ТЕКТОНО-МЕТАМОРФИЧЕСКАЯ ЭВОЛЮЦИЯ ДУНИТОВ ДЕНЕЖКИНА КАМНЯ (ПЛАТИНОНОСНЫЙ ПОЯС УРАЛА): РОЛЬ СТРУКТУРНОГО, ХИМИ-ЧЕСКОГО И КИСЛОРОДНОГО ФАКТОРОВ

А.А. Ефимов, И.С. Чащухин, С.Л. Вотяков, В.И. Маегов, А.Б. Миронов

В первом детальном описании массива Денежкин Камень Ф.Ю. Левинсон-Лессинг [1900] рассматривал все дунитовые тела массива как апофизы очень крупного, не вскрытого эрозией дунитового тела. Выполненная в 1960-1963 гг. А.А. Ефимовым и др. детальная геологическая съемка не подтвердила ранние представления. Было показано, что структурная позиция дунитов¹ двояка: (1) они слагают одно крупное дунит-пироксенитовое тело (блок) Желтой Сопки и (2) встречаются в виде мелких тел в блоке расслоенного дунит-пироксениттылаитового комплекса («горячего меланжа»), тектонически сочлененном с первым блоком [Ефимов, 1977; Ефимов и др., 1993]. Из трех структурных типов дунитовых тел Платиноносного пояса, названных автономным, полуавтономным и интегрированным [Ефимов, 1999], тело Желтой Сопки можно отнести ко второму, а мелкие тела - к третьему. Первый тип - изолированные тела, окруженные метавулканитами, - здесь отсутствует. Средневзвешенная железистость дунитов Желтой Сопки – около 9%. Все малые тела горячего меланжа более железисты – от 15% и выше (рис. 1). Наблюдается хорошая отрицательная корреляция мощности (или размеров поперечного сечения) тел и состава слагающих их оливиновых пород².

Различия в структурной позиции и составе дунитовых тел позволяют предполагать разные пути их эволюции. Представляется, что окситермобарометрия в сочетании с геологическими и геохимическими данными является одним из важных методов реконструкции истории Платиноносного пояса. Ранее выполненное окситермобарометрическое изучение автономного дунитового тела Соловьевой горы и и явно интегрированных в структуру горячего меланжа крупных дунитовых тел Кытлымского массива – Иовского, Косьвинского и Сосновского [Чащухин и др., 2002] показало существенное различие температур оливинхромшпинелевого равновесия - от относительно высоких (до 1100 °C) для первого и низких (700-800 °C) – для трех последних. Величина летучести кислорода относительно буфера FMQ для перечисленных тел соответственно равна 2,6, 2,2, 3,1 и 2,7, при вариациях в пределах конкретного тела, не превышающих погрешности определений ± 0.4 ед. log f O₂. Для дунитов Уктусского массива, не входящего в Платиноносный пояс, слагающих несколько крупных и множество мелких тел в габбро-пироксенитовой матрице и структурно близких к третьему типу Пояса, получены цифры, отличные от таковых, полученных для Платиноносного пояса в целом (около 1100 °С и 1,7 ед. log f O₂), что делает общую картину достаточно сложной. В данной статье излагаются результаты окситермобарометрического изучения структурно и вещественно контрастных дунитовых тел массива Денежкин Камень.

¹ Термином «дунит» здесь объединяется ряд оливиновых пород, содержащих хромшпинель, – от преобладающего магнезиального, с железистостью 6-10 ат.%, дунита до железистых дунитов (метадунитов [Ефимов, Иванова, 1963]). Оливиновые породы с железистостью от 15-18% до 25% и более, содержащие магнетит, описываются как «оливиниты».

² Эта картина находит достаточно правдоподобное объяснение. *Во-первых*, в блоках горячего меланжа наблюдается непрерывный ряд дунитовых тел по размеру, что позволяет считать мелкие тела, часто приобретающие в процессе пластической деформации форму протяженных пластов и линз, тектоническими отторженцами (фрагментами) более крупных [Ефимов, 1977]. *Во-вторых*, имеется универсальная закономерность, заключающаяся в том, что на контактах с клинопироксенитом дунит постепенно изменяет свой валовой химический состав в сторону обогащения Fe, Al, Ca, Mn и Co и обеднения Mg, Cr и Ni, результатом чего является образование непрерывного химического ряда оливиновых пород – от типичного дунита до оливинита и магнетитового оливинита. Отсюда становится понятной корреляция размеров и состава тел дунитов (точнее, оливиновых пород).

Рис. 1. Непрерывный химический ряд дунитов Денежкина Камня (ранжирован по железистости 68 валовых составов).

зональность – с повышением железистости дунитов от 6% в центральной части тела до 12-14 % в его краевых частях. Изученные в

Дунит-пироксенитовое тело Желтой Сопки, округлое в плане, размерами около 3 х 6 км, по строению и составу по существу не отличается от классических изолированных тел типа Соловьевой горы и сравнительно слабо деформировано. Отчетливо выраженный горячий тектонический шов отделяет его от находящегося восточнее, интенсивно деформированного в процессе пластического течения, существенно пироксенит-тылаитового блока горячего меланжа. Последний представляет собой стратифицированный (расслоенный) монолит с размером выхода около 15 х 15 км и концентрическим структурным рисунком, почти не затронутый «холодной» тектоникой и низкотемпературными изменениями. В разрезе блока выделяются внешняя (нижняя) зона, сложенная порфирокластическими габбро (тылаитами) и пироксенитами с мелкими дунитовыми телами, и внутренняя зона, сложенная полосатыми оливиновыми габбро и пироксенитами, более равномернозернистыми, чем породы внешней зоны. Все дунитовые тела имеют форму бескорневых, изолированных, согласных со стратификацией, вытянутых по простиранию (иногда до 2 км) линз или пластов мошностью от нескольких десятков (редко сотен) метров до долей метра.

Широтный разрез обоих упомянутых блоков от западного контакта тела Желтой Сопки до восточного подножия Денежкина Камня, общей протяженностью около 11 км, ранее был систематически опробован через 50-100 метров и достаточно детально изучен, в том числе и в отношении вариаций состава дунитов и оливина [Ефимов, 1984; Ефимов, Маегов, 1981 и др.]. В разрезе Желтой Сопки наблюдается обычная настоящей работе 10 образцов охватывают весь диапазон состава и структурной позиции дунитов и характеризуют: 4 образца – всю мощность дунитового разреза Желтой Сопки, от пироксенитовой каймы на западе до горячего шва на востоке, 2 образца – дуниты из непосредственного контакта с клинопироксенитами на западе, и 4 образца – мелкие дунитовые тела горячего меланжа (рис. 2).

Мёссбауэровское исследование хромшпинели выполнено на спектрометре СМ2201 (аналитик А.Б. Миронов) при постоянном ускорении в геометрии пропускания при комнатной температуре. Эффективная толщина образцов составляла 10 мг/см² железа в естественной смеси изотопов, что соответствует приближению тонкого поглотителя; обработка экспериментальных данных выполнена с использована программа Univem-4 (НИИ Физики Ростовского госуниверситета). Состав акцессорной хромшпинели определен на микроанализаторе ЈХА-5 в ИГГ УрО РАН (аналитик В.Г. Гмыра), железистость оливина измерена иммерсионным методом на приборе ППМ-1. Температура рассчитана по оливин-хромитовому геотермометру Больхауза-Берри-Грина [Ballhaus et al., 1990], летучесть кислорода – по уравнению тех же авторов с учетом данных мессбауэровской спектроскопии.

Как правило, оливин и хромшпинель дунитов в пределах образца практически однородны по составу. Исключение представляет обр. 20475 из длинной дунитовой линзы мощностью около 50 м несколько восточнее главной вершины Денежкина Камня. Здесь хромшпинель представлена двумя сосуществующими

ПЕТРОЛОГИЯ

Рис. 2. Схема геологического строения западной части массива Денежкин Камень с указанием положения детального разреза и мест отбора изученных образцов.

 дуниты, 2 – клинопироксениты, 3 – тылаиты и оливиновые габбро горячего меланжа, 4 – габбронориты и роговообманковые габбро, 5 – слоистые толщи, окружающие массив с запада (роговики, амфиболиты, зеленые сланцы и зеленокаменные вулканиты).

Жирными цифрами обозначены: 1 – дунит-пироксенитовый блок Желтой Сопки, 2 – дунит-пироксениттылаитовый блок горячего меланжа.

фазами с резко различными концентрациями Ti, Al, суммарного Fe и Mg при относительно одинаковом содержании Cr. Для Денежкина Камня это второй случай наход-

ки двухфазной хромшпинели; впервые она обнаружена в экзоконтакте пироксенитовой жилы, секущей дунит Желтой Сопки [Ефимов и др., 1985].

Параметры мёссбауэровских спектров приведены в табл. 1. Образцы 884г, 888а, 890а, 905б, 907г, 908а, 20435, 20473, 20479 содержат практически чистую хромшпинель, содержание в них магнетитовой фазы пренебрежимо мало; напротив, для обр. 20475 выделить хромшпинель в чистом виде не удалось, - были получены и проанализированы спектры ее смесей с магнетитом. На рис. 3 представлены мёссбауэровские спектры проб 907г и 20475. Первый спектр, типичный для монофракций хромшпинели, представляет из себя суперпозицию дублетов от ионов окисного и закисного железа, находящихся в парамагнитной фазе; сикстетов от магнитноупорядоченной фазы в этих пробах не наблюдается. В пробах хромшпинели дублетные линии от ионов Fe³⁺ и Fe²⁺ достаточно хорошо разрешены, дублет от ионов Fe³⁺ относительно высокоинтенсивен. Значения параметров ионов Fe³⁺ и Fe²⁺ типичны для хромшпинели. Степень окисления железа в пробах варьирует от 30 до 43% (табл. 1-2), относительная ошибка ее определения не превышает 1%. Второй спектр качественно отличается от первого:

он представляет из себя суперпозицию парамагнитной и магнитноупорядоченной составляющих, обусловленных фазами хромшпинели и магнетита, соответственно. Параметры дублетов от парамагнитой хромитовой фазы приведены в табл.1; в целом, они близки к таковым в чистой хромшпинели, однако относительная ошибка определения степени окисления железа в ее смеси с магнетитом достигает 8-10%. Магнетит, имеющий структуру обращенной шпинели АВ₂О₄, дает на мессбауэровских спектрах два сикстета линий А и В: А-сикстет от ионов Fe³⁺ в тетраэдрической позиции А имеет большее значение сверхтонкого поля и меньшую (почти в два раза для случая стехиометрического магнетита) площадь, чем В-сикстет от ионов Fe²⁺и Fe³⁺ в октаэдрической позиции В. По мессбауэровским данным, ионы Fe²⁺и Fe³⁺ в позиции В неразличимы ввиду быстрого электронного обмена между ними; их эффективный заряд принимается равным +2.5. Отмечено, что в пробе 20475 отношение площадей сикстетов S_A:S_B составляет величину 39%: 61%=0,63. Заметим, что для изученных нами ранее магнетитов из ультрамафитов Урала отношение площадей S_A:S_B достаточно значимо варьировало (от 0,25 до 0,69 и даже1,12). Это связано с различием содержаний в структуре минерала как

Таблица 1

N п/п	N обр.	IS	QS	W	S					
Fe ³⁺										
1	884г	0.5698	0.5348	0.3203	35.0					
2	888a	0.5675	0.5325	0.3036	31.1					
3	890a	0.5748	0.4815	0.3288	37.9					
4	905б	0.5863	0.5036	0.3193	43.4					
5	907г	0.5880	0.5116	0.2987	30.4					
6	908a	0.5931	0.4953	0.2954	34.2					
7	20435	0.5844	0.5831	0.3131	36.1					
8	20473	0.5530	0.5809	0.3252	39.8					
9	20479	0.5863	0.5751	0.3216	36.2					
Fe ²⁺ a										
1	884г	1.1325	1.0724	0.5530	48.5					
2	888a	1.1382	1.0479	0.5592	49.1					
3	890a	1.1385	0.8720	0.4807	42.4					
4	905б	1.1232	0.9394	0.5129	45.8					
5	907г	1.1257	0.9551	0.5181	50.1					
6	908a	1.1334	0.9472	0.4843	50.5					
7	20435	1.1428	1.1118	0.5304	44.5					
8	20473	1.1066	1.1258	0.5403	43.3					
9	20479	1.1266	1.1102	0.5268	43.9					
		F	e^{2+}_{b}							
1	884г	1.0870	1.8689	0.3780	16.5					
2	888a	1.1132	1.8275	0.4017	19.8					
3	890a	1.0701	1.6980	0.3628	19.7					
4	905б	1.0687	1.7745	0.2690	10.8					
5	907г	1.0795	1.7565	0.3713	19.5					
6	908a	1.0831	1.7265	0.3079	15.2					
7	20435	1.1134	1.9363	0.3507	19.5					
8	20473	1.0771	1.9479	0.3268	17.0					
9	20479	1.1015	1.9132	0.3413	19.9					

Мёссбауэровские параметры ионов железа в хромшпинели

Примечание. Параметры мёссбауэровских спектров: IS – изомерный сдвиг относительно нитропрустида натрия (в мм/с); QS – квадрупольное расщепление (в мм/с); W – ширина линии (в мм/с); S – площадь соответствующего дублета в спектре (в %).

изоморфных примесей ионов d-металлов (Mn, Mg, Cr, Co и других), так и вариациями отклонения матрицы от стехиометрии, различиями в отношении числа ионов Fe^{2+}/Fe^{3+} в позиции B от 1:1. В стехиометрических магнетитах, по данным [Maзуров и др., 1993], отношение сикстетов равно 0.505, в магнийсодержащих (MgO=1%) – 0.602, в марганецсодержащих (MgO=1%) – 0.602, в марганецсодержащих (MnO = 3.78%) – 0.483. По данным [Sorescu et.al., 2003], для синтетических магнетитов с примесью Co это отношение принимает значения от 0.66 до 4.0 в зависимости от содержания Co; замещение железа на хром также значимо влияет на величину S_A:S_B; напротив, замещение Fe \rightarrow Mn влияет менее значимо.

Для корректного определения температуры оливин-хромшпинелевого равновесия было учтено влияние концентрации Ті в кристаллической структуре хромшпинели по ранее примененной эмпирической методике [Чащухин и др., 2002]. Как и в случае Соловьевой горы, для дунитов Денежкина Камня из разных геологических ситуаций зависимости между концентрациями Ті в хромшпинели и температурами, рассчитанные по разным версиям оливин-хромитового геотермометра [Roeder et al., 1979; Ono, 1983; Fabries, 1979; Ballhaus et al.,1991], оказались обратными, но численно разными. Примененный нами геотермометр Больхауза-Берри-Грина, помимо использования рассчитан-

ПЕТРОЛОГИЯ

Рис. 3. Мёссбауэровские спектры проб хромитов из дунитов тела Желтая Сопка (а – 907г, чистая хромгпинель, б – 20475, смесь хромшпинели и магнетита) и их разложение на элементарные составляющие дублеты, соответствующие ионам окисного и закисного железа в минерале хромите, и сикстеты A и B, соотвествущих ионам Fe^{3+} в тетраэдрической позиции A и ионам Fe^{2+} и Fe^{3+} в октаэдрической позиции B.

ных по ЯГР-анализу значений Fe³⁺/Fe в хромшпинелях, был откорректирован путем введения поправочных коэффициентов, учитывающих влияние Ti на расчетные значения температур (рис. 4). Такой подход основывается на предположении, что температура в пределах отдельных участков массива была одинакова. Температура оливин-хромшпинелевого равновесия дунитов полуавтономного тела Желтой Сопки – самая низкая в сравнении как с другими дунитовыми телами Денежкина камня (табл. 2), так и со всеми ранее изученными в других массивах (рис. 5): средняя ее величина равна 580±20 °C. Температура оливин-хромшпинеле-

Рис. 4. Влияние концентраций титана в хромшпинели на температуру оливин-хромшпинелевого равновесия в дунитах Денежкина Камня.

Дуниты: 1 – из внутренней части разреза Желтой Сопки, 2 – из непосредственного контакта с клинопироксенитами на западе, 3 – из мелких тел горячего меланжа. Температура рассчитана по уравнению Больхауза-Берри-Грина [Ballhaus et al.,1991] без учета "титанового" члена.

вого равновесия в дунитах эндоконтакта Желтой Сопки (690±10 °С) и в дунитах горячего меланжа (740±20 °С) существенно выше и приближается к таковой, зафиксированной для аналогичных дунитов Кытлымского массива [Чащухин и др., 2002].

