РУДООБРАЗОВАНИЕ И МЕТАЛЛОГЕНИЯ, МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

ЗАКОНОМЕРНОЕ ИЗМЕНЕНИЕ СОСТАВА ИЛЬМЕНИТА И МАГНЕТИТА ИЗ РУДНЫХ ЗАЛЕЖЕЙ В РАЗРЕЗЕ КУСИНСКОГО ГАББРОВОГО МАССИВА

Т.Д. Бочарникова, В.В. Холоднов, Л.К. Воронина

Рифейские габброиды вытянуты в виде полосы почти на 70 км вдоль глубинного Зюраткульского разлома. Они представляют собой цепочку массивов: Кусинского, Медведевского, Копанского, Маткальского. Каждый из них содержит одноименное ильменит-титаномагнетитовое месторождение. Кусинский массив, самый северный – это пластовая интрузивная залежь, которой свойственны типичные признаки расслоенных интрузий: наличие ритмической и скрытой расслоенности, приуроченность оруденения к определенным горизонтам в разрезе интрузии [Карпова, 1974; Алексеев и др., 1992, 2002; Ферштатер и др., 2001; Холоднов и др., 2002]. Расслоенность Кусинской интрузии, как следствие магматической дифференциации, была впервые обоснована Д.С. Штейнбергом [Штейнберг и др., 1959].

Принадлежность к расслоенному типу интрузий находит отражение в присутствии скрытой расслоенности в составе рудных тел.

Так, Дж. Уиллемз [1973], изучая магнетитовые руды Бушвельдского расслоенного массива, по-казал, что вверх по разрезу рудных пластов в титаномагнетитах возрастают концентрации TiO_2 (от 12.2-13.9 до 20%) и уменьшаются содержания V_2O_5 (от 2.2 до 0.4%).

Наличие скрытой расслоенности в строении массивов Кусинско- Копанского комплекса установлено в работе Ферштатера с соавторами [2001]. С запада на восток, от лежачего бока к висячему, в массивах в составе клинопироксена снижается магнезиальность и содержание кальция, растет железистость при одновременном снижении степени окисленности железа. В этом же направлении снижается основность плагиоклаза (от An 65 до An 50). Одновременно меняется и состав титаномагнетита. В массивах южной группы вверх по разрезу содержание TiO₂ возрастает от 8-10% до 14-15%, а в северных — от 6-8 до 10%. Скрытая расслоенность установлена и в рудах Копанского мас-

сива. Так, по данным Иванова [2004], в рудных телах вверх по разрезу в титномагнетитах наблюдается увеличение концентраций Fe^{+3} , Ті и Al и уменьшение содержаний Mg и Fe^{+2} .

Нами изучен состав сосуществующих ильменита и магнетита в рудах Кусинской интрузии. Цель нашего исследования — выяснить: 1) меняется ли состав ильменита и магнетита по простиранию рудных тел, согласному с субмеридиональным простиранием самой интрузии; 2) как меняется состав ильменита и магнетита от подошвы к кровле массива; 3) меняется ли состав ильменита и магнетита в разрезе отдельно взятого рудного пласта.

В кусинских рудах ильменит по отношению к магнетиту всегда идиоморфен. Ильменит наблюдается в магнетите в виде мелких округлых включений и эмульсионных капелек, при этом часто зерна ильменита концентрируются в отдельные скопления в виде линзочек, цепочек, шлиров и гнезд. Иногда зерна ильменита и магнетита, тесно примыкая друг к другу, имеют полиэдрические очертания. В тех случаях, когда они разобщены, они имеют округлые или неправильные формы. Размеры зерен ильменита и магнетита близки по размерам и составляют в среднем 0.2-0.3 мм при вариациях от 0.06 до 1.00 мм. Наибольшую мощность (3-4 м) имеют рудные тела, расположенные в центральной части Кусинского массива, в приконтактовых зонах мощность рудных тел значительно меньше и составляет около 1-2 м.

Данные анализов по составу рудных минералов Кусинской интрузии (табл. 1-4) свидетельствуют о том, что в матрице магнетита и ильменита, свободной от продуктов распада твердого раствора (ульвошпинели, шпинели и др.), сохраняются высокие концентрации целого ряда элементов-примесей независимо от позиции рудных тел в массиве. Наличие таких примесей означает их изоморфное вхождение в кристаллическую решетку этих минералов. В магнетите это главным образом Ст и V (до 2 %), при меньших концентрациях Al, Zn, Ti, Mn и Mg. В ильмените, соответственно – Mg и Mn (до 1%), при меньших концентрациях остальных элементов.

