ЕЖЕГОДНИК-2006

НОВЫЕ ДАННЫЕ О СОСТАВЕ И ВРЕМЕНИ ФОРМИРОВАНИЯ ДАЦИТОВ, СОДЕРЖАЩИХ ФЕНОКРИСТЫ МУСКОВИТА, ГРАНАТА, ЭПИДОТА (СРЕДНИЙ УРАЛ)

С.В. Прибавкин, Н.С. Бородина, В.Г. Гмыра

Жильные субвулканические тела дацитов и андезитов, содержащие вкрапленники эпидота, граната, титанита, сосредоточены на южной окраине Екатеринбурга на территории нескольких городских микрорайонов (Уктус, Сосновый Бор, Химмаш, Нижнеисетск). Площадь развития даек составляет более 20 км². Она вытянута в северо-западном направлении более чем на 7 км, а в ширину достигает 4 км. В центре площади расположен Нижнеисетский пруд. Дайки (более 14 тел) секут вулканогенно-осадочные породы нижнего девона, а также габбро и дуниты Уктусского массива. Мощность даек варьирует от первых сантиметров до 3 м. Видимая длина достигает 100 м. При изучении шлифов было выявлено несколько петрографических разностей пород, характеризующихся определенным набором минераловвкрапленников (символы минералов по Р. Крецу [The nomenclature..., 1998]): 1) дацит: Pl+Bt±Qtz+Ep+Gt+Mu+Ap (пс-253, 255, 265, 284);

2) андезит: Pl+Hbl+Ttn±Ep±Gt+Ap (пс-257).

Структура пород порфировая, сериальнопорфировая, обусловленная присутствием нескольких поколений вкрапленников, каждое из которых имеет свой ранг размерности. Наиболее крупные фенокристы представлены плагиоклазом (от 3 до 30 мм), а наиболее мелкие – гранатом (от 0,5 до 1,5 мм). Все вкрапленники погружены в микрозернистый, афанитовый базис с размерностью зерен плагиоклаза, кварца и мусковита, не превышающих сотых долей миллиметра.

Общее количество минералов вкрапленников составляет 30-45 %, из них на плагиоклаз приходится 40-50 %, биотит – не более 10-15 %, амфибол – 20 %, эпидот – 10-15 %, кварц – 5-7 %, гранат, апатит и титанит – в количестве 1-2 %. Описанию магматического эпидота, а также всех других вкрапленников из рассматриваемых даек, за исключением мусковита, посвящена специальная статья одного из авторов [Прибавкин, 2005]. Настоящая работа дополняет эти исследования полученными новыми данными по вкрапленникам мусковита, возрасту пород и изотопии стронция.

Магматический мусковит

Находки магматического мусковита в кислых магматитах описывались неоднократно [Schleicher, Lippot, 1981; Noble et al., 1984; Dawes, Evans, 1991; Morgan et al., 1998; Clarke et al., 2005], но на Урале он был обнаружен только в гранитах [Бородина, Ферштатер, 1988]. Таким образом, это первая находка первичного мусковита в уральских вулканитах. Такой мусковит был встречен при петрографическом изучении дацита (пс-284) из ныне рекультивированного щебеночного карьера в районе Химмаша. Он образует включения во вкрапленнике плагиоклаза и отличается более крупным размером (0,5-1,5 мм) от вторичного мусковита (см. ниже), замещающего плагиоклаз (рис. 1). Такие морфологические отличия позволили предположить, что крупные зерна мусковита являются ранними интрателлурическими вкрапленниками, законсервированными в плагиоклазе. Это предположение подтверждается наличием мелких чешуек мусковита совместно с гранатом и цирконом в качестве включений во вкрапленниках кварца.

Предположение о наличии в дацитах магматического мусковита подтвердилось, когда в другом дайковом теле (пс-265) были встречены сначала в протолочках, а затем в образцах вкрапленники мусковита (см. рис. 1). Они имеют размер около 1,5 мм, соизмеримый с размером вкрапленников граната, апатита, чем отличаются от более мелких пластинок вторичного мусковита. Еще одним отличием является то, что магматический мусковит образует отдельные кристаллы или сростки 2-3 кристаллов, тогда как вторичный – полизернистые агрегаты. Количество магматического мусковита в породе крайне мало, а его большая часть заключена во вкрапленниках плагиоклаза. Тем не менее, встречаются вкрапленники и в основной массе. Форма кристаллов магматического мусковита – это таблички с отношением длины к ширине примерно 4:1, имеющие закругленные края и заливы, что указывает на их частичное растворение. В кристаллах отмечаются сдвиговые и пластические деформации.

Наряду с первичным широко распространен вторичный мусковит. Он замещает вкрапленники кислого плагиоклаза, реже продукты разложения биотита и входит в состав основной массы, имеющей микрозернистую афанитовую структуру и кварц-полевошпатовый состав (см. рис. 1). Во всех этих случаях формирование мусковита связано, вероятно, как с поздними автометасоматическими процессами, так и метаморфизмом низких ступеней.

Последовательность минералообразования и позиция мусковита в ней схематично изображена на рис. 2. Положение магматического мусковита в числе первых ликвидусных фаз определяется его тесной ассоциацией с гранатом и эпидотом. Включения мусковита в плагиоклазе и кварце свидетельствуют о его более ранней кристаллизации по сравнению с этими минералами.

Химический состав белых слюд приведен в таблице 1. Все они соответствуют мусковиту. Однако между ними есть существенные различия: фенокристы магматического мусковита обогащены Ті, Fe, Na, имеют повышенные значения отношений Fe/(Fe+Mg) и Na/(Na+K), тогда как вторичный мусковит приближается к идеальному.

Аналогичные особенности химического состава мусковитов магматического происхождения ранее были описаны для кислых туфов,

ЕЖЕГОДНИК-2006

Рис. 1. Микрофотографии выделений мусковита.

1. Вкрапленник магматического мусковита на границе серицитизированного плагиоклаза и основной микрозернистой массы породы. Последняя кородирует мусковит, образуя в нем залив. Во вкрапленнике видны поперечные пластические и послойные деформации. 2. Частично растворенные вкрапленники мусковита, заключенные совместно с магматическим эпидотом в серицитизированном плагиоклазе. 3. Корона из вторичного мусковита, замещающего вкрапленник плагиоклаза. В плагиоклазе видны следы двойникового строения и резорбированное включение магматического эпидота. 4. Скопление вторичного мусковита, замещающего кварц-полевошпатовый базис породы.

Ми – мусковит, Gt – гранат, Ер – магматический эпидот, Pl – плагиоклаз.

Рис. 2. Схема последовательности минералообразования в даците (обр. пс-262, пс-282). риолитов, высокоглиноземистых и двуслюдяных гранитов [Miller et al., 1981; Speer, 1984], в отдельных случаях было проведено их сравнение с сосуществующими вторичными мусковитами [Бородина, Ферштатер, 1988, и список литературы в этой работе]. Наиболее отчетливы они в высокоглиноземистых высокотемпературных магматитах (куда относятся рассматриваемые дациты), наименее – в двуслюдяных гранитах, где состав мусковита отражает Р-Т условия постмагматической стадии, близкие по своим параметрам к позднемагматической. По-видимому, на этой стадии выравниваются различия состава рассматриваемых выше генераций мусковита.

Таблица 1

№ пп	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	45,17	44,98	46,14	45,21	45,27	47,23	47,64	46,64	46,77	47,70	45,97	48,28
TiO ₂	1,04	0,80	0,88	1,21	1,03	0,60	0,60	0,06	0,06	0,06	0,04	0,04
Al ₂ O ₃	32,42	31,99	32,39	33,01	32,89	31,79	31,22	32,34	31,49	31,69	32,07	31,53
FeO _{общ.}	4,47	4,62	4,22	3,83	3,70	3,96	3,96	2,29	2,47	2,30	2,16	2,07
MnO	0,05	0,05	0,05	0,05	0,03	0,05	0,05	0,03	0,03	0,03	0,07	0,05
MgO	2,59	2,00	1,71	2,03	2,03	2,17	2,17	2,63	2,87	2,76	2,76	2,85
Na ₂ O	0,49	0,47	0,46	0,47	0,61	0,44	0,44	0,16	0,15	0,15	0,20	0,13
K ₂ O	9,47	9,44	9,55	9,88	9,97	9,64	9,55	9,55	9,79	10,12	9,15	9,66
Сумма	95,70	94,35	95,40	95,69	95,53	95,88	95,63	93,70	93,63	94,81	92,42	94,61
Fe/(Fe+Mg)	0,49	0,56	0,58	0,51	0,51	0,51	0,51	0,33	0,33	0,32	0,31	0,30
Na/(Na+K)	0,07	0,07	0,07	0,07	0,09	0,06	0,07	0,02	0,02	0,02	0,03	0,02

Химический состав мусковита (мас. %)

Примечание. 1-7 – фенокристы магматического мусковита, 8-12 – вторичный мусковит. Анализы выполнены на рентгеноспектральном микроанализаторе JXA-5 в лаборатории ИГГ УрО РАН.

На диаграмме Al_2O_3 -FeO_{сум}, где нанесены составы мусковитов из гранитов и вулканитов (литературные и авторские данные по [Бородина, Ферштатер, 1988]) изученные первичные мусковиты располагаются у верхней границы поля магматических мусковитов, вторичные - у нижней (рис. 3). Повышенное содержание Ті и Na в первичном магматическом мусковите следствие более высокой температуры его образования. Рассматриваемые андезиты и дациты принадлежат к классу высокоглиноземистых пород (минералогия – гранат, мусковит) S-типа, имеющих метапелитовый источник. Обычно в таких породах мусковит обогащен алюминием, а эпидот отсутствует. Совмещение в рассматриваемых породах таких минералов, как эпидот (продукт кристаллизации водного расплава), сфен, гранат, мусковит – результат повышенной водонасыщенности исходного расплава.

Возраст цирконов

Цирконы были выделены из пробы дацита (пс-255) весом 50 кг, представляющей собой дресвяный материал. Все кристаллы циркона бесцветны или имеют легкий желтоватый, кремовый оттенок. Они характеризуются прекрасно выраженной «магматической» зональностью в катодолюминисценции (рис. 4) и присутствием определенного набора включений, представленных минералами (титанит, рутил, апатит?) и расплавными включениями. Изучение кристалломорфологии циркона показывает последовательную эволюцию форм от игольчатых до округлых. Игольчатые кристаллы составляют большую часть популяции. Их размеры достигают 0,1 мм по удлинению и сотые доли в поперечнике, что не позволило использовать их для датирования. Форма кристаллов примитивная – призма (100) и дипирамида (111). Последующая эволюция кристаллов выразилась в их укрупнении за счет роста граней призм. Эти цирконы имеют размерность 0,1-0,5 мм по удлинению, призматическую, короткопризматическую форму, сложенную комбинацией призм (100), (110) и дипирамид (101), (111), (211). Дальнейший рост привел к развитию округлых кристаллов с равномерно развитыми гранями двух призм (100), (110) и дипирамид (101), (111), (201), (211), (112). Эти кристаллы встречаются редко и имеют крупные размеры (до 0,5 мм).

В этом году был определен цирконовый возраст дацитов U-Pb методом. Определения были выполнены по 4 зернам цирконов (зерна 3-6 на рис. 4) на приборе SHRIMP-II в изотопном центре ВСЕГЕИ, аналитик А.А. Ларионов. Полученные конкордантные значения возраста составили 391±2,3 млн. лет, MSWD=1,3, probability=0,26 (рис. 5).

