РАСПРЕДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ И РЕДКИХ ЭЛЕМЕНТОВ В СУБВУЛКАНИЧЕСКИХ ПОРОДАХ САФЬЯНОВСКОГО МЕСТОРОЖДЕНИЯ

В.П. Молошаг, В.А. Прокин, В.Н. Удачин, Е.И. Сорока

Нами изучалось распределение содержаний редких, рассеянных и редкоземельных элементов (РЗЭ) в вулканических и субвулканических породах кислого ряда, которые пространственно и генетически связаны с рудными телами Сафьяновского месторождения. Поскольку в отечественной литературе опубликовано сравнительно небольшое число анализов рудовмещающих пород, по сравнению с неизмененными их разностями, то мы стремились анализировать максимально полный спектр элементов. Материал проб отбирался в карьере. Мы

ГЕОХИМИЯ

Таблица 1

Краткая характеристика проб рудовмещающих субвулканических пород Сафьяновского месторождения

N₂	Проба	Описание материала проб
Π/Π	_	
1	1-00	Кварцевый порфир серицитизированный
2	22-00	Серицит-кварцевый метасоматит с лимонитом по кварцевому порфиру
3	96-00	Дайка окварцованного кварцевого порфира, сульфиды
4	98-99	Кварцевый порфир серицитизированный и хлоритизированный с гематитом
5	119-99	Измененный рассланцованный фельзитовидный риодацит, плагиоклаз до 40%,
		сульфиды.
6	123-99	Измененная брекчия дацитов с карбонатами до 25%, плагиоклаз до 30%, сульфиды
7	133-99	Измененные кварцевые порфиры, плагиоклаза до 50%
8	192-00	Кварцевый порфир серицитизированный, хлоритизированный с лимонитом
9	244-00	Вторичный кварцит с карбонатами – до 20%
10	228-00	Дайка измененных кварцевых порфиров, плагиоклаза до 40%, лимонит

ограничились десятью пробами с расчетом дублирования каждой из выделенных разновидностей пород.

Наряду с РЗЭ определялись Be, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Sr, Mo, Cs, Ba, Hf, Ta, W, Tl, Pb, Bi, Th, U и, кроме того, выполнялись силикатные анализы пород. Приведенный перечень элементов в литературе для «свежих» разновидностей пород, не подвергнутых воздействию вторичных, гидротермальных изменений, обозначается единым термином – «редкие элементы». С процессами колчеданного рудообразования непосредственную связь имеют концентрации Cu, Zn, Ga, Ba, Tl, Pb, Bi, Co, Ni. Содержания этих элементов наряду с другими, на наш взгляд, могут быть одним из качественных критериев оценки влияния рудообразующих процессов на развитие гидротермальных изменений рассматриваемых пород. Краткое описание проб приводится в таблице 1.

Анализы проб на РЗЭ, редкие и рассеянные элементы выполнялись Д.З. Журавлевым в ИМГРЭ на масс-спектрометре Perkin Elmer ELAN 6000. В качестве внутреннего стандарта использовался вводимый в каждую пробу ра-

Таблица 2

Проба	1-00	22-00	96-00	98-99	119-99	123-99	133-99	192-00	244-00	228-00
	1	2	3	4	5	6	7	8	9	10
La	4.847	1.271	6.589	2.867	1.788	1.111	19.454	2.777	1.473	20.578
Ce	12.493	5.971	16.275	6.178	4.963	4.814	4.917	5.100	7.335	4.711
Pr	1.535	0.356	1.910	1.098	0.664	0.251	1.194	0.713	0.493	0.841
Nd	6.067	1.421	7.435	4.550	2.852	1.111	5.330	3.226	2.008	3.643
Sm	1.557	0.365	2.014	1.274	0.880	0.315	1.187	1.015	0.560	1.058
Eu	0.155	0.073	0.340	0.128	0.260	0.058	0.091	0.109	0.061	0.215
Gd	1.667	0.292	2.265	1.449	1.100	0.338	1.196	1.184	0.598	1.173
Tb	0.286	0.050	0.361	0.222	0.181	0.058	0.210	0.216	0.093	0.218
Dy	1.759	0.306	2.061	1.546	1.051	0.404	1.501	1.434	0.539	1.367
Но	0.445	0.080	0.488	0.356	0.265	0.101	0.336	0.379	0.137	0.364
Er	1.379	0.287	1.459	1.075	0.827	0.315	0.947	1.140	0.464	1.081
Tm	0.210	0.044	0.203	0.187	0.124	0.050	0.171	0.160	0.078	0.149
Yb	1.480	0.361	1.405	1.105	0.826	0.386	1.064	1.158	0.525	1.137
Lu	0.248	0.053	0.236	0.190	0.144	0.061	0.163	0.177	0.091	0.189
Σ REE	34.128	10.930	43.041	22.225	15.925	9.373	37.761	18.788	14.455	36.724
Eu/Eu*	0.293	0.682	0.418	0.287	0.806	0.542	0.233	0.303	0.321	0.588

