ПЕТРОГЕОХИМИЯ РУДОНОСНЫХ МЕДНО-ПОРФИРОВЫХ ГРАНИТОИДОВ ТАГИЛО-МАГНИТОГОРСКОЙ ВУЛКАНОГЕННОЙ ЗОНЫ

А.И. Грабежев, Г.Ю. Шардакова

По геологическим данным в пределах Тагило-Магнитогорской вулканогенной зоны устанавливается значительный возрастной интервал порфирового магматизма, варьирующий от D₁²-D₂ (Гумешевское, Салаватское Си-порфировые месторождения) до D₃ (Юбилейное Cu-Au-порфировое месторождение), D_{2}^{2} (Верхнеуральское Cu-Мо-порфировое рудопроявление) и С₁₋₂ (Талицкое Си-Мо-порфировое месторождение). Имеющиеся абсолютные возраста датируют только время образования Верхнеуральского рудопроявления (Rb-Sr метод, 362±9 млн лет, [Салихов, Митрофанов, 1984]) и Первомайского месторождения (К-Аг метод по биотиту, 320-341 млн лет). Попытка Rb-Sr датирования других объектов пока не увенчалась успехом в связи с сильным гидротермальным изменением гранитоидов. В целом, изученные массивы образуют наиболее вероятный возрастной ряд: Гумешевский – Салаватский – Вознесенский - Юбилейный - Верхнеуральский – Талицкий, причем первые три массива, вероятно, близки по времени формирования $(D_1^2 - D_2)$. Рудоносные гранитоиды первых трех массивов представлены диоритами и кварцевыми диоритами при ограниченном присутствии габбро-диоритов в Гумешевском и Салаватском массивах [Грабежев, Белгородский, 1992]. В Салаватском массиве наблюдаются отдельные жилы плагиогранитов, которые очень характерны для Вознесенского массива. Юбилейный шток слагается плагиогранодиоритами, часто калишпатсодержащими. Верхнеуральский массив представлен, по нашим данным, и [Салихов, Митрофанов, 1984; Сурин, 1997] рядом пород от габбро до слабо подщелоченных диоритов, гранодиоритов и сиенитов. Наконец, Талицкий массив сложен преимущественно монцонитоидными гранодиоритами. В данном направлении возрастает содержание калия в гранитоидах и их общая щелочнометалльность (табл. 1, рис. 1). Для гранитоидов мелких месторождений и рудопроявлений обычно характерна обратная зависимость между содержаниями суммарного железа и SiO₂, свойственная, как известно, магматическим трендам дифференциации. В то же время для крупного объекта – Гумешевского месторождения, такая зависимость отсутствует, что свидетельствует о значительном перераспределении железа с преимущественным его выносом при пропилитизации и серицитизации гранитоидов.

Геохимическое исследование минимально измененных рудоносных гранитоидов свидетельствует об увеличении в выше указанном ряду массивов суммы редких земель и ряда других типоморфных элементов. На диаграммах наблюдается последовательная смена спектров с увеличением содержаний легких редких земель при примерном постоянстве (или небольшом уменьшении) тяжелых редких земель (рис. 2). Морфология спектров очень близка, полностью отсутствует европиевая аномалия. В ряду месторождений (Гумешевское -Салаватское - Вознесенское - Юбилейное -Верхнеуральское - Талицкое) содержание суммы редких земель в гранитоидах диоритового состава (цифры в скобках – в жильных плагиогранитах) составляет (по данным ICP-MS), соответственно, 23-48, 38-41 (50), 61-69 (49-53), 86-106, 103-168, 161-165 г/т. Содержание лантана отвечает, соответственно, 6-8, 5-7 (7), 11-13 (11-12), 16-19, 23-32, 40-42 г/т, а иттербия -0,6-2,2 г/т. Соответственно, возрастает La/Yb

Γ	
a	
ĥ'n	
21	
a(

Химический состав минимально измененных гранитоидов медно-порфировых месторождений Тагило-Магнитогорской зоны, мас. %

19	(1)	67,90	0,06	14,86	0,40	2,49	0,01	0,80	0,33	0,26	11,78	0,01	0,14	0,09	0,50	0,66	100,29	3,14	230	40
18	(11)	66,57	0,50	15,14	0,78	3,05	0,05	1,83	2,18	4,63	3,22	0,25	0, 19	0,22	0,06	0,84	99,51	4,14		
17	(9)	61,92	0,45	17,00	2,60	2,19	0,06	0,96	2,02	4,66	6,17	0,17	0,40			1,11	99,72	4,53	183	402
16	(9)	65,95	0,32	15,75	1,40	3,48	0,07	1,25	2,74	4,28	2,96	0,13	0,12			1,03	99,48	4,73	83	846
15	(9)	62,26	0,45	16,61	1,85	3,77	0,07	2,06	3,56	4,07	2,43	0,18	0,50			2,09	99,56	5,44	46	583
14	(9)	55,94	0,77	16,53	2,79	6,01	0,15	3,73	6,12	3,79	2,13	0,31	0,21			1, 17	99,64	8,52	48	748
13	(5)	46,79	1,11	15,94	5,81	7,82	0, 19	5,53	9,90	2,57	1,21	0,38	0,10			1,96	99,32	13,05	36	572
12	(21)	69,43	0,29	15,14	1,04	1,95	0,04	1,33	2,30	4,53	1,82	0,12	0,81	0,13	0,03	1,30	99,90	2,87	64	222
11	(3)	74,63	0,11	12,27	0,43	2,39	0,03	0,57	2,18	4,97	0,62	0,06	0,39	0,26	0,06	0,82	99,80	2,78	7	235
10	(3)	71,20	0,16	13,67	0,79	3,54	0,03	1,18	1,97	4,35	1,18	0,07	0,14	0,44	0,05	1,02	99,78	4,24	21	252
6	(9)	57,27	0,37	15,83	2,36	5,85	0,10	4,31	6,08	2,41	1,91	0,16	0,07	0,38	0,08	2,63	99,80	7,98	33	485
8	(2)	60,08	0,34	16,05	1,49	5,42	0,09	3,20	5,45	2,96	1,18	0,13	0,11	0,46	0,07	2,81	99,80	6,76	23	453
7	(1)	72,09	0,51	11,85	1,63	1,96	1,02	1,80	1,73	3,53	0,72	0, 19	0,10	1,63		0,81	98,57	3,43	14	112
9	(5)	62,33	0,39	14,88	3,69	2,08	0,03	3,25	4,50	3,38	0,61	0,08	0,18	2,00	0,06	2,15	99,61	5,40	6	189
5	(4)	57,82	0,46	15,46	5,00	2,83	0,07	3,30	5,64	2,29	0,61	0,08	0,09	3,48	0,06	1,79	98,96	7,33	7	308
4	(4)	54,78	0,42	15,44	4,75	3,61	0, 14	6,50	7,10	2,54	0,41	0,08	0,48	0,08	0,04	3,27	99,61	7,88	11	241
3	(2)	61,02	0,48	17,56	5,20		0,12	3,84	7,17	1,78	0,83	0,16		0,32		2,16	100,64		9	472
2	(3)	61,45	0,35	16,84	2,47	2,56	0,10	2,85	6,06	3,42	0,75	0,07		0,08		2,78	99,87		16	382
1	(3)	55,97	0,45	16,95	1,52	3,00	0,12	3,93	8,56	4,04	0,91	0,17		0,51		3,79	99,92		5	398
Komito-	ненты	SiO_2	TiO_2	Al_2O_3	Fe_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	CO_2	S	ĹŢ	H_2O	Сумма	FeO'	Rb	Sr