Состав матрицы ильменита более консервативен к проявлениям постмагматического отжига в сравнении с матрицей магнетита. В ильмените сохраняется информация о первичных условиях его магматической кристаллизации, в том числе сохраняются данные о характере проявления скрытой расслоенности самой интрузии. В матрице магнетита эта информация практически не обнаруживается. Состав последней в большей степени отражает эволюцию самого рудного расплава при его охлаждении и кристаллизации, интенсивность воздействия на продукт кристаллизации флюидной фазы.

Состав магнетита чутко реагирует на изменение в составе ильменита и меняется в противофазе к эволюции в составе ильменита. Об этом свидетельствует характер перерас-

Таблица 1 Составы ильменита и магнетита из рудных тел вдоль западного контакта Кусинской интрузии, по простиранию с севера на юг

Окислы	Ильмо	енит	Магнетит			
	1	2	1	2		
TiO ₂	50.85	49.85	0.08	0.09		
FeO	47.22	46.81	97.3	96.11		
MgO	1.03	0.76	0.05	0.08		
Cr ₂ O ₃	0.15	0.14	1.01	1.96		
Al ₂ O ₃	0.05	0.17	0.23	0.35		
ZnO	0.15	0.15	0.20	0.21		
V_2O_5	0.24	0.20	1.12	0.98		
MnO	0.71	1.05	0.05	0.03		
Сумма	100.40	99.13	100.04	99.81		
n	2	2	3	2		

Примечание. 1 — рудные тела, северный фланг Кусиннского месторождения (кс-249, кс-570); 2 — рудные тела, южный фланг (кс-224). п — количество анализов.

РУДООБРАЗОВАНИЕ И МЕТАЛЛОГЕНИЯ, МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

пределения ряда важных элементов между этими минералами, таких как Fe — главного компонента их составов, а также Cr, Al, возможно, и V. Рост концентраций в одном из минералов сопровождается их снижением в другом

Распределение Ті между первичными высокотемпературными фазами магнетита и ильменита показывает [Ферштатер и др., 2001], что рудные тела в северной части Кусинского месторождения формировались при более высоких температурах (800-900°C) в сравнении с рудами южной части (600-700°C). Снижение температуры формирования рудных тел по их простиранию с севера на юг определяет уменьшение в ильмените концентраций Mg (от 1.0 до 0.7 %) с одновременным ростом Мп (от 0.7 до 1.0%) и Al (от 0.05 до 0.17%), а в магнетите, соответственно, возрастают содержания Ст (от 1 до 2%) и в меньшей степени – Al (от 0.23 до 0.35%), при выдержанных концентрациях других элементов-примесей (табл.1).

При сравнении состава ильменита из рудных тел у подошвы и кровли интрузии наблюдается нормальный характер распределения элементов-примесей, типичный для вертикального разреза расслоенных комплексов (табл. 2). Ильменит, являясь более ранним и более высокотемпературным минералом, в рудных телах у основания интрузии содержит значительно больше MgO, $\operatorname{Cr_2O_3}$, $\operatorname{V_2O_5}$, а также $\operatorname{Al_2O_3}$, ZnO и MnO по сравнению с ильменитом из рудных

пластов кровли. Ильменит кровли имеет наименее изоморфно заполненный состав. Последний содержит чуть больше ${\rm TiO_2}$. Такая закономерность в распределении компонентов согласуется с осособенностями расслоенных массивов в целом, когда при их становлении в основании, как правило, формируются более магнезиальные породы и ассоцирующие с ними тела хромитов. Более высокие концентрации ${\rm TiO_2}$ содержит и магнетит из рудных тел кровли (табл. 2). Но содержания MgO, ${\rm V_2O_5}$, ZnO и MnO у магнетитов приконтактовых зон близки.

В распределении элементов-примесей в сосуществующих ильмените и магнетите в поперечном разрезе одного рудного тела из центральной части Кусинской интрузии обнаруживается аналогичная закономерность. В ильмените от основания рудного пласта вверх к его кровле закономерно уменьшаются содержания MgO, $\rm Cr_2O_3$, но вверх растет содержание FeO (табл.3). В магнетите, соответственно, возрастают концентрации Al $\rm _2O_3$, при возрастании содержаний $\rm TiO_2$, FeO к основанию рудного пласта (табл.4). Это свидетельствует о возможном проявлении процессов расслоенности на уровне отдельных рудных пластов.

Обращает на себя внимание то, что ильменит из руд центральной части Кусинской интрузии в сравнении с ильменитом из краевых зон массива значительно богаче MgO (до 4.3%), а магнетит содержит высокие концентрации

Таблица 2 Составы ильменита и магнетита из рудных тел вблизи западного и восточного контактов Кусинской интрузии, (подошвы и кровли)

	Ильмо	енит	Магнетит		
	1	2	1	2	
TiO ₂	50.35	51.43	0.08	0.20	
FeO	47.02	46.80	96.82	96.47	
MgO	0.90	0.68	0.07	0.05	
Cr ₂ O ₃	0.65	0.17	1.39	1.74	
Al ₂ O ₃	0.11	0.04	0.28	0.37	
ZnO	0.15	0.08	0.21	0.17	
V ₂ O ₅	0.22	0.08	1.07	1.10	
MnO	0.82	0.60	0.05	0.04	
Сумма	100.22	99.88	99.97	100.14	
n	4	7	5	6	

Примечание. 1 – рудные тела у западного контакта массива (подошва интрузии): северный (кс-570, кс-249), южный (кс-224) фланги кусинского месторождения. 2 – рудные тела у восточного контакта массива (кровля интрузии), северный фланг месторождения (кс-30, кс-33, кс-37). n – количество анализов.

Таблица 3 Состав ильменита в разрезе рудного тела из центральной части Кусинского массива

№п/п	№обр	TiO ₂	FeO	MgO	Cr ₂ O ₃	Al_2O_3	ZnO	V_2O_5	MnO	Сумма
1	Кс-98	50.67	43.22	4.28	1.88	0.18	0	0	0	100.23
2	Кс-97	50.24	47.64	1.06	0.27	0.10	0.16	Не опр.	Не опр.	99.45
3	Кс-95	50.60	47.04	1.02	0.32	0.04	0.12	0.11	0.64	99.90
4	Кс-96	50.05	48.44	0.38	0	0	0	Не опр.	Не опр.	98.97

Примечание. 1 — западный контакт рудного тела (лежачий бок); 2,3 — центральная часть; 4 — восточный контакт рудного тела (висячий бок)

Таблица 4 Состав магнетита в разрезе рудного тела из центральной части Кусинского массива

№п/п	№обр	TiO ₂	FeO	MgO	Cr ₂ O ₃	Al_2O_3	ZnO	V_2O_5	MnO	Сумма
1	Кс-98	0.22	98.27	0.22	1.38	0.04	0	Не опр.	Не опр.	100.14
2	Кс-97	0.10	95.91	0.12	2.49	0	0	1.19	Не опр.	99.81
3	Кс-95	0.11	95.90	0.07	2.24	0.36	0.20	0.98	0.01	99.86
4	Кс-96	0.08	96.80	0.10	2.10	0.26	0.16	Не опр.	Не опр.	99.50

Примечание. 1 — западный контакт рудного тела (лежачий бок); 2,3 — центральная часть; 4 — восточный контакт рудного тела (висячий бок).

 ${\rm Cr_2O_3}$ (до 2.5%). Для этой зоны характерны и значительно более высокие концентрации хлора в апатите. Так, апатит из гранатового амфиболита центральной рудной зоны содержат Cl = 3.0-3.3%, а апатит из гранатового амфиболита у кровли массива — Cl = 1.0-1.2%, при этом концентрации фтора в обоих случаях — одинаковы: ${\rm F=0.8-1.2\%}$ [Бочарникова и др., 2002].

Высокие содержания MgO и Cr₂O₂ в рудных минералах центральной зоны, вероятно, объясняются небольшой мощностью Кусинской интрузии (около 700 м). В свое время И.И. Малышевым Кусинская интрузия определялась как дайка [Малышев и др., 1934], а Д.С. Штейнберг интерпретировал ее как межформационное пластообразное тело [Штейнберг и др., 1959]. Градиент температур, который существовал при становлении интрузии такой мощности, повлиял на характер распределения элементов-примесей в минералах рудных тел. Центральная часть интрузивной залежи и включенные в нее рудные пласты кристаллизовались, по-видимому, при более высокой температуре и другом флюидном режиме в сравнении с краевыми зонами интрузии и лежащими в них рудными телами. Это согласуется с данными, полученными при изучении сосуществующего с ильменитом и магнетитом хегбомита, железистость которого значительно возрастает к краевым зонам [Бочарникова и др., 2004].