Содержание редких земель (г/т) в рудовмещающих субвулканических породах Сафьяновского месторождения

створ In заданной концентрации. Кислотное вскрытие проб (навески по 100 мг) проводилось смесью 2 мл HF, 3 мл HCl и 1 мл HNO₃ в автоклавах с однокамерной реакционной емкостью при температуре 150°С в течение 6 часов. После перенесения в стеклоуглеродные тигли кислотный эксктракт дважды упаривался досуха с добавлением концентрированной азотной кислоты. Конечная аликвота для анализа объемом 100 мл сводилась к 1 Н раствору HNO₂. Результаты анализа РЗЭ приведены в таблице 2. Анализы редких и рассеянных элементов отражены в таблице 3. Силикатные анализы проб приводятся в таблице 4. Они выполнялись в Институте минералогии УрО РАН (аналитик Т.В. Семенова).

Соотношения содержания редких земель в целом соответствуют таковым для свежих, неизмененных разностей кислых пород. Однако есть и различия. Они проявляются в отчетливо более низких значениях содержания РЗЭ в рассматриваемых породах, что проявляется на уровне значений содержания каждого из рассматриваемых элементов, а также их суммы (см. табл. 2). Результаты анализов РЗЭ показывают наличие устойчивого минимума концентрации европия в пробах, что показывают данные расчета величины Eu/Eu*, которая представляет собой отношение измеренного содержания европия к средним геометрическим значениям приведенных к метеоритному стандарту концентраций самария и гадолиния [McDonough, 1995]. Для свежих, неизмененных разновидностей пород данная величина близка к единице, что соответствует эмпирически найденной логарифмической последовательности снижения содержаний РЗЭ в порядке возрастания их атомного номера. Европиевый минимум отмечается

Таблица 3

Содержание редких элементов (г/т) в рудовмещающих субвулканических породах Сафьяновского месторождения