ЕЖЕГОДНИК-2006

ковита, хлорита, пренита, биотита; 12 – Юбилейное месторождение, плагиоадамеллиты, часто содержащие небольшое количество калишпата, обычно с серицитом и фириты и амфиболовые диоритовые порфириты базокварцевые; 7 – плагиогранит; 8-11 – Вознесенское месторождение: 8 – кварцевые диориты амфиболовые, слабо или умеренно пренитизированы, серицитизированы и хлоритизированы; 9 – кварцевые диориты с сильно серицитизированным и пренитизированным плагиоклазом и реликтовым амфиболом; 10 – плагиограниты слабо серицитизированные, обычен хлорит, пренит, биотит; 11 – плагиолейкограниты с небольшим количеством мусхлоритом; 13-17 – Верхне-Уральское рудопроявление: 13 – монцогаббро; 14-16 – биотит-амфиболовые монцодиориты, кварцевые диориты и гранодиориты; 17 – биотит-амфиболовые кварцевые сиениты; 18-19 – Талицкое месторождение: 18 – монцогранодиориты; 19 – Li-F аплитовидные граносиениты. В скобках показано Примечание. 1-3 – Гумешевское месторождение, слабо пропилитизированные соответственно амфиболовые диориты, кварцевые диориты и диоритовые порфириты; 4-7 – Салаватское месторождение: 4 – габбро-диориты, возможно, послерудные; 5-6 – пропилитизированные соответственно пироксеновые диоритовые порколичество проб. Пустая клетка – элемент не определялся. Содержания Rb и Sr приведены в r/т.

Рис. 1. Зависимость между содержаниями некоторых компонентов в породах рудоносных массивов Тагило-Магнитогорско-Западномугоджарской вулканогенной зоны.

Вознесенское месторождение: 1 – кварцевые диориты амфиболовые со слабо пренитизированным и серицитизированным плагиоклазом, 2 – кварцевые диориты обычно амфиболовые слабо или умеренно пренитизированные серицитизированные и хлоритизированные, 3 – кварцевые диориты сильно серицитизированные, 4 – плагиограниты и плагиолейкограниты с небольшим количеством мусковита, хлорита, пренита, биотита, 5 – кварц-серицитовый метасоматит аподиоритовый.

Поля других месторождений и рудопроявлений: 1 – Гумешевское, 2 – Караксакское, 3 – Медногорское, 4 – Салаватское, 5 – Юбилейное, 6 – Верхнеуральское, 7 – Первомайское.

Рис. 2. Нормированное к хондриту распределение редкоземельных элементов в породах Гумешевского (а), Салаватского (б), Вознесенского (в), Юбилейного (г), Верхне-Уральского (д) и Первомайского (е) месторождений.

а: 1-4 – амфиболовые диориты и кварцевые диориты пропилитизированные; 5 – кварцевый диорит пропилитизированный и слабо ослюденелый (смесь серицита и парагонита); 6 – кварцевый диорит сильно ослюденелый; 7 – аподиоритовый кварц-серицит-парагонитовый метасоматит; 8 – кварцевый диорит очень сильно ослюденелый; 9 – аподиоритовый парагонит-серицит-кварцевый метасоматит;

б: 1-3 – диоритовые порфириты базокварцевые в различной степени серицитизированные, пренитизированные и хлоритизированные; 4 – жильный плагиогранит хлоритизированный, слабо серицитизированный; 5 – пироксеновый габбро-диорит послерудный слабо измененный;

в: 1-3 – кварцевые диориты амфиболовые в различной степени серицитизированные, пренитизированные и хлоритизированные; 4 – кварц-серицитовый метасоматит аподиоритовый; 5, 6 – плагиогранит и плагиолейкогранит с небольшим количеством мусковита, хлорита, пренита, биотита;

г: 1, 2 – биотит-кварц-плагиоклазовые адамеллит-порфиры слабо серицитизированные; 3 – то же, заметно окварцованный; 4 – кварц-карбонат-пиритовый метасоматит по вулканиту;

