ПЕТРОЛОГИЯ

ОСОБЕННОСТИ ХИМИЧЕСКОГО СОСТАВА СИНПЛУТОНИЧЕСКИХ ДАЕК ВЕРХИСЕТСКОГО МАССИВА (СРЕДНИЙ УРАЛ)

Е.А. Зинькова, Г.Б. Ферштатер

Меланократовые включения и дайки тесно связаны с ранними существенно гранодиоритовыми сериями массива, верхний возрастной рубеж которых 320 млн лет? и отсутствуют в гранитах центральных тел массива, датированных возрастом 275-290 млн лет. Морфоло-

Таблица 1

Содержание петрогенных (мас. %) и редких (г/т) элементов в типичных образцах синплутонических даек Верхисетского массива

Компо-	1	2	3	4	5	6
нент	Ви-638	Ви-579	Ви-660	Ви-610	Ви-488	Ви-486
SiO ₂	53,54	63,31	71,19	47,02	63,41	64,09
TiO ₂	0,85	0,58	0,178	1,08	0,66	0,64
Al ₂ O ₃	17,39	16,65	15,73	15,76	16,03	17,03
Fe ₂ O ₃	3,52	1,99	0,97	5,89	4,56	2,38
FeO	4,48	2,33	0,40	6,46	0,72	2,51
MnO	0,144	0,08	0,034	0,22	0,10	0,11
MgO	3,73	2,94	0,78	5,02	2,79	1,97
CaO	6,37	4,72	2,56	9,59	4,72	3,95
Na ₂ O	4,61	4,54	4,47	4,31	4,48	5,04
K ₂ O	2,14	1,84	2,24	1,55	2,00	1,67
P_2O_5	0,54	0,18	0,05	0,26	0,26	0,31
ппп	1,06	0,87	0,12	2,11	0,66	0,77
сумма	98,36	100,03	98,71	99,27	100,39	100,76
Li	33,72	29,67	8,23	18,22	15,20	11,52
Rb	58	52	38	36	41	14
Cs	3,36	1,83	1,30	2,21	1,19	1,15
Be	2,86	1,43	3,65	1,09	1,15	1,18
Sr	1002	543	616	897	650	581
Ba	558	439	1272	308	637	432
Sc	14	9	3	32	10	4
V	158	73	17	364	83	56
Cr	16	52	8	8	30	8
Со	20	9	3	36	10	5
Ni	11	26	4	12	29	6
Cu	174	19	97	351	14	17
Zn	80	46	20	95	65	0
Ga	23	17	17	21	16	17
Y	20	10	7	19	11	13
Nb	11,6	5,6	4,9	4,1	7,2	7,4
Та	0,51	0,31	0,83	0,27	0,44	0,43
Zr	120	79	83	32	12	71
Hf	3,03	2,10	2,48	1,15	0,74	2,28
Mo	0,42	0,00	0,25	0,81	0,66	0,20
Sn	3,94	2,28	2,78	0,00	1,00	1,52
Pb	12	14	15	8	10	1 07
U TI	4,63	2,76	1,65	1,09	2,01	1,07
In L	/,//	3,83	7,82	3,05	4,89	2,85
La	49,74	15,47	22,86	25,90	21,28	19,19
Ce Dr	99,58	30,78	43,30	33,79	45,18	38,10
PI NJ	11,27	3,04	4,49	7,00	4,85	4,/4
INU See	42,00	14,05	2.45	29,75	2.24	2.50
5III En	1.05	2,04	2,43	0,20	0.02	5,39
Gd	5 49	2 2 2 2	1 72	1,/9	2 74	2 0,97
Th	0.75	2,20	0.26	4,91	0.26	2,00
Dv	3 75	1.04	1 25	3.60	1 00	2 /1
Но	0.71	0.38	0.26	0.72	0.40	0.40
Fr	1.99	1.00	0,20	1.85	1.05	1 25
Tm	0.28	0.15	0.11	0.28	0.15	0.10
Vh	1 76	0.06	0.66	1 76	1.01	1 20
Lu	0.27	0.15	0.10	0.27	0.16	0.18
L 4	V.4/		0.10	0.41	. 0.10	0.10

Примечание. 1, 2 – синплутонические дайки и лейкократовая жила (3) в них, Исетский карьер близ д. Коптяки; 4 – дайка Чусовской структуры, Новомосковский тракт; 5-6 – синплутонические дайки, 78-й км Новотагильского тракта. гия даек и их текстурноструктурные особенности позволяют отнести их к разряду синплутонических. Дайки обычно образуют густые рои во вмещающих гранитоидах, имеют резкие контакты с ними, иногда волнистой, реже инъекционной формы, и рассекаются более поздними порциями вмещающих их пород, в том числе аплитами, что указывает на внедрение даек до окончания кристаллизации гранодиоритового расплава. Иногда дайки содержат в себе ксенолиты вмещающих их гранодиоритов. Гнейсовидность в дайках параллельна их контактам, а также гнейсовидности вмещающих их гранодиоритов. По своему облику дайки более мелкозернистые породы, чем вмещающие их гранитоиды. По морфологическим особенностям они делятся на два типа. Первый - это сложные дайки, с сопутствующими им лейкократовыми породами, образующими либо жилы, либо цепочки будиноподобных тел внутри даек. Жилы, как правило, занимают эндоконтактовые части даек, а булинополобные цепочки – их центральную часть. Второй тип даек имеет однородное строение.

В целом, все породы меланократовых включений и даек массива, как и гранитоиды, вмещающие их, относятся к известково-щелочной серии. Состав их варьирует от габбро-диоритов до гранодиоритов (табл. 1). На классификационной диаграмме (K₂O+Na₂O – SiO₂) часть синплутонических даек попадает в поле субщелочных пород, а более кислые их разности практически совпадают с трендом распределения гранитоидов исетской тоналит-гранодиоритовой серии массива (рис. 1А), указывая на единый генезис пород. Как правило, тенденцию к повышенной щелочности проявляют более основные разности, находящиеся на классификационной диаграмме K₂O-SiO₂ в поле высококалиевых пород (рис. 1Б). Для даек диоритового и гранодиоритового составов характерно умеренное содержание калия и повышенное содержание натрия, что также является хими-

Рис. 1. Классификационные (А, Б) и вариационные (В, Г, Д, Е) диаграммы для синплутонических даек Верхисетского массива(1) и лейкократовой жилы в сложной дайке(2). Затемненным полем и жирными линиями (тренды) обозначены составы исетской тоналит-гранодиоритовой серии, наиболее распространенной в Верхисетском массиве. Пунктирной линией обозначена область распространения субщелочных магматических пород [Классификация..., 1981]. Классификационные поля на диаграмме К₂O-SiO₂ вынесены по [Le Maitre, 1989].

ческой особенностью гранитоидов исетской серии массива (рис. 1В) и характерно для пород с «адакитовой химией» в целом [Defant, Drummond, 1990, 1993; Defant et al, 1991; Sajona et al, 1996]. На петрохимических вариационных диаграммах (рис. 1Г,Д,Е) тренды распределе-

Рис. 2. Диаграмма Sr/Y–Y для синплутонических даек Верхисетского массива(1); лейкократовой жилы в сложной дайке(2); пород исетской тоналит-гранодиоритовой серии (3). Пунктирными линиями показаны: поле архейских высокоглиноземистых трондьемит-тоналит-дацитовых серий [Petford, Atherton, 1996], с которыми совпадают адакиты массива Кордильера Бланка и современные адакиты Филиппинской островной дуги [Sajona et al., 1996], и поле постархейских андезит-дацит-риолитовых серий.

ния синплутонических даек массива продолжаются гранитоидами массива, подтверждая их единый генезис.

На диаграмме Sr/Y-Y (рис. 2) большинство синплутонических даек Верхисетского массива, а так же лейкократовая жила из сложной дайки и гранитоиды исетской тоналит-гранодиоритовой серии находятся в поле архейских высокоглиноземистых трондьемит-тоналит-дацитовых серий, совпадающем с адакитами массива Кордильера Бланка и современными адакитами

> Филиппинской островной дуги, указывая, таким образом, на сходные условия образования всех вышеперечисленных пород.

На графике распределения РЗЭ (рис. ЗА) составы синплутонических даек массива практически совпадают с областью составов пород исетской тоналит-гранодиоритовой серии, а также перекрываются с полем составов адакитов массива Кордильера Бланка и современных адакитов Филиппинской островной дуги. Для всех вышеперечисленных пород характерно отсутствие Eu-аномалии.

Рис. 3. Распределение РЗЭ (А) и нормированные к примитивной мантии (Б) составы в типичных образцах синплутонических даек Верхисетского массива(1); лейкократовой жилы в сложной дайке (2). Светло-серым тоном показаны области составов пород исетской тоналит-гранодиоритовой серии Верхисетского массива. Темно-серым тоном показаны поля составов адакитов массива Кордильера Бланка и современных адакитов Филиппинской островной дуги. Цифрами обозначены номера образцов, приведенных в таблице.

ПЕТРОЛОГИЯ

На спайдер-диаграмме (рис. 3Б) все синплутонические дайки и лейкократовая жила в них, а также гранитоиды исетской тоналит-гранодиоритовой серии Верхисетского массива проявляют отрицательные Nb- Ti- аномалии, характерные для островодужных образований. Следует отметить, что лейкократовая жила из сложной дайки обогащена барием. Для всех даек и включений характерна положительная стронциевая аномалия, что также является геохимической особенностью адакитов массива Кордильера Бланка и адакитов Филиппинской островной дуги.

Суммируя все приведенные выше петрои геохимические особенности синплутонических даек Верхисетского массива, мы пришли к выводу, что они практически идентичны составам пород исетской тоналит-гранодиоритовой серии, наиболее распространенной по всему массиву, а также проявляют сходство с породами адакитовых серий по следующим химическим характеристикам:

1 – высокие содержания Sr (> 400 г/т) и Al (> 15 вес. %);

2-отсутствие Еи-аномалии;

3 – низкие содержания Yb (< 1,5 г/т) и Y (< 15 г/т);

4 – низкие содержания ВЗЭ (Nb, Ta);

5 – высокие Sr/Y (> 40) и La/Yb (> 20) отношения;

6 – повышенное содержание Na (4-5,2 вес.%).

Первые две химические особенности пород объясняются неустойчивостью плагиоклаза в области их магмогенерации. Низкие содержания Yb, Y и B3Э (Nb, Ta), по всей видимости, являются следствием устойчивости амфибола и сфена. Геологическим подтверждением устойчивости этих минералов является их постоянное присутствие как в дайках, так и в реститах мигматизированных серий массива.

Согласно данным экспериментальных изучений по плавлению амфиболитов, проведенных в связи с проблемами генезиса тоналит-трондьемитовых магматических серий [Ходоревская, Жариков, 1998], более натриевый тренд выплавок получается при относительно низких давлениях (5-14 кбар) и сменяется калиевым при более высоких давлениях. Согласно другим экспериментальным данным [Patino, Harris, 1998] смещение расплава в сторону трондьемита происходит при водном анатексисе, когда остаются устойчивыми гидроксилсодержащие минералы, а вода поступает извне. В нашем случае, по результатам роговообманково-плагиоклазовой барометрии [Зинькова, Ферштатер, 2001], дайки основного состава уравновешены при давлении около 6 кбар, а дайки среднего состава – при 3-4 кбар, что хорошо совпадает с вышеуказанным интервалом давлений. Как уже упоминалось, в качестве породообразующего минерала для даек характерна роговая обманка, а среди акцессориев постоянно присутствует сфен. Таким образом, синплутонические дайки Верхисетского массива могли образоваться в одной из выше перечисленных обстановок, характеризующихся устойчивостью гидроксилсодержащих минералов и плавлением плагиоклаза. Наиболее реальной нам представляется обстановка субдукции - этому соответствует и синхронность даек с надсубдукционными тоналитгранодиоритовыми сериями массива [Bea et al., 1997], и общее палеогеографическое положение массива в палеоокраинно-континентальной зоне Урала. Лейкократовые жилы в дайках имеют ярко выраженные адакитовые характеристики и отличаются по химическому составу от вмещающих их гранитоидов, что позволят предположить образование этих жил посредством стадийного плавления вещества самих даек.

Работа выполнена при финансовой поддержке РФФИ (грант № 05-05-64079).

Список литературы

Зинькова Е.А., Ферштатер Г.Б. Два типа базитового магматизма, связанного с гранитоидами Верхисетского батолита // Ежегодник-2000. Екатеринбург: ИГГ УрО РАН, 2001. С. 70-72.

Классификация и номенклатура магматических горных пород. М.: Недра. 1981. 160 с.

Ходаревская Л.И., Жариков В.А. Экспериментальное изучение плавления амфиболитов в связи с проблемами генезиса тоналит-трондьемитовых магматических серий // Экспериментальное и теоретическое моделирование процессов минералообразования. М.: Наука, 1998. С. 11-31.

Bea F., Fershtater G.B., Montero P.G. et al. Generation and evolution of subduction-related batholiths from the Central Urals: Constraints on the P-T history of the Uralian Orogen. Tectonophysics. 1997. V. 276. № 1-4. P. 103-116.

Defant, M.J., Clark, L.F., Stewart, R.H.et al.. Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano. Panama. // Contrib. Miner. Petrol. 1991. V. 106. P. 309-324. *Defant, M.J., Drummond, M.S.* Derivation of some modern arc magmas by melting of young subducted lithosphere. // Nature. 1990. V. 347. P. 662-665.

Defant, M.J., Drummond, M.S. Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. // Geology. 1993. V. 21. P. 547-550.

Le Maitre R.W. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford. 1989. Patino Douce A.E., Harris N. Experimental constraints on Himalayn anatexis // J. Petrol. 1998. V. 38. N 4. P. 689-710.

Petford N., Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru // J. Petrology. 1996. V. 37. N 6. P. 1491-1521.

Sajona F.G., Maury R.C., Bellon H., Cotten J. and Defant M. High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines) // J. Petrol. 1996. V. 37. N 3. P. 693-726.