Проба	1-00	22-00	96-00	98-99	119-99	123-99	133-99	192-00	244-00	228-00
	1	2	3	4	5	6	7	8	9	10
Be	0.497	0.488	0.692	0.609	0.410	0.612	0.382	0.856	0.531	0.497
Sc	3.535	1.485	3.189	3.638	4.582	2.303	2.395	1.969	1.439	6.286
Ti	543.567	564.597	338.111	540.331	1336.26	1138.90	418.999	540.331	485.327	1396.12
V	8.371	2.131	1.713	1.992	20.056	23.121	3.231	1.210	1.117	18.385
Cr	333.838	181.775	178.280	167.793	163.248	204.497	232.463	140.526	98.578	114.658
Mn	38.093	16.985	65.797	96.800	32.322	234.166	29.353	93.996	420.510	70.910
Со	0.844	0.728	36.019	8.891	3.682	10.806	2.249	0.927	0.637	1.308
Ni	17.425	9.801	284.257	82.878	21.042	68.111	27.872	13.364	7.789	10.835
Cu	26.014	260.135	1344.66	42.351	83.193	28.401	18.725	27.899	18.473	55.420
Zn	337.329	154.883	720.598	303.202	836.104	150.945	175.884	115.506	1903.21	513.213
Ga	8.607	10.538	8.957	8.474	9.271	9.247	5.480	8.969	8.969	8.993
Rb	8.387	8.085	15.620	0.642	11.118	9.936	1.047	3.439	5.460	0.866
Sr	51.451	30.266	16.371	51.314	37.144	35.493	32.604	58.880	39.345	72.225
Y	10.520	1.677	14.769	8.008	6.828	2.563	7.873	10.335	3.170	8.699
Zr	88.094	85.689	56.577	75.057	69.488	65.691	71.766	73.158	77.462	75.563
Nb	4.505	1.877	1.626	1.945	1.473	1.208	1.996	2.286	2.013	1.507
Мо	1.141	0.627	5.096	0.783	1.149	0.811	0.909	0.568	0.399	0.460
Cs	0.910	1.748	0.985	0.057	1.154	1.383	0.127	0.744	0.718	0.559
Ba	364.392	481.831	581.710	111.952	537.807	316.099	252.440	272.196	194.269	178.903
Hf	2.969	2.577	1.994	2.666	2.005	1.904	2.565	2.465	2.678	2.106
Та	1.761	0.147	0.177	0.181	0.226	0.114	0.241	0.259	0.194	0.122
W	2.604	3.529	2.323	1.050	2.086	1.601	0.895	1.076	0.767	1.759
Tl	0.729	2.713	1.246	0.342	1.131	0.519	0.509	0.425	0.283	0.350
Pb	45.410	24.513	32.148	11.352	14.969	5.264	33.053	72.535	12.658	25.719
Bi	0.126	0.055	9.762	1.358	0.515	2.622	0.393	0.418	0.184	0.120
Th	2.644	1.215	2.358	1.667	1.239	0.899	1.417	1.028	1.157	1.429
U	2.041	1.963	1.500	1.202	1.246	1.067	3.199	1.257	1.985	0.884
Nb/Y	0.428	1.119	0.110	0.243	0.216	0.471	0.254	0.221	0.635	0.173
Zr/TiO ₂	0.096	0.090	0.100	0.083	0.031	0.034	0.102	0.081	0.095	0.032

ГЕОХИМИЯ

Таблица 4

Проба	1-00	22-00	96-00	98-99	119-99	123-99	133-99	192-00	244-00	228-00
	1	2	3	4	5	6	7	8	9	10
SiO ₂	79.88	79.58	76.08	76.80	75.38	73.34	80.64	73.14	75.00	69.46
TiO ₂	0.10	0.11	< 0.05	0.12	0.11	0.10	0.11	< 0.05	0.10	0.14
Al ₂ O ₃	11.76	11.82	10.44	12.60	13.50	12.24	11.38	13.64	12.30	16.27
Fe ₂ O ₃	0.54	0.45	4.35	0.65	1.50	2.09	0.14	0.96	0.84	1.48
FeO	0.18	0.25	0.38	0.86	0.48	1.65	0.30	1.08	1.62	0.97
MnO	< 0.01	Не обн.	< 0.01	0.02	Н.о.	0.03	0.01	0.01	0.06	< 0.01
MgO	0.41	0.59	1.39	0.74	0.42	2.11	0.18	2.44	1.35	1.14
CaO	0.22	H.o.	0.14	0.45	0.23	0.39	0.27	0.68	0.12	0.25
Na ₂ O	2.95	0.76	0.20	5.81	2.98	2.49	5.02	3.12	2.83	8.15
K ₂ O	1.44	1.26	1.96	0.36	1.94	1.81	0.26	0.82	0.91	0.22
H_2O^-	0.24	0.72	0.22	< 0.10	0.18	0.10	0.14	0.20	0.14	0.16
П.П.П.	2.10	4.14	4.92	1.18	2.82	3.26	0.84	3.28	4.10	1.86
P_2O_5	0.07	0.10	0.06	0.07	0.12	0.11	0.07	0.07	0.05	0.08
CO ₂	0.29	0.35	0.40	0.25	0.18	0.44	0.19	0.54	1.30	0.88
S ²⁻	0.15	0.14	4.14	0.49	0.89	1.13	H.o.	<0.10	0.26	<0.10
Сумма	99.89	99.78	100.14	99.66	99.66	99.72	99.37	99.44	99.42	100.18

Результаты силикатного анализа (мас.%) измененных рудовмещающих пород Сафьяновского месторождения

и на спайдер-диаграммах содержания РЗЭ в исследуемых пробах (рис. 1, 2).

Подобный минимум содержания европия отмечается в измененных фациях кислых пород из активной гидротермально-магматической системы Вулкано из Эоловой островной дуги, Италия [Fulignati et al., 1999]. Наряду с наличием сульфидной минерализации, рассматриваемая система интересна тем, что на ней изучено влияние температуры на характер распределения РЗЭ в данных породах. Приведенные содержания РЗЭ в отобранных из скважин образцах пород при значениях температуры ниже

200С° значительно ниже, чем для образцов из интервалов с температурой выше 200 С°. Тем не ме-

Рис. 1. Нормированные по хондриту графики содержаний редкоземельных элементов в субвулканических породах Сафьяновского м е с т о р о ж д е н и я [McDonough, Sun, 1995]. нее сохраняется подобие распределения нормированных содержаний РЗЭ при наличии минимума содержаний европия. Отрицательная аномалия европия установлена и в измененных туфах кислого состава из сульфатно-хлоридной геотермальной системы Национального парка Йеллунайф, Вайоминг, США [Lewis et al., 1997]. Такая аномалия европия отмечается в кислых рудовмещающих вулканитах Александринского месторождения [Тесалина и др., 1998]. Подобный минимум наблюдается в гидротермально измененных риолитах канадских месторождений Кидд-Крик, Онтарио, и Маттагами-Лейк,

Квебек [Pan et al., 1994; Schandl et al., 1991].

При интенсивном развитии гидротермальных изменений окорудных пород достаточно сложно установить свежие, исходные их эквиваленты. В связи с этим нами привлекались диаграммы распределения редких элементов, на которых в качестве координат используются отношения Zr/TiO_2 и Nb/Y [Paulick et al., 2001]. По результатам анализов (см. табл. 3) большая часть проб на данных диаграммах попадает в Рис. 2. Нормированные по хондриту графики содержаний редкоземельных элементов в субвулканических породах Сафьяновского месторождения [McDonough, Sun, 1995].

поле дацитов и риодацитов. Две пробы из них попадают в поле риолитов (точки 1, 9 на рис. 3; пробы 1-00 и 244-00) и одна – в поле андезитов (точка 7 на рис. 3; проба 133-99).Тем не менее

все анализируемые 10 проб соответствуют в целом ранее выделенной рудоносной базальтандезит-дацит-риодацитовой субформации Режевской зоны [Коровко и др., 1988].

Наряду с геохимическими особенностями распределения редких земель в измененных породах рудоносных зон, мы попытались учесть минеральные формы их нахождения. Основными концентраторами РЗЭ в свежих, не изменен-

Рис. 3. Фигуративные точки состава субвулканических пород на диграмме Zr/TiO₂ - Nb/Y

ных разностях кислых пород являются акцессорные минералы: апатит, сфен, ортит и эпидот [Шардакова и др., 2004; Hoskin et al., 2000]. Апатит в виде единичных зерен отмечается во всех исследуемых пробах. Редкая встречаемость апатита согласуется с незначительным содержанием фосфора в породах (см. табл. 4). Нами не исключается присутствие ортита в рассматриваемых породах, косвенным доказательством чего являются описанные в литературе находки данного минерала в рудах Новоберезовского колчеданного месторождения, Рудный Алтай [Демин и др., 1982]. Сфен, по всей видимости, присутствовал в исходном, неизмененном субстрате пород. Доказательством этого является практически повсеместное присутствие групп зерен анатаза TiO, изометричных или квадратных очертаний во вкрапленных рудах и измененных породах. Особенностью состава этих зерен является практическое отсутствие измеримого количества содержания примесей. Они хорошо узнаются в отраженном свете по своей прозрачности (отсутствию погасания) и высокой отражательной способности (за счет высокого показателя преломления). Анатаз может образоваться за счет перекристаллизации тонкозернистых аморфных агрегатов рутила. Образование рутила за счет сфена описывается рекцией: $CaSiTiO_5 + CO_2 = SiO_2 + CaCO_3 + TiO_2$ [Frost et al., 2000]. Эпидот на разрабатываемых участках месторождения не наблюдается [Грабежев и др., 2002].