д: 1 – монцогаббро; 2 – монцодиорит; 3 – кварцевый диорит; 4 – частично аргиллизированный и альбитизированный диорит; 5 – кварц-серицитовый метасоматит; 6 – монцогранодиорит сильно серицитизированный;

е: 1, 2 – соответственно монцодиорит и монцогранодиорит-порфир; 3, 4 – аплитовидные Li-F граносиениты. отношение – 3-5, 3-6, 7-8, 15, 13-29, 66-77. В гранитоидах указанного ряда месторождений возрастают также содержания Ті, Р. Намечается тенденция увеличения содержаний ряда малых элементов, г/т: Rb (5-14, 4-17, 32-45, 71-75, 57-87, 62-71), Sr (232-425, 103-349, 399-597, 194-206, 294-576, 640-656), Nb (1,6-1,8; 1,6-2,6; 1,8-2,1; 7-8; 4-8; 7-8), Та, Ва, Тh, U и др. Особенно выделяются повышенными содержаниями малых элементов гранитоиды Талицкого массива. В данном ряду, если исключить Юбилейное месторождение, увеличивается также величина Мо/Си отношения в рудах.

Необходимо отметить интереснейшую особенность Талицкого месторождения - наличие экзотических для Урала фтор-литиевых граносиенитов, завершающих становление монцонитоидного рудоносного массива. В отличие от монцогранодиоритов массива фтор-литиевые граносиениты содержат мало стронция (15-44 г/ т), но много фтора (0,5-1,0 мас. %), лития (0,08-0,1 мас. %), рубидия (0,02-0,03 мас. %), хрома (0,02-0,04, до 0,1 мас. %), вольфрама (10-300 г/ т), сурьмы (5-150 г/т), теллура (0,6-0,7 г/т), серебра (2-30 г/т). Наблюдаются также повышенные количества никеля, меди, свинца, таллия, германия, тория. Сумма редких земель составляет всего 29-59 г/т, причем их спектр параллелен спектру редких земель в монцогранодиоритах (см. рис. 2e). Величина Sm/Nd отношения составляет, соответственно, 0,15 и 0,13-0,14.

Вышеприведенные петрогеохимические особенности гранитоидов в ряду от Гумешевского месторождения до Верхнеуральского рудопроявления отвечают эволюции магматизма островодужного типа. Возрастание содержаний К, Rb, Sr, TR и ряда других элементов, как известно, свидетельствует об увеличении мощности земной коры в процессе этой эволюции. На диаграмме Rb-Sr [Ферштатер, 1987] все массивы начала ряда попадают в островодужное поле. Верхнеуральский массив находится на границе этого поля с полем окраинно-континентальных гранитоидов, а гранитоиды Талицкого массива располагаются в пределах последнего. При этом в Магнитогорской островной дуге изменение петрогеохимического состава гранитоидов соответствует эволюции островной дуги от «юной» (Салаватское месторождение), когда сформировались натриевые гранитоиды габбро-диоритового до кварц-диоритового состава, до «зрелой» (Верхнеуральское рудопроявление), представленной кали-натровым шо-

