СОЛЕВОЙ СОСТАВ ФЛЮИДА В ГАЗОВО-ЖИДКИХ ВКЛЮЧЕНИЯХ В МИНЕРАЛАХ РОДИНГИТОВ КАРАБАШСКОГО МАССИВА ГИПЕРБАЗИТОВ (Ю. УРАЛ) ПО ДАННЫМ ТЕРМОКРИОМЕТРИИ

В.В. Мурзин, Ю.И. Клюкин

Родингиты - породы, сложенные кальциевыми силикатами (пироксеном, гранатом, везувианом, цоизитом, хлоритом, кальцитом, ксонотлитом и др.), весьма широко распространены в массивах гипербазитов. Обычно они относятся к продуктам биметасоматоза и развиваются на контактах даек и ксенолитов магматитов среднего и основного состава. В некоторых случаях богатый кальцием протолит родингитов не устанавливается, и в таком случае родингиты рассматриваются как гидротермальные жилы или же относятся к апогипербазитовым продуктам приразломного инфильтрационного метасоматоза. К родингитам последнего типа нами отнесены хлорит-гранат-пироксеновые породы (хлограпиты) Карабашского массива альпинотипных гипербазитов на Южном Урале, необычной чертой которых является их высокая золотоносность. Это зональные гидротермально-метасоматические образования, сформированные в 3 стадии [Мурзин, Шанина, 2007]. Внутренняя, собственно родингитовая зона представлена хлорит-андрадит-диопсидовыми породами 1 стадии, рассекающимися существенно диопсидовыми прожилками 2 стадии и кальцитовыми 3 стадии. Промежуточная зона, сложенная хлоритолитами, сменяется во внешней зоне антигоритовыми и хризотил-лизардитовыми серпентинитами.

Взгляды на происхождение родингитизирующего флюида в изученном массиве гипербазитов неоднозначны. Е.А. Кузнецов, А.П. Переляев, Н.И. Бородаевский связывали родингиты с «гранитизирующими» растворами. Другие исследователи (М.П. Ложечкин, Р.О. Берзон, В.Н. Сазонов и другие) относят родингиты к продуктам приразломной антигоритизации под воздействием мантийных флюидов. В [Спиридонов, Плетнев, 2002] предложена комбинированная модель их формирования. Согласно этой модели, ранние родингиты образовались при участии метаморфогенного флюида – продукта регионального метаморфизма гипербазитов, а поздние родингиты сформированы при локальном метаморфизме под воздействием флюидного магматогенного Н₂О-СО₂ потока, сопряженного со становлением тел гранодиоритов. Нами развивается модель метаморфогенного происхождения родингитизирующего флюида в изученном массиве [Мурзин, 2006].

В настоящей статье приводятся результаты исследования минералообразующей среды, заключенной в минералах родингитов Карабашского массива в виде газово-жидких включений (ГЖВ) методом термокриометрии. Исследование включений осуществлялось на термокриостолике THMSG-600 фирмы «Linkam» (Англия), позволяющем производить измерения температур фазовых переходов внутри включений в диапазоне температур -196... +600 °C. Солевой состав растворов определялся по температурам плавления эвтектик (Т_{ак})

ПЕТРОЛОГИЯ

Таблица 1

№ обр./вкл.	Минерал	Т _{эвт} , ℃	Тпл, °С	Т _г , °С	Соленость, %, экв. NaCl	
1268/1	гранат		-2.2	144	3.7	
1268/2	тоже		-2 3	207	3.9	
1200/2	-«-		-2.3	182	3.9	
1270-1/2	-«-		-3.2	178	53	
1270-1/5	-«-		-3.0	205	5.0	
1270-1/4	лиопсил		-2.9	185	4.8	
1289/1	то же		-4.2	140	6.7	
1289/2	-«-		-3,2	160	5,3	
1289/3	-«-		-2.6	251	4.3	
1289/8	-«-	-39	-1,5	122	2,6	
1289/10	-«-		-2,6	132	4,3	
1289/11	-«-	-38	-3,3	167	5,4	
1289/12			-2,4	215	4,0	
1270-2/1			-2,3	197	3,9	
1270-2/2	-«-		-2,3	130	3,9	
1270-2/3	-«-		-0,5	136	0,9	
1270-2/4	-«-	-33,3	-2,2	261	3,7	
1270-2/5	-«-	, í	-2,6	182	4,3	
1270-2/6			-2,5	167	4,2	
1270-2/7		-34,6	-2,7	308	4,5	
1296/4			-2,7	197	4,5	
1296/5			-2,6	201	4,3	
1296/6			-2,2	205	3,7	
1296/7			-2,6	205	4,3	
1296/8			-3,5	203	5,7	
1296/10			-2,1	260	3,6	
1296/12			-1,5	198	2,6	
1301/1	кальцит	-47,2	-2,4	302	4,0	
1301/3	то же		-2,5	225	4,2	
1301/4			-2,4	235	4,0	
1301/5			-2,0	201	3,4	
1301/6			-5,3	250	8,3	
A (5)		-35,5	-4,1	245	6,6	
B (13)	-«-	-30,6	-2,5	189-173	4,2	
C (15)		-36,8	-4,3	202-155	6,9	
D (13)	-«-	-34,5	-5,1	202	8,0	
E (11)		-30,8	-4,1	202-142	6,6	
F (19)		-34,5	-2,3	185-140	3,9	
G (12)		-35,6	-4,7	182-147	7,4	

Результаты термокриометрии газово-жидких включений в минералах родингитов месторождения Золотая Гора и расчетных значений солености флюида

Примечание: образцы представляют: 1 стадию формирования родингитов (1268, 1270-1), совмещенные 1 и 2 стадии (1270-2, 1296), 2 стадию (1289) и 3 стадию (1301, А-G). Данные по образцам А-G заимствованы в [Спиридонов, Плетнев, 2002]. Они представляет собой усредненные характеристики для количества включений, указанных в скобках.

Рис. 1. Соотношение температуры гомогенизации и солености раствора газово-жидких включений в минералах различных стадий родингитов Золотой Горы. SW – соленость морской воды.

1 – в гранате и диопсиде 1 и 2 стадий; 2, 3 – в кальците 3 стадии по нашим (2) и литературным (3) данным [Спиридонов, Плетнев, 2002]. На диаграмму нанесено поле для включений из золотоносных родингитов проявления 15 Mile (Британская Колумбия).

[Борисенко, 1977; Боровиков и др., 2002]. Концентрация солей во включениях оценивалась по температурам плавления льда (T_{пл}) для солевой системы NaCl-H₂O [Bodnar, Vityk, 1994].

ГЖВ присутствуют в минералах всех стадий родингитов - кальците, диопсиде, хлорите и гранате. Они представлены тремя группами - первичными, псевдовторичными и вторичными. Первичные включения имеют полигональную, угловато-изометричную, клиновидную форму и размеры менее 40 мкм. Они произвольно локализованы в зернах минералов и лишь иногда в диопсиде отчетливо трассируют зоны роста его кристаллов. Первичные ГЖВ двухфазные (Ж+Г) с объемом газового пузырька 20-30 %. При замораживании пузырек резко сокращается в объеме и деформируется, иногда принимая угловатые контуры, которые сглаживаются при температуре плавления эвтектики. Псевдовторичные включения являются преобладающими в своей массе. Для них характерны те же формы, размеры и фазовый состав, что и для первичных включений. В краевых частях крупных зерен диопсида они часто имеют форму отрицательных кристаллов, вытянутых в направлениях граней призмы или залеченных трещин спайности. При замораживании газовый пузырек объемом 5-15 % резко исчезает и также резко появляется при температуре плавления льда. Вторичные включения приурочены к трещинам, рассекающим кристаллы диопсида в различных направлениях. Они имеют размеры менее 5 мкм, обычно однофазный состав (Ж). Такие включения нами не изучались.

Ранее нами было показано, что гомогенизация первичных и псевдовторичных включений происходит в жидкую фазу в широком диапазоне температур (Т_) – 115-325 °С [Мурзин и др., 2004; Мурзин и др., 2007]. При этом большинство включений в минералах всех стадий имеет Т =140-220 °C, что существенно ниже температуры минералообразования (Т.) в родингитах - 420-470 °C, оцененной по парагенетическим ассоциациям минералов. Низкие значения Т объясняются нами достаточно высоким давлением формирования родингитов, когда Т может быть значительно ниже Т. Т. и Т, становятся близкими при условии, что давление при формировании родингитов 1 стадии было 2-3 кбар, а 2 и 3 стадий 1-2 кбар.

