РУДООБРАЗОВАНИЕ

ЭПИГЕНЕТИЧЕСКАЯ СЕРИЦИТИЗАЦИЯ В МАГНЕЗИТАХ БЕЛОРЕЦКОЙ ГРУППЫ, ЮЖНО-УРАЛЬСКАЯ ПРОВИНЦИЯ

М.Т. Крупенин, А.И. Степанов, Т.Я. Гуляева, В.Г. Петрищева

Проблема генезиса метасоматических месторождений кристаллического магнезита Южно-Уральской провинции тесно связана с определением их возраста и привязки к определенным этапам тектонического развития. К сