ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ГАЛОГЕНОВ В СОСУЩЕСТВУЮЩИХ АПАТИТЕ, АМФИБОЛЕ И СТАВРОЛИТЕ ИЗ РУДНЫХ ЗОН КУСИНСКОЙ ИНТРУЗИИ.

Т.Д. Бочарникова, В.В. Холоднов, Л.К. Воронина

Механизм формирования рудных пластов в расслоенных габброидных комплексах, в частности, магнетит-ильменитовых руд Кусинской интрузии, по-прежнему интересует исследователей [Ферштатер и др., 2001; Ферштатер и др., 2005].

Нами продолжено изучение характера распределения Cl и F в апатите, амфиболе и ставролите из околорудных пород на разных гипсометрических уровнях Кусинской интрузии около западного и восточного ее контактов, а также в центральной части. Это позволило выяснить эволюцию режима галогенов в рудообразующем флюиде в рудных зонах по всему разрезу массива. Поскольку в самих рудных телах апатит не обнаружен, то в качестве объекта были выбраны околорудные породы существенно амфиболового состава.

Анализ состава галогенов в апатите из таких околорудных пород показал, что по содержаниям Cl, и F апатиты из рудных зон разных гипсометрических уровней интрузии имеют существенное различие. Так, максимальные концентрации хлора содержат апатиты из околорудных пород центральной части интрузии (табл. 1). В этих апатитах концентрации Cl достигают 3,0-3,2 %, в то время как в апатитах из рудных зон приконтактовых частей интрузии содержания Cl не превышают 2 %. При этом, в центральной рудной зоне повышенные концентрации хлора характерны как для апатитов подрудных, так и надрудных ореолов. Обращает на себя внимание и тот факт, что рудная зона центральной части массива более обогащена апатитом, который часто образует здесь достаточно крупные скопления линзовидной формы. Это, в свою очередь, также является показателем более высокого насыщения флюидом данной части интрузии.

По-иному в разрезе интрузии наблюдается распределение фтора. Максимальные концентрации F свойственны апатитам из прикровлевой, восточной рудной зоны. Здесь содержания F достигают 1,0 - 1,2 %, тогда как в апатите из рудных зон основания и центральной части интрузии концентрации F не поднимаются выше 0,66 %. Это объясняется геохимической особенностью фтора, более легкого по удельному весу, в любой флюидно-магматической системе постоянно концентрироваться в верхней ее части.

При сравнении содержаний галогенов в апатитах из подрудных ореолов рудных зон разных гипсометрических уровней интрузии выяснилась одна общая закономерность. Во всех случаях апатиты подрудных метасоматитов содержат более высокие концентрации хлора, по сравнению с надрудными, а надрудные, в свою очередь, – повышенные содержания фтора (табл. 1). Особенно большой разрыв между концентрациями хлора и фтора наблюдается в апатитах из подрудных метасоматитов центрального рудного тела, где содержания хлора составляют 2,7- 3,2 %, а фтора – всего лишь 0,35 – 0,47 %.

Распределение галогенов в амфиболах по разрезу интрузии подчиняется такой же закономерности. Был исследован амфибол, представленный темно-зеленой роговой обманкой, содержащей рудную сыпь или скопления мелких рудных выделений. Состав такой роговой обманки из центральной рудной зоны (обр. кс-101, среднее по 5 анализам): SiO₂-42,48 %, TiO₂-0,70 %, Al₂O₃ - 13,51 %, FeO - 6,23 %, MnO - 0,24 %, MgO - 10,28 %, CaO - 10,00 %, Na₂O - 3,10 %, К₂О - 0,12 % [Прибавкин и др., 2003]. Такой амфибол в центральной рудной зоне характеризуется максимальными содержаниями Cl -0,30-0,38 % по сравнению с амфиболами приконтактовых рудных зон интрузии - 0,07-0,14 % (табл. 2). Также закономерно меняется количественный состав галогенов в сосуществующих ставролитах. Ставролиты из центральной рудной зоны Кусинского массива характеризуются более высокими концентрациями СІ по сравнению со ставролитами из приконтактовых рудных зон интрузии (табл. 3).

Высокие концентрации хлора характерны и для магматических пород, вмещающих рудные зоны Кусинского месторождения [Бочарникова, и др., 2005в], что свидетельствует о первично магматогенной его природе. В процессе кристаллизации габброидов содержание хлора в апатитах возрастало от 0,9 % (мелкие включения в плагиоклазе) до концентраций 1,3-1,9 %, сопоставимых с апа-

ЕЖЕГОДНИК – 2005

Таблица 1

№ п/п	Позиция апатита, его форма, размеры	Cl	F	Cl/F			
Восточный контакт. кровля массива							
1	Крупное, шестиугольной формы зерно апатита, заклю-	1,02	1,01	1,00			
	ченное в амфиболе, n = 8						
2	Небольшое, изометричной формы зерно, n = 5	0,90	0,92	0,98			
3	Крупное, неправильной формы зерно, n = 7	1,02	0,94	1,08			
4	Небольшое зерно апатита среди амфибола, n = 5	0,84	0,87	0,96			
5	Небольшое зерно среди зерен амфибола, n = 5	0,96	1,08	0,89			
6	Небольшое, неправильной формы зерно апатита среди	1,11	1,20	0,93			
	зерен амфибола, n = 8						
7	Крупное зерно апатита, n = 13	1,06	1,05	1,00			
8	Крупное, изометричной формы зерно, n = 11	1,33	0,67	1,98			
9	Небольшое зерно в срастании с рудным, n = 6	1,19	0,53	2,24			
10	Крупное, изометричной формы зерно, n = 6	1,77	0,79	2,24			
11	Небольшое зерно в срастании с рудным, n = 5	1,48	0,64	2,31			
12	Небольшое зерно, n = 6	1,46	0,63	2,32			
13	Мелкое зерно таблитчатой формы, n = 10	1,84	0,66	2,78			
14	Мелкое зерно таблитчатой формы, n = 4	1,93	0,76	2,54			
15	Небольшое изометричной формы зерно, n = 6	1,41	0,71	1,98			
16	Мелкое зерно апатита, n = 4	1,51	0,72	2,10			
Центральная часть массива							
17	Мелкое зерно апатита, n = 5	1,34	0,59	2,27			
18	Агрегат зерен, n = 5	2,02	0,58	3,48			
19	Крупный, линзовидной формы агрегат зерен, n = 9	1,74	0,65	2,68			
20	То же, n = 5	2,01	0,66	3,04			
21	То же, n = 3	1,56	0,56	2,78			
22	Крупный, неправильной формы агрегат зерен, n = 8	3,07	0,35	8,77			
23	Крупное зерно, n = 10	2,74	0,35	7,83			
24	Крупное зерно, n = 7	3,21	0,47	6,83			
	Западный контакт, основание масси	ва					
25	Крупное, изометричной формы зерно апатита в интер-	1,90	0,65	2,92			
	стициях между зернами плагиоклаза, n = 17						
26	небольшое зерно апатита, таблитчатой формы в плаги-	1,65	0,56	2,94			
	оклазе, n = 3						
27	Мелкое зерно апатита в срастании с амфиболом, n = 6	1,57	0,46	3,41			
28	Крупное, неправильной формы зерно, n = 16	2,00	0,59	3,38			

Содержание Cl, F (мас. %) в апатите из околорудных амфиболовых пород Кусинской интрузии

Примечание. 1-7 – надрудная амфиболовая порода (обр. кс-29-а); 8-16 – подрудная амфиболовая порода (обр. кс-31, кс-32); 17-21 – надрудная амфиболовая порода (обр. кс-101); 22-24 – подрудная амфиболовая порода с небольшим количеством рудного минерала (обр. кс-103); 25-28 – подрудная амфиболовая порода (обр. кс-572); п – количество замеров для каждого зерна.

титами околорудных метасоматитов, а концентрации фтора существенно снижались от 1,6-1,8 % до 0,7 %. Близкая тенденция в режиме галогенов характерна и для сегрегационных титаномагнетитовых руд месторождения Малый Куйбас Магнитогорского рудного поля [Холоднов, Бушляков, 2002; Бочарникова, Холоднов, 2005]. Специфический характер распределения хлора в разрезе Кусинской интрузии объясняется, по-видимому, ее сравнительно небольшой мощностью. В этом состоит существенное отличие данной интрузии от эталонных, значительно более крупных расслоенных интрузивных массивов, таких как Бушвельд, Стилуотер и др., в которых хлор в максимальной степени кон-

ПЕТРОЛОГИЯ

Таблица 2

№ п/п	Характеристика амфибола	Cl	F	Cl/F			
Восточный контакт, кровля массива							
1	Темно-зеленый, с рассеянной рудной пылью, n = 7	0,07	0,05	1,40			
2	То же, n = 5	0,05	0,04	1,25			
3	Темно-зеленый амфибол, содержащий мелкие рудные скопления, n = 5	0,06	0,04	1,50			
4	Темно-зеленый амфибол, без рудных включений, n = 6	0,05	0,04	1,25			
5	То же, n = 6	0,05	0,00	-			
Центральная часть массива							
6	Амфибол темно-зеленый с рудной сыпью, n = 5	0,31	0,04	7,75			
7	Амфибол темно-зеленый, n = 7	0,30	0,03	10,00			
8	То же, n = 5	0,37	0,05	7,40			
9	То же, n = 4	0,38	0,04	9,50			
Западный контакт, основание массива							
10	Амфибол темно-зеленый, n = 6	0,14	0,00	-			

Содержание Cl, F (мас.%) в роговой обманке из околорудных амфиболовых пород

Примечание. 1-5 – надрудная амфиболовая порода (обр. кс-29-а); 6-9 – надрудная амфиболовая порода (обр. кс-101); 10 – подрудная амфиболовая порода (обр. кс-572); n – количество замеров.

Таблица 3

№ обр.	Позиция ставролита в разрезе	Cl	F	Cl/F
Кс-29-а	Надрудная амфиболовая порода, n = 3	0,14	0,05	2,86
Кс-101-б	Надрудная амфиболовая порода, n = 4	0,38	0,03	12,66
Kc-103	Подрудная амфиболовая порода, n = 6	0,35	0,02	17,50
Kc-103	Подрудная амфиболовая порода, n = 6	0,35	0,01	35,00

Примечание. Обр. кс-29-а ставролит из околорудной породы, кровля массива, восточный контакт; обр. кс-101, обр. кс-103 - ставролит из околорудной породы, центральная часть массива; п – количество замеров.

центрируется в глубинных частях массивов [Boudreau A.E. et al, 1986; Boudreau A.E., Mc Callum L.S, 1989]. Для Кусинской интрузии максимальные концентрации хлора характерны только для центральной ее части. С высокими содержаниями хлора в изученных галогеносодержащих минералах из околорудных пород центральной рудной зоны интрузии заметно коррелируют и некоторые особенности состава рудообразующих минералов, таких как ильменит, магнетит и сосуществующий с ними хёгбомит [Бочарникова и др., 2005а,6].

Так, ильменит из руд центральной части интрузии в сравнении с ильменитом из краевых рудных зон массива значительно богаче MgO, содержания которого достигают 4,3 %, а магнетит содержит более высокие концентрации Cr_2O_3 (до 2,5 %). Также закономерно меняется в рудах и состав хёгбомита. Хёгбомит из руд центральной части содержит значительно больше MgO

(10-11 %). Кроме того, в рудах из центральных частей интрузии присутствует зеленая шпинель, которая содержит от 13 до 25 % MgO.

Характер распределения галогенов в изученных нами минералах: апатите, амфиболе и ставролите из рудных зон, расположенных на разных гипсометрических уровнях интрузии, согласуется с данными о зональности в составе оруденения, формировавшегося в условиях различного режима летучих, кислорода и температуры (Бочарникова и др., 2005а). Градиент температур, возникающий при формировании интрузии такой небольшой мощности, какой является Кусинская, обусловлен тем, что краевые зоны остывали быстрее и кристаллизовались раньше, чем центральная часть, где накапливался богатый хлором рудообразующий флюид. Концентрация обособившегося в центральной части интрузии такого флюида обусловила и наибольшую

ЕЖЕГОДНИК – 2005

интенсивность здесь рудоообразующего процесса. В краевых, менее флюидизированных зонах, более низкая концентрция хлора во флюиде обусловила меньшую интенсивность рудообразования, а поэтому и рудные тела, сформировавшиеся в этих зонах, оказались по масштабу более мелкими.

Работа выполнена при финансовой поддержке грантов РФФИ 04-05-96052-р2004 Урал-а, 05-05-64079, НШ-РИ-112/001/08.

Список литературы

Бочарникова Т.Д., Прибавкин С.В., Холоднов В.В., Воронина Л.К. Хёгбомит из ильменит-магнетитовых руд Кусинского массива (Южный Урал) // Записки ВМО. 2005а. № 2. С. 84 -90.

Бочарникова Т.Д., Холоднов В.В., Воронина Л.К. Закономерное изменение состава ильменита и магнетита из рудных залежей в разрезе Кусинского габбрового массива // Ежегодник – 2004. Екатеринбург: ИГГ УрО РАН, 20056. С. 313-317.

Бочарникова Т.Д., Холоднов В.В., Воронина Л.К. Особенности состава галогенсодержащего флюида в рудоносных габброидах Кувашско-Машакской рифтогенной структуры (Южный Урал) // Ежегодник – 2004. Екатеринбург: ИГГ УрО РАН, 2005в. С. 311-313. Бочарникрва Т.Д., Холоднов В.В. Галогены в формировании скарново-магнетитовых руд Магнитогорского месторождения (Южный Урал) //. Скарны, их генезис и рудоносность (Fe, Cu, Au, W, Sn...). XI Чтения А.Н. Заварицкого. Мат-лы Междунар. конф. Екатеринбург: ИГГ УрО РАН, 2005. С.157-162.

Прибавкин С.В., Бородина Н.С., Феритатер Г.Б., Холоднов В.В., Бочарникова Т.Д. Высокобарические околорудные преобразования габброидов Кусинского массива// Ежегодник-2002. Екатеринбург: ИГГ УрО РАН, 2003. С. 118-122.

Холоднов В.В., Бушляков И.Н. Галогены в эндогенном рудообразовании. Екатеринбург: ИГГ УрО РАН, 2002. 390 с.

Феритатер Г.Б., Холоднов В.В., Бородина Н.С. Условия формирования и генезис рифейских ильмениттитаномагнетитовых месторождений Урала // Геология рудных месторождений. 2001. Т. 43. № 2. С. 112-128.

Ферштатер Г.Б., Холоднов В.В., Прибавкин С.В. и др. Рифтогенный магматизм и железооруденение Южного Урала // Геология рудных месторождений. 2005. Т. 47. № 5. С. 421-443.

Boudreau A.E., Mathez E.S., Mc Callum L.S. Galogen geochemistry of the Stillwater and Bushveld complexes: evidence for transport of the platinum-group elements by Clrich fluids // J. Petrol. 1986. V. 27. N 4. P. 967-986.

Boudreau A.E., Mc Callum L.S. Investigations of the Stillwater Complex: Part V. apatites as indicators of evolving fluid composition // Contrib. Miner. Petrol. 1989. V. 102. N 2. P. 138-153.