Для значительного числа ГЖВ удалось определить T_{nn} , а для отдельных наиболее крупных включений и $T_{_{987}}$ (табл. 1). Значения $T_{_{10,0}}$ в большинстве включений в минералах 1 и 2 стадий отвечают растворам низкой солености – 0,5-6,7 мас. % экв. NaCl, что лишь немного превышает соленость морской воды (рис. 1). В тоже время ГЖВ в кальците 3 стадии по концентрации солей разбились на две группы. Одна группа включений содержит раствор той же солености, что и в минералах 1 и 2 стадии. Во включениях второй группы заключен раствор с большей концентрацией солей – 6,6-8,3 мас. % экв. NaCl.

 $T_{_{3BT}}$ двух включений из диопсида 2 стадии в родингите составила -33,3 и -34,6 °С. Эти значения свидетельствуют о формировании родингитов из существенно хлоридно-магниевого флюида ($T_{_{3BT}}$ для системы MgCl₂ – вода -33,6 °С). Более низкие значения $T_{_{3BT}}$ (-38 и -39 °С) зафиксированы для включений из диопсидового прожилка этой стадии во вмещающем серпентините, что указывают на усложнение солевой системы за счет возможного появления в ней NaCl, KCl, FeCl₃ или же, что наиболее вероятно, примесей CaCl₂. Температура эвтектики $T_{_{3BT}}$ для включений из кальцита 3 стадии, варьирующая в пределах -30,6... -36,8 °С приводятся в [Спиридонов, Плетнев, Таблица 2

Флюидный режим формирования родингитов по данным термокриометрии газово-жидких включений в минералах

Источник данных	Наши данные	Тоже		Knight, Leitch, 2001	O'Hanley et al., 1992	Schandl et al., 1990	Schandl, Mittwede, 2001	Mittwede, Schandl, 1992	Vallis, Scambelluri, 1996	Dubinska E. et al., 2004
Концентра- ция солей, мас. % экв.	NaCl 0,9-8,3	2,1-7,2;	9.2-17,3	0,4-2,4	6,5-9,5	0-4	8	4,3-6,3	1,7-5,0	4,7-5,2
T _{III} , °C	-0,55,3	-1,24,5	-613,5	-0,21,4		0, 1 2, 4			-1,03,1	
Водно-солевая система (примесь)	MgCl ₂ (CaCl ₂)	MgCl ₂ (CaCl ₂)		MgCl ₂ (CaCl ₂)					NaCl (KCl)	CaCl ₂ , CaCl ₂ (NaCl)
T ₃₈₁ , ^o C	-30,639; -47,2	-33,038,2		-3043					19,623,0	
Р, кбар	1-3				Менее 0,8	1-2				0,9-1,1
Т					264-336	270-330	250-450	350-500		270-300
T	115-325	220-380	250-320	230-280		196-216			297-327	190-208
Минералы	диопсид, гра- нат, кальцит	диопсид, гра- нат. везувиан		гранат, диопсид	клиноцоизит, гроссуляр, ди- опсид	диопсид	гроссуляр		диопсид	ноуфил
Местоположение родингитов	Карабашский мас- сив, Ю.Урал	Баженовский мас- сив. Сп. Vnaп		Проявление 15 Mile (Британская Колум- бия, Канада)	Cassiar serpentinite (Британская Колум- бия, Канада)	Пояс Atibiti (Онта- рио, Канада)	Lician peridotite (Турция)	Свита Hammet Grove, CША)	Массив Voltri (3. Альпы, Италия):	Maccив Jordanov- Gololow (Польша)

ПЕТРОЛОГИЯ

2002], и интерпретирована авторами как отвечающая солевой системе NaCl-KCl-MgCl₂ с небольшим количеством CaCl₂. Учитывая, что минералы К и Na не характерны для изученных родингитов, мы полагаем, что кальцит отлагался, как и минералы 1 и 2 стадий, из раствора MgCl₂ с небольшим количеством CaCl₂. В данном исследовании нам удалось определить $T_{_{Эвт}}$ лишь в одном включении из кальцита. Полученное значение $T_{_{Эвт}} = -47,2$ °C в этом включении свидетельствует о том, что локально раствор мог быть существенно хлоридно-кальциевым ($T_{_{эвт}}$ для системы CaCl₂ – вода составляет -49,8 °C).