шонитовым рядом гранитоидов от оливинового подщелоченного габбро до субмонцонитоидных гранодиоритов. В пределах Тагильской островной дуги оруденение связано, по-видимому, с завершающей стадией ее развития (Гумешевское месторождение и многочисленные рудопроявления). Островодужный характер гранитоидов подтверждается изотопными характеристиками неодима и стронция (рассчитанными на возраст 390 млн. л) в гранитоидах Гумешевского месторождения: $(eNd)_{CHUR}^{t} = 5,0$ и 5,1, величина (⁸⁷Sr/⁸⁶Sr)₀ отношения составляет 0,70478 и 0,70511 для пропилитизированных диоритовых порфиритов, 0,70445, 0,70435 и 0,70377 для серицитизированных кварцевых диоритов. Минимальное значение ⁸⁷Sr/⁸⁶Sr отношения для жильного кальцита составляет 0,70378±4. Значение (eNd)^t_{СНИВ} для кварцевого диорита Салаватского месторождения равно 6,15 (на 380 млн л), Вознесенского месторождения составляет 4,08 (на 380 млн л), гранодиорита Первомайского месторождения равно 3,73 (на 330 млн л). Значения ⁸⁷Sr/⁸⁶Sr отношения для жильного кальцита составляют 0,70461±4 и 0,70451±9 для Медногорского месторождения и 0.70428±9 для Вознесенского месторождения. Для Верхнеуральского массива первичное ⁸⁷Sr/86Sr отношение для гранитоидов равно 0,70449±14 [Салихов, Митрофанов, 1984], (eNd)^t_{СНИВ}=1,50. Величина ⁸⁷Sr/86Sr отношения в прожилковом кальците составляет 0,70484±9. Эти параметры иллюстрируют определяющую роль мантийной составляющей в составе рудоносных массивов и послемагматических флюидов. И только для адамеллит-плагиоадамеллитового Юбилейного штока четко фиксируется примесь корового материала: величина (eNd)^t_{CHUR} составляет 2,05 (на 360 млн л), значение ⁸⁷Sr/⁸⁶Sr отношения для адамеллита отвечает 0,71433±8, а для жильного кальцита - 0,70646±8. Спайдер-диаграммы подтверждают положение источников в связи с островодужным магматизмом. Приведенные данные свидетельствуют о том, что Талицкий массив, находящийся в северо-восточном обрамлении Верх-Исетского плутона (Средний Урал) в переходной зоне между Тагильской вулканогенной и Восточно-Уральской сиалической структурами, отвечает «монцонитовой модели» порфировых месторождений окраинно-континентальных структур (андский тип).

На всех изученных объектах пропилитизация и слабая-умеренная серицитизация диоритоидов не приводят к существенной миграции редких земель, нормированные спектры которых на каждом месторождении образуют сближенную группу параллельных линий. При умеренной серицитизации (до 15 об. % серицита) гранитоидов немобильность редких земель сохраняется, хотя в отдельных случаях наблюдается заметный вынос всех редких земель. Монотонность спектров резко нарушается при сильной серицитизации, которая завершается образованием слюдисто-кварцевых метасоматитов. В этих случаях редкие земли всегда в той или иной степени выносятся (см. рис. 2). При этом спектры редких земель гранитоидов и метасоматитов по ним в целом параллельны, хотя каждый из спектров обычно характеризуется специфическими особенностями, свидетельствующими о широкой вариации параметров гидротермального минералообразования. Так, на Гумешевском месторождении для одной из проб умеренно серицитизированного диорита (см. рис. 2а, ан. 8) фиксируется вынос (по сравнению с пропилитизированными и слабо серицитизированными диоритами, 3 ан.) наиболее легких лантаноидов (от лантана до гадолиния) в количестве 38-40 %, а более тяжелых – 25-36 % (здесь и далее без учета объемного веса). Наблюдаются очень слабые аномалии церия и европия. Аналогичный, но очень сильный вынос редких земель имеет место при образовании аподиоритового мусковит-парагониткварцевого метасоматита - соответственно 60-71 % и 54-59 % (см. рис. 2а, ан. 9). При этом фиксируется резко выраженный европиевый минимум (вынос составляет 93 %). Формирование менее кислотного кварц-серицит-парагонитового метасоматита сопровождается умеренным выносом редких земель (см. рис. 2а, ан. 7). Гораздо меньший вынос редких земель фиксируется на мелких месторождениях. Так, на Вознесенском месторождении кварц-серицитовый метасоматит образуется в условиях выноса 4-12 % легких лантаноидов и 22-34 % тяжелых (см. рис. 2в, ан. 4). Наблюдается четкий европиевый минимум. На Верхне-Уральском рудопроявлении эти цифры для подобного метасоматита составляют, соответственно, 6-23 и 41-55 %. В целом для трех этих объектов в первом приближении можно полагать, что с увеличением кислотности процесса (и уменьшением активности калия) вынос редких земель нарастает (при большем выносе легких лантаноидов по сравнению с тяжелыми). Аналогичный результат получен В.Б. Савельевой с соавторами при изучении мусковитизации сланцев Приморского разлома (Западное Забайкалье) при низкоградном метаморфизме [Tribusio et al., 1996; Ague, 2001] и сильной хлоритизации базальтов в зоне древнего спрединга [Baker, Groot, 1983]. Увеличение выноса редких земель при нарастании кислотности процесса (при мусковит-кварцевом замещении) отмечалось многими исследователями [Alderton, 1980 и др.]. Изучение взаимодействия современных геотермальных растворов с породами подтверждает полученные данные. С возрастанием кислотности воздействующих на породы растворов (при температуре 250-350°С, в интервале рН от 6 до 1) в последних увеличивается содержание лантаноидов, величина Ce/Yb отношения и появляется положительная европиевая аномалия [Michard, 1989]. Селективный вынос европия, по сравнению с другими редкими землями, при кислотном составе флюида хорошо иллюстрируется экспериментами.

