровых комплексов. Составы анкарамитов практически совпадают с расчётным составом расплава, родоначального для дунит-клинопироксенит-габбровых комплексов [2]. Это дополнительный аргумент для такого заключения.

Обнаружение анкарамитов в Магнитогорской островодужной зоне указывает на существование в палеозойской мантии Урала участков верлитового состава, что согласуется с экспериментами по генезису анкарамитов [14]. Верлитовый состав мантии может объяснить обилие клинопироксеновых ультрамафитов, широко развитых в офиолитовых комплексах Урала, в особенности в дунит-клинопироксенит-габбровых комплексах Урало-Аляскинского типа в составе Платиноносного пояса [2, 5].

Работа выполнена при финансовой поддержке РФФИ № 16-05-00508-а и исследовательской темы № 0393-2016-0016.

СПИСОК ЛИТЕРАТУРЫ

- 1. Белова А.А., Рязанцев А.В., Разумовский А.А., Дегтярев К.Е. // Геотектоника. 2010. № 4. С. 39-64.
- 2. *Пушкарев Е.В.* Петрология Уктусского дунит-клинопироксенит-габбрового массива (Средний Урал). Екатеринбург: УрО РАН, 2000. 296 с.
- 3. *Рингвуд А.Е.* Состав и петрология мантии Земли. М.: Недра, 1981. 584 с.
- 4. *Серавкин И.Б., Косарев А.М., Салихов Д.Н. и др.* Вулканизм Южного Урала. М.: Наука, 1992. 197 с.
- 5. *Ферштатер Г.Б., Пушкарев Е.В.* // Изв. АН СССР. Сер. геол. 1987. № 3. С. 13–23.
- 6. *Фролова Т.И., Бурикова И.А.* Геосинклинальный вулканизм. М.: МГУ, 1977. 279 с.
- Barsdell M., Berry R. F. // J. Petrol. 1990. V. 31. P. 747–777.
- *Della-Pasqua F.N., Varne R.* // Canad. Mineral. 1997.
 V. 35. P. 291-312.
- 9. *Irvine T.N.* Bridget Cove volcanics, Juneau area, Alaska: Possible Parental Magma of Alaskan-Type Ultramafic Complexes // Carnegie Inst. Year-Book. 1973. V. 72. P. 478–491.
- 10. Kamenetsky V.S., Park J-W., Mungall J.E., Pushkarev E.V., Ivanov A.I., Kamenetsky M.B., Yaxley G.M. // Geology. 2015. V. 43. № 10. P. 903– 906.
- 11. *Krause J., Brugmann G.E., Pushkarev E.V.* // Lithos. 2007. V. 95. P. 19–42.
- 12. *Lacroix A.* // C.R. Hebdomadaire Séances de l'Académie des Sci. de Paris. 1916. V. 163. P. 177–183.
- 13. *Le Bas M.J.* // J. Petrol. 2000. V. 41. № 10. P. 1467–1470.
- 14. *Medard E., Schmidt M.W., Schiano P., Ottolini L. //* J. Petrol. 2007. V. 47. № 3. P. 481–504.
- 15. Schiano P., Eiler J.M., Hutcheon I. D., Stolper E.M. // Geochem., Geophys., Geosyst. 2000. № 1. 1999GC00000032.