Нами собраны литературные данные по термокриометрическим характеристикам ГЖВ из различных родингитов мира (табл. 2). Эти данные оказались немногочисленными, и при этом лишь один из объектов – проявление 15 Mile принадлежит золотоносным образованиям. Родингиты этого проявления содержат ГЖВ с практически теми же термокриометрическими параметрами, что и включения в родингитах Карабашского массива, отличаясь лишь более низкой концентрацией в них солей – менее солености морской воды (см. рис. 1). Судя по имеющимся данным, невысокая соленость флюида (менее 10 мас. % экв. NaCl) - характерная черта всех родингитов. В солевом составе родингитизирующего флюида, как правило, преобладают MgCl, и CaCl, хотя в некоторых случаях могут присутствовать и даже играть определяющую роль KCl и NaCl.

Изотопное исследование родингитов Карабашского массива указывает на метаморфогенное происхождение родингитизирующего флюида, генерировавшегося при дегидратации серпентинитов океанического дна [Мурзин, 2006]. Данные о низкой солености минералообразующей среды, заключенной в ГЖВ золотоносных родингитов, соответствуют представлениям об уровне концентраций солей во флюиде, сформированном при метаморфизме океанических осадков или же в аккреационных призмах [Yardley, Graham, 2002].

Исследование осуществлялось при финансовой поддержке Российского Фонда фундаментальных исследований (грант РФФИ № 04-05-64679), грантов Минобрнауки РНП.2.1.1.1840 и «Поддержка ведущих научных школ» (НШ-1227.2008.5).

Список литературы

Борисенко А.С. Изучение солевого состава газово-жидких включений в минералах методом криометрии // Геология и геофизика. 1977. № 8. С. 16-27.

Боровиков А.А., Гущина Л.В., Борисенко А.С. Определение хлоридов железа (II, III) и цинка в растворах флюидных включений при криометрических исследованиях // Геохимия. 2002. № 1. С. 70-79.

Мурзин В.В. Происхождение флюида при формировании золотоносных родингитов по изотопным данным (на примере Карабашского массива альпинотипных гиперабазитов, Южный Урал) // ДАН. 2006. Т. 406. № 5. С. 683-686.

Мурзин В.В., Сазонов В.Н., Берлимбле О.М. О температурном режиме формирования золотоносных метасоматитов месторождения Золотая Гора (Карабашское) // Ежегодник-2003. Екатеринбург: ИГГ УрО РАН, 2004. С. 333-338.

Мурзин В.В., Шанина С.Н. Флюидный режим формирования и происхождение золотоносных родингитов Карабашского массива альпинотипных гипербазитов на Южном Урале // Геохимия. 2007. № 10. С. 1085-1099.

Спиридонов Э.М., Плетнев П.А. Месторождение медистого золота Золотая Гора. М.: Научный мир, 2002. 220 с.

Bodnar R.J., Vityk M.O. Interpretation of microthermometric data for H_2O -NaCl fluid inclusions // Fluid inclusions in minerals: methods and applications. Edited by: Benedetto De Vivo and Maria Luce Frezzotti. Pontignano-Siena. 1994. P. 117-130.

Dubincka E., Bylina P., Kozlovski A. et al. U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland) // Chemical Geology. 2004. V. 203. P. 183-203.

Knight J., Leitch C.H.B. Phase relations in the system Au-Cu-Ag at low temperatures, based on natural assemblages // Canadian Mineralogist. 2001. V. 39. P. 889-905.

Mittwede S.K., Schandl E.S. Rodingites from the southern Appalachian Piedmont, South Carolina, USA // European Jornal of Mineralogy. 1992. V. 4(1). P. 7-16.

O'Hanley D.S., Schandl E.S., Wicks F.J. The origin of rodingites from Cassiar, British Columbia, and their use to estimate T and $P(H_2O)$ during serpentinization // Geochimica et Cosmochimica Acta. 1992. V. 56. Is. 1. P. 97-108.

Shandl E.S., O'Hanley D.S., Wicks F.J. Fluid inclusions in rodingite: a geothermometer for serpentinization // Economic geology. 1990. V. 85. P. 1273-1276.

Schandl E.S., Mittwede S.K. Evolution of acipayam (Denizli, Turkey) rodingites// International Geology Review. 2001. V. 43. № 7. P. 611-623.

Vallis F., Scambelluri M. Redistribution of high-pressure fluids during retrograde metamorphism of eclogite-facies rocks (Voltri Massif, Italian Western Alps) // Lithos. 1996. V. 39. P. 81-92.

Yardley B.W.D., Graham J.T. The origins of salinity in metamorphic fluids // Geofluids. 2002. V. 2. P. 249-256.