Исследуемые породы отличаются пониженным (см. табл. 4), по сравнению с исходными, свежими их аналогами, содержанием титана и фосфора [Шардакова и др., 2004]. Причиной этого является установленный ранее частичный вынос титана [Грабежев и др., 2002]. Хотя нельзя исключить, что в процессах гидротермальных изменений пород выносилась некоторая часть фосфора, однако его содержание в рассматриваемых пробах существенно не отличаются от состава исходных их аналогов [Коровко и др., 1988]. Наиболее вероятным носителем РЗЭ остается апатит, который наблюдается в шлифах измененных пород и руд. Если принять во внимание возможное присутствие монацита, то носителем РЗЭ в целом являются минералы фосфора, фосфаты. Распределение РЗЭ в породах подобны таковым для апатитов ранее исследованных в свежих, неизмененных разностях гранитоидов, это же касается и монацита. В том и другом случае наблюдается европиевый минимум [Шардакова и др., 2004; Hoskin et al., 2000].

Таким образом, на примере исследований геохимии редкоземельных и редких элементов, подвергнутых гидротермальным изменениям рудовмещающих пород Сафьяновского месторождения, показана возможность их использования для диагностики исходных пород, что в последующем позволит уточнить их роль в процессах локализации и генезиса руд. Распределение РЗЭ в породах подобны апатитам, из чего следует, что состав данного минерала можно рассматривать в качестве одного из геохимических индикаторов природы субстрата локализации колчеданного рудообразования.

Список литературы

Грабежев А.И., Молошаг В.П., Пуртов В.К. Поведение алюминия и титана при кислотном метасоматозе на колчеданных месторождениях Урала // Геохимия. 2002. № 2. С. 169-183.

Демин Ю.И., Сергеева Н.Е. Редкоземельная минерализация на Новоберезовском колчеданно-полиметаллическом месторождении (Рудный Алтай) // Геология рудных месторождений. 1982. Т. 24. № 4. С. 95-100.

Коровко А.В., Грабежев А.И., Двоеглазов Д.А. Метасоматический ореол Сафьяновского цинковомедного месторождения (Средний Урал) // Докл. АН СССР. 1988. Т. 303. № 3. С. 692-695.

Тесалина С.Г., Масленников В.В., Сурин Т.Н. Александринское медно-цинково- колчеданное месторождение. Миасс: Институт минералогии УрО РАН, 1998. 228 с.

Шардакова Г.Ю., Шагалов Е.С. Распределение редких элементов в породообразующих и акцессорных минералах гранитоидов Урала // Геохимия. 2004. № 3. С. 254-269.

McDonough W.F., Sun S.-s. The composition of the Earth // Chemical Geology. 1995. V. 120. No. 3-4. P. 223-253.

Frost B.R., Chamberlain K.R., Schumacher J.C. Sphene (titanite): phase relations and role as a geochronometer // Chem. Geol. 2000. V. 172. No. 1-2. P. 131-148.

Fulignati P., Gioncada A., Sbrana A. Rare-earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy) // J. Volcanol. Geotherm. Res. 1999. V. 88. No. 4. P. 325-342.

Hoskin P.W.O., Kinny P.D., Wyborn D., Chapell B.W. Identifying accessory mineral saturation during differentiation in granitiod magmas: an integrated approach // J. Petrol. 2000. V. 41. No 9. P. 1365-1396.

ЕЖЕГОДНИК - 2004

Lewis A.J., Palmer M.R., Sturchio N.C., Kemp A.J. The rare earth element geochemistry of acide-sulphate and acide-sulfate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA // Geochim. Cosmochim. Acta. 1997. V. 61. No. 4. P. 695-706.

Pan Y., Fleet M.E., Barnett R.L. Rare-earth mineralogy and geochemistry of the Mattagami Lake volcanogenic massive sulfide deposit // Canad. Miner. 1994. V. 32. No 1. P. 133-147.

Paulick H., Hermann W., Gemmell J.B. Alteration of felsic volcanics hosting the Thalanga massive sulfide deposit (Northern Queensland, Australia) and geochemical proximity indicators to ore // Econ. Geol. 2001. V. 96. N 5. P. 1175-1200.

Schandl E.S., Gorton M.P. Postore mobilization of rare earth elements at Kidd Creek and other Archean massive sulfide deposits // Econ. Geol. 1991. No 7. P. 1546-1553.