Отмечается различное поведение титана в магнетите из руд в краевых зонах интрузии и в пределах одного рудного пласта из центральной части массива. Так, если в магнетитах из руд подошвы интрузии к ее кровле наблюдается закономерный рост содержаний ${\rm TiO}_2$, согласно обычному тренду накопления при расслоении (табл. 2), то в пределах рассматриваемого рудного тела, наоборот, магнетит основания рудного пласта богаче ${\rm TiO}_2$, чем магнетит кровли (табл. 4). Двойственный характер распределения титана обусловлен, вероятно, теми же факторами — градиентом температур и различным флюидным режимом при становлении интрузии.

На основании полученных данных можно сделать следующие выводы:

1) Присутствие в составе ильменита и магнетита таких элементов, как MgO, Cr_2O_3 , указывает на магматическую природу руд, форми-

РУДООБРАЗОВАНИЕ И МЕТАЛЛОГЕНИЯ, МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

рование которых происходило одновременно со становлением самой интрузии. При этом процессы расслоения происходили не только в самой интрузии, но и в пределах рудных слоев, что подтверждается на примере одного изученного рудного пласта, где ильменит и магнетит у его основания обогащены MgO и Cr₂O₂.

2) Составы ильменита и магнетита находятся в прямой зависимости от позиции рудного пласта в вертикальном разрезе интрузии. Закономерное изменение в составах ильменита и магнетита из руд подошвы и кровли массива отражается появлением тренда распределения компонентов, свойственного всем расслоенным интрузиям. Появление второго тренда распределения элементов-примесей обусловлено небольшой мощностью интрузивной залежи, при становлении которой возник градиент температур, характерный при кристаллизации даек, силлов, когда краевые части остывают быстрее, чем центральные, и при этом возникает некоторая симметричность по составу рудных тел в разрезе интрузии.

Работа выполнена при финансовой поддержке гранта РФФИ 04-05-96052-p2004 Урал-а.

Список литературы

Алексеев А.А., Алексеева Г.В., Ковалев С.Г. Кусинско-Копанский расслоенный комплекс: новые данные, представления и перспектитвы. Уфа, 1992. 20с

Алексеев А.А., Алексеева Г.В., Ковалев С.Г. Расслоенные интрузии Западного склона Урала. Препринт. Уфа: Гилем. 2000. 188 с.

Бочарникова Т.Д., Холоднов В.В., Прибавкин С.В., Воронина Л.К. Распределение галогенов в тонкорасслоенных породах Кусинской интрузии // Ежегодник-2002. Екатеринбург: УрО РАН. 2003. С. 224-227.

Бочарникова Т.Д., Прибавкин С.В., Холоднов В.В., Воронина Л.К.К минералогии ильменит-титаномагнетитовых руд Кусинского месторождения (хегбомит, шпинель) // Ежегодник-2003. Екатеринбург: ИГГ УрО РАН. 2004. С. 236-239.

Иванов О.К. Вариации состава титаномагнетита по разрезу одного из пластов Копанской расслоенной интрузии, Ю. Урал // Уральский геологический журнал. 2004. № 3. С. 69-80

Малышев И.И., Пантелеев П.Г., Пэк А.В. Титаномагнетитовые месторождения Урала. Л.: Изд-во АН СССР, 1934. 272с.

Пантелеев П.Г. К вопросу о геохимии Ті, V, Ст в титаномагнетитах Урала // Изв. АН СССР. 1938. № 3. С. 449-464.

Уиллемз Дж. Ванадистые магнетитовые руды Бушвельдского комплекса // Магматические рудные месторождения. М.: Недра, 1973. С. 129-150.

Ферштатер Г.Б., Холоднов В.В., Бородина Н.С. Условия формирования и генезис рифейских ильменит-титаномагнетитовых месторождений Урала //Геология рудных месторождений. 2001. Т. 43. № 2 С. 112-128.

Холоднов В.В, Бочарникова Т.Д., Прибавкин С.В. Петрохимическая характеристика пород расслоенной серии Кусинского месторождения // Ежегодник-2001. Екатеринбург: ИГГ УрО РАН. 2002. С. 141-147.

Штейнберг Д.С. Кравцова Л.И., Варлаков А.С. Основные черты геологического стороения кусинской габбровой интрузии и залегающих в ней рудных месторождений. // Труды горно-геологического инта. 1959. Вып. 40. С. 13-40.