Величина летучести кислорода в дунитах Денежкина Камня, как и в других массивах Платиноносного пояса, прямо коррелирует с железистостью хромшпинели (рис. 6). Средняя ее величина в дунитах Желтой Сопки равна +2.9 ед. $\log fO_2$ относительно буфера FMQ, при этом среднеквадратичное отклонение ±0.5 практически соответствует погрешности определений (0.4 ед. $\log fO_2$). Численно летучесть кислорода близка к таковой в дунитах Соловьевой горы и Сосновского тела Кытлымского массива и несколько выше, чем в дунитах Иовского тела того же массива. Летучесть кислорода в мелких дунитовых телах горячего меланжа чрезвычайно постоянна (+2.7±0.1 ед. $\log fO_2$) и практически идентична средним значениям, рассчитанным для дунитов Желтой Сопки. Таким образом, можно утверждать, что, несмотря на разное структурное положение, окончательное становление всех дунит-клинопироксени-

Таблица 2

№ п.п. № обр.	Состав хромшпинели, мас.%					Fe ³⁺ /Fe	F",	Fa,	Τ,	$\Delta \log fO_2$		
	J1 <u>−</u> 00p.	TiO ₂	Al_2O_3	Cr ₂ O ₃	FeO _{cym}	MnO	MgO	(ЯГР)	%	%	°С	(FMQ)
1	884г	1.07	17.33	30.32	45.82	0.48	5.68	0.354	74.52	9.5	580	3.4
2	888a	0.44	11.68	46.73	35.21	0.53	6.10	0.298	69.46	6.7	570	3.0
3	890a	0.62	21.71	34.59	34.89	0.44	8.38	0.373	59.43	7.4	600	3.3
4	905б	0.28	7.79	39.28	46.71	0.52	5.50	0.431	73.06	10.7	690	3.3
5	907г	0.54	14.09	43.41	35.60	0.51	7.79	0.309	63.93	10.7	680	2.2
6	908a	0.71	13.59	42.54	36.59	0.48	6.83	0.348	66.22	11.5	690	2.3
7	20435	0.77	19.73	32.89	39.71	0.38	8.02	0.363	63.50	12.2	780	2.6
8	20473	0.49	19.78	31.26	40.74	0.43	7.36	0.398	65.16	12.2	740	2.8
9	20475a	0.19	32.19	22.73	36.66	0.34	9.16	0.140	65.89	-	-	-
10	20475b	1.24	6.07	17.56	71.91	0.49	2.59	0.670	83.72	-	-	-
11	20475	0.75	19.13	20.15	54.28	0.42	5.88	0.410	75.35	15.0	720	3.2
12	20479	0.98	16.78	30.97	46.50	0.47	5.22	0.360	76.19	13.8	730	2.7

Результаты определения состава сосуществующих хромшпинели и оливина и расчетов температуры оливин-хромшпинелевого равновесия и летучести кислорода

Примечание. Образцы дунитов с порядковыми номерами 1-4 – из внутренней части разреза Желтой Сопки, 5, 6 – из непосредственного контакта с клинопироксенитами на западе, 7-12 – из мелких тел горячего меланжа. Обр. 20475 – усредненный состав для обр. 20475а и 20475b. Fe³⁺/Fe (ЯГР) – степень окисления железа в хромшпинели, рассчитанная по ЯГР-анализу. Железистость хромшпинели F"=100*Fe²⁺/(Fe²⁺+Mg).

ПЕТРОЛОГИЯ

Рис. 5. Летучесть кислорода как функция температуры оливин-хромшпинелевого равновесия в дунитах массива Денежкин Камень в сопоставлении с дунитами других массивов Платиноносного пояса Урала и Уктусского массива.

Эллипсы: I – массив Соловьевой горы; II-III – Кытлымский массив (II – Иовское тело, III – Сосновское тело). IV – Уктусский массив.

Условные обозначения те же, что на рис. 4.

товых тел Платиноносного пояса Урала происходило в примерно одинаковых окислительновосстановительных условиях.

Об этом же свидетельствуют результаты изучения составов хромшпинели (рис. 7 и 8). Тренд вариаций состава хромшпинели Денежкина Камня в координатах Cr-Al-Fe³⁺ существенно отличается от известных и в пределе стремится к отношению ионов Al:Fe³⁺, равному 7:3, в то время как в других массивах Платиноносного пояса и Кондерского массива состав хромшпинели в треугольнике Cr-Al-Fe³⁺ стремится к вершине Fe³⁺; а тренд Уктусского массива занимает промежуточное положение с отношением Al:Fe³⁺, близким к 6:4. [Пушкарев, 1999]. Несмотря на эти различия, составы распавшихся фаз и кривые сольвуса хромшпинели Денежкина Камня и Уктуса практически совпадают. Учитывая разные значения температур оливинхромшпинелевого равновесия, равные соответственно 720 и 1170 °С [Чащухин и др., 2002], такое совпадение свидетельствует о том, что появление двухфазных хромшпинелей, возможно, контролировалось не температурой охлаждения, а прежде всего летучестью кислорода.

Наиболее существенные выводы из приведенных новых данных заключаются в следующем:

(1) Минеральный состав дунита определяется в основном двумя факторами: валовым

Рис. 6. Летучесть кислорода как функция железистости хромшпинели в дунитах массива Денежкин Камень в сопоставлении с дунитами других массивов Платиноносного пояса Урала и Уктусским массивом.

Условные обозначения те же, что на рис. 4 и 5.

химическим составом и летучестью кислорода. Первый выражается в изменении состава оливина и хромшпинели, в исчезновении последней в составах, практически не содержащих Сг, и в появлении на ее месте акцессорного магнетита, а при избытке в системе Fe и Al – титаномагнетита и зеленой шпинели. Второй фактор определяет предел насыщения оливина железом (Fa₂₀-Fa₂₅) и отношение Fe³⁺/Fe в хромшпинели, в том числе появление в частных случаях двух равновесных фаз – глиноземистой и железистой.

(2) По геологическим данным, аккреция двух контрастных по составу и истории деформаций блоков Денежкина Камня произошла после образования их структуры и слагающих их пород. Однако одинаковая степень окисленности свидетельствует об общем позднем этапе их эволюции. Полученные для летучести кислорода цифры можно с полным основанием отнести не только к дунитам, но ко всей массе

пород, вмещающих дуниты, и считать их характеристикой, общей для всего тела массива.

(3) Температурные различия, зафиксированные для дунитов в разных структурных позициях, пока не находят простого объяснения. Если считать их правдоподобными, следует признать, что крупный и относительно холодный дунитовый блок Желтой Сопки был аккретирован с еще более крупным и более горячим блоком горячего меланжа. Косвенное указание на отличия в термической истории этих блоков – мощное проявление водного метаморфизма (не выше примерно 700°С) в восточной половине разреза Желтой Сопки, записанное в секущих дунит габбровых жилах [Ефимов, Потапова, 1979].

(4) Существенно глиноземистый тренд хромшпинели Денежкина Камня дополняет из-

Рис. 7. Составы акцессорных хромшпинелей из дунитов массива Денежкин Камень в сопоставлении с дунитами других платиноносных комплексов уральского типа (расчет содержаний иона Fe³⁺ проведен с использованием данных ЯГР-спектроскопии).

Массивы: 1-2 – Денежкин Камень: 1 – однофазные образцы, 2 – двухфазный образец 20475 из дунитов горячего меланжа; 3 – другие массивы Платиноносного пояса; 4-6 – Уктусский: 4 – однофазные образцы, 5-6 – двухфазный образец Ук-222 (5 – состав распавшихся фаз, 6 – реконструкция первичного состава [Пушкарев, 1999]); 7 – Кондерский массив на Алданском щите [Чащухин и др., 2002].

Предполагаемые тренды изменения состава хромшпинелей: штриховая линия – Уктусский массив, пунктирная – Денежкин Камень, сплошная – другие массивы Платиноносного пояса. Линии сольвуса: сплошная – для метаморфизованных хромшпинелей, штриховая – для Уктусского массива, пунктирная – для Денежкина Камня.

вестные представления и позволяет считать, что в дунитах Платиноносного пояса имеет место целая серия таких трендов, определяющихся (при относительно постоянном уровне интенсивных параметров – температуры, давления, летучести кислорода) в первую очередь валовым химическим составом, достигнутым дунитом в ходе эволюции. Некоторые тренды могут достигать хромитового сольвуса, где (при наличии Cr и Al в системе) может образоваться двухфазная хромшпинель, в случаях недостатка в системе Cr и Al – все переходные разности до хроммагнетита и титаномагнетита, а в ред-

Рис. 8. Состав акцессорных хромшпинелей из дунитов платиноносных комплексов уральского типа (врезка на рис. 7).

1-5 – Платиноносный пояс Урала, массивы: 1 – Соловьева гора; 2-4 – Кытлымский, тела Иовское (2), Косьвинское (3), Сосновское (4); 5-6 – Денежкин Камень: 5 – Желтая Сопка, 6 - дунитовые тела горячего меланжа; 7 – Уктус-

ский массив, 8 – Кондерский массив (Алданский щит). Расчет содержаний иона Fe³⁺ проведен с использованием данных ЯГР-спектроскопии. Стрелками показаны предполагаемые тренды изменения состава хромшпинелей: пунктирной – Денежкина Камня, сплошной – других массивов Платиноносного пояса, штриховой – Уктусского массива. ких случаях, при дефиците Cr и Fe – высокоглиноземистая шпинель с небольшим содержанием этих компонентов.