Таким образом, полученные данные подтверждают правильность отнесения рудоносных медно-порфировых массивов Тагило-Магнитогорской вулканогенной зоны к островодужному типу. С уменьшением возраста от среднего до конца верхнего девона в ряду рудоносных гранитоидов возрастает содержание калия, суммы РЗЭ (с увеличением доли легких лантаноидов по сравнению с тяжелыми), рубидия, стронция. Магматизм завершается формированием шошонитового комплекса. В этом же направлении возрастает и роль молибдена в рудах, подтверждая увеличение мощности коры. В диоритах Вознесенского массива прослеживаются черты, свойственные адакитам (Sr/Y=45-51, Ү=11-12 г/т). На Среднем Урале в зоне перехода к восточной континентальной структуре установлена монцонитоидная молибденпорфировая система С1.2 возраста, характерная для окраинно-континентального андского типа.

Исследования выполнены при финансовой поддержке РФФИ (грант № 06-05-64053) и НШ-4210.20065. Авторы признательны Ю.Л. Ронкину, Д.В. Киселевой и Н.В. Чередниченко за помощь в работе.

Список литературы

Грабежев А.И., Белгородский Е.А. Продуктивные гранитоиды и метасоматиты медно-порфировых месторождений (на примере Урала). Екатеринбург: УрО РАН, 1992. 199 с.

Салихов Д.Н., Митрофанов В.А. Интрузивный магматизм верхнего девона – нижнего карбона Магнитогорского мегасинклинория (Южный Урал). Уфа: ИГ УНЦ РАН, 1994. 142 с.

Сурин Т.Н. Петролого-минералогические исследования магматитов Восточно-Магнито-горского пояса (Южный Урал). Миасс: Геотур, 1997. 309 с.

Ферштатер Г.Б. Петрология главных интрузивных ассоциаций. М.: Наука, 1987. 232 с.

Alderton D.H.M., Pearce J.A., Potts P.J. Rare earth element mobility during granite alteration: evidence from Southwest England // Earth and Planet. Sci. Let. 1980. V. 49. P. 149-165.

Baker J.H., Groot P.A. Proterozoic seawater – felsic volcanics intraction W. Bergslagen, Sweden. Evidence for high REE mobility and implications for 1.8 Ga seawater compositions // Contrib. Mineral. Petrol. 1983. V. 82. P. 119-130.

Guy C., Daux V., Schott J. Behavior of rare earth elements during seawater/basalt in the Mururoa massif // Chem. Geol. 1999. V. 158. P. 21-35.

Michard A. Rare earth element systematics in hydrothermal fluids // Geoch. et Cosmoch. Acta. 1989. V. 53. P. 745-750.