Изотопия стронция

Измеренные изотопные отношения стронция в даците (пс-253) и андезите (пс-257) следующие: ⁸⁷Sr/⁸⁶Sr=0,72214±0,00013 (Rb/ Sr=0,12) и ⁸⁷Sr/⁸⁶Sr=0,70948±0,00010 (Rb/Sr=0,02)

Рис. 3. Диаграмма Al₂O₃-FeO_{сум} для мус-ковитов из кислых вулканитов и гранитов

1 – кислые туфы и риолиты [Noble et al., 1984; Morgan et al., 1998], 2-3 – дациты (наши данные): 2 – магматический мусковит, 3 – вторичный мусковит. Заштрихованное поле – магматический мусковит из гранитов [Бородина, Ферштатер, 1988].

соответственно. Определение изотопных отношений были выполнены масс-спектрометрическим методом изотопного разбавления на приборе Finnigan 262 аналитической группой Ю.Л. Ронкина. Зная возраст пород, можно примерно оценить первичные изотопные отношения, которые составят 0,720 и 0,709 соответственно. Столь высокие первичные отношения в даците уникально для магматических пород Урала, среди которых даже большинство коровых по генезису гранитов имеют первичное отношение ⁸⁷Sr/⁸⁶Sr<0,7048 [Ферштатер, 2005]. Для его объяснения можно предложить механизм анатексиса древней континентальной коры, т. к. низкое Rb/Sr отношение в даците предполагает древний возраст протолита для этих пород (Т_{ве} - 3600 млн. лет). Наличие в районе дорифейского метаморфического основания (протолита) показано в работе [Геологическое..., 1981]. Его выступами на поверхность являются породы Сысертского, Мурзинского, Салдинского комплексов. Присутствие ксеногенного граната гранулитовой фации в девонских вулканитах и найденного в последнее время ксеногенного циркона с возрастом 1600-1800 и 560-650 млн. лет в соседней тагильской зоне также доказывает наличие палеоконтинентального фундамента [Смирнов и др., 1988; Ферштатер и др., 2005].

Рассчитанное значение первичного стронциевого отношения в андезите (87 Sr/ 86 Sr = 0,709) оказалось существенно ниже, чем отношение в даците (⁸⁷Sr/⁸⁶Sr = 0,720). Этот факт можно объяснить либо формированием андезитов и дацитов из изотопноотличных источников, либо смешением магм, а именно дацитовой с некой базитовой магмой. Последний вариант, на наш взгляд, более вероятен, т. к. на гетерогенное происхождение андезитов указывает ряд минералогических фактов. Например, андезиты содержат вкрапленники граната и эпидота идентичного состава с вкрапленниками в дацитах; эти вкрапленники не равновесны с андезитом, т. к. испытывают частичное растворение или замещение другими минеральными парагенезисами.

Расчет модели смешения (при условии, что первичное стронциевое отношение в базите равно 0,703-0,704) дает следующий результат. Доля базитовой составляющей в андезите равна 55 %, а ее состав близок высокостронциевым (Sr – 1000 г/т) габбро-анортозитовым сериям, аналогичным таковым в чусовской се-

Рис. 4. Катодолюминисцентные изображения кристаллов циркона.

ПЕТРОЛОГИЯ, ГЕОХИМИЯ

Рис. 5. U-Pb диаграмма с конкордией для цирконов из дайки дацита Цифры у эллипсов – номера зерен на рис. 4.

рии Верхисетского или Черноисточинского массивов [Зинькова, Ферштатер, 2000; Ферштатер и др., 2004].

Заключение

Полученные новые данные по минералогии дацитов расширяют наши знания об условиях формирования высокоглиноземистых вулканических пород. Находка магматического мусковита прямо указывает на высокие концентрации воды в расплаве (H₂O - 10 %). Исходя из последовательности кристаллизации, можно предполагать, что содержание воды в ходе изобарической эволюции расплава сначала нарастало (гранат кристаллизовался при 5 % Н₂О, мусковита при 10 %), а затем слабо падало (эпидот при 8 %). Последующая адиабатическая декомпрессия (с 8-10 до 1-2 кбар), и, как следствие удаление воды, позволило расплаву быстро достичь поверхности, сохранив в себе ранние высоководные парагенезисы.

Как показало изотопное исследование стронция, дациты вероятно являются продуктами анатектического плавления палеоконтинентальной коры, характеризуясь высоким первичным отношением ⁸⁷Sr/⁸⁶Sr=0,720. Андезиты

также имеют высокие отношения ⁸⁷Sr/ ⁸⁶Sr=0,709, что может указывать либо на различные источники этих пород, либо на процессы смешения дацитовой магмы с высокостронциевой габбро-анортозитовой.

Формирование дацитов соответствует рубежу среднего и нижнего девона, на что указывает полученный нами U-Pb методом по цирконам возраст пород, соответствующий 391±2.3 млн. лет. Это позволяет утверждать, что дациты формировались в окраинно-континентальной надсубдукционной геодинамической обстановке [Ферштатер, 2005].

Работа выполнена при финансовой поддержке РФФИ, грант № 05-05-64079.

Список литературы

1. *Бородина Н.С., Феритатер Г.Б.* Состав и природа мусковита из гранитов // ЗВМО, 1988. Ч. СХVII. Вып. 2. С. 137-144.

2. Геологическое развитие и металлогения Урала / К.К. Золоев, М.С. Рапопорт, Б.А. Попов и др. М.: Недра, 1981. 254 с.

3. Зинькова Е.А., Ферштатер Г.Б. Мигматиты габбро-диоритовой серии Верхисетского массива – ключ к пониманию происхождения его тоналит-трондьемитовой серии // Ежегодник-1999. Екатеринбург, ИГГ УрО РАН, 2000. С. 127-134.

4. Прибавкин С.В. Вулканиты с вкрапленниками магматического эпидота из окрестностей Екатеринбурга, Урал // Записки ВМО, 2005. № 4. С. 115-125.

5. Смирнов В.Н., Чащухина В.А., Пушкарев Е.В., Ведерников В.В. О природе акцессорных гранатов в породах габбро-гранитоидных серий Урала // Докл. АН СССР, 1988. Т. 298. № 4. С. 956-959.

6. Ферштатер Г.Б., Беа Ф., Монтеро П., Скэрроу Дж. Роговообманковые габбро Урала: типизация, геохимические особенности и петрогенезис // Геохимия. 2004. № 7. с. 707-728.

7. Феритатер Г.Б., Беа Ф., Монтеро П., и др. Эволюция палеозойского интрузивного магматизма Среднего и Южного Урала // Литосфера. 2005. № 3. С. 57-72.

8. Clarke D.B., Dorais M., Barbarin B., et all. Occurrence and Origin of Andalusite in Peraluminous Felsic Igneous Rocks // Journal of Petrology 2005. V. 43. № 3. P. 441-472.

9. Dawes R.L., Evans B.W. Mineralogy and geothermobarometry of magmatic epidote-

bearing dikes, Front Range, Colorado // Geological Society of America Bulletin. 1991. V. 103. № 8. P. 1017-1031.

10. Miller C.F., Stoddard E.F., Bradfish L.J., Dollase W.A. Composition of plutonic muscovite: genetic implications // Canadian Mineralogist. 1981. V. 19. P. 25-34.

11. Morgan G.B., London D., Luedke R.G. Petrochemistry of late miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia // Journal of Petrology. 1998. V. 39. N_{2} 4. P. 601-632.

12. Noble D.C, Vogel T.A., Peterson P.S. et all. Rare-element-enriched, S-type ash-flow tuffs containing phenocrysts of muscovite, andaluzite and sillimanite, southeastern Peru // Geology. 1984. № 1. P. 35-39.

13. Schleicher H., Lippot H.J. Magmatic muscovite in felsitic parts of rhyolites from southwest Germany // Contr. Mineral. Petrol. 1981. V. 78. № 3. P. 220-224.

14. *Speer J.A.* Micas in igneous rocks // In: Reviews in Mineralogy. V. 13. Micas. / Miner. Soc. of America. 1984. P. 299-356.

15. The nomenclature of minerals: a compilation of IMA reports. Ed. R.F. Martin. Mineralogical association of Canada.Ottawa. Ontario. 1998. 149 p.