Работа выполнена при финансовой поддержке Программы № 14 Президиума РАН «Мировой океан...», Интеграционного проекта УрО РАН и ДВО РАН «Корреляция зональных комплексов...», РФФИ (гранты 04-05-96078 РФФИ-Урал, 04-05-64346, 04-05-64436 и НШ-85.2003.5) и Госконтракта № 10002-251/ 0113-2/182-353/150704-622 по Программе ОНЗ РАН «Экспериментальные исследования физикохимических проблем геологических процессов».

Список литературы

Ефимов А.А. «Горячая тектоника» в гипербазитах и габброидах Урала // Геотектоника. 1977. № 1. С. 24-44.

Ефимов А.А. Габро-гипербазитовые комплексы Урала и проблема офиолитов. М.: Наука, 1984. 232 с.

Ефимов А.А. Горячий меланж как форма сонахождения дунитов, пироксенитов и габбро в Платиноносном поясе Урала // Материалы Уральской летней минералогической школы-99 «Под знаком платины». Екатеринбург: УГГГА, 1999. С. 98-101.

Ефимов А.А., Ефимова Л.П., Маегов В.И. Тектоника Платиноносного пояса Урала: соотношение вещественных комплексов и механизм формирования структуры // Геотектоника. 1993. № 3. С. 34-46.

Ефимов А.А., Иванова Л.П. Метасоматическая зональность в контактах уральских платиноносных дунитов с пироксенитами // Докл. АН СССР. 1963. Т. 151. № 6. С. 1424-1427.

Ефимов А.А., Маегов В.И. О природе «скрытой расслоенности» в разрезе полосатой габбро-гипербазитовой серии Денежкина Камня (Северный Урал) // Докл. АН СССР. 1981. Т. 256. № 3. С. 658-662. Ефимов А.А., Потапова Т.А. Природа и метаморфизм жильных габброидов в дунитах Платиноносного пояса Урала // Докл. АН СССР. 1979. Т. 246. № 1. С.179-182.

Ефимов А.А., Потапова Т.А., Воронина Л.К. Химическая эволюция рудного минерала при метасоматическом замещении дунита рудным пироксенитом // Ежегодник-1984 ИГГ. Свердловск: УНЦ АН СССР, 1885. С. 105-108.

Левинсон-Лессинг Ф.Ю. Геологический очерк Южно-Заозерской дачи и Денежкина Камня на Северном Урале // Тр. СПб общ. естествоисп. 1900. Т. 30. № 5. 257 с. (Юрьев, 1900).

Пушкарев Е В. Уктусский дунит-клинопироксенит-габбровый массив. Информационные материалы. Екатеринбург: УрО РАН, 1999. 160 с.

Чащухин И.С., Вотяков С.Л., Ефимов А.А. и др. Хромшпинелиды Кондерского дунитового массива (Алданский щит): ЯГР исследование, особенности связи металл-кислород по данным квантово-механических расчетов, приложения для оксибарометрии ультрамафитов // Ежегодник-2001. Екатеринбург: ИГГ УрО РАН, 2002. С. 147-156.

Чащухин И.С., Вотяков С.Л., Пушкарев Е.В. и др. Окситермобарометрия ультрамафитов Платиноносного пояса Урала // Геохимия. 2002. № 8. С. 846-863.

Ballhaus C., Berry R., Green D. High pressure experimental calibration of the olivine-orthopyroxenespinel oxygen geobarometer: implication for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27-40.

Fabries J. Spinel-olivine geothermometry in peridotites from ultramafic complexes // Contribs. Mineral. and Petrol. 1979. V. 69. P. 329-336.

Ono A. Fe-Mg partitioning between spinel and olivine // J. Japan Assoc. Min. Petr. Econ. Geol. 1983. V. 78. P. 115-122.

Roeder P.L., Campbell I.H., Jamiesos H.E. A re-evalutation of the olivine-spinel geothermometer // Contribs. Mineral. and Petrol. 1979. V. 68. P. 325-334.

Sorescu M., Tarabasanu-Mihaila D., Diamandescu L. A mossbauer study of manganese-doped magnetite// Materials Letters 57 (2003). P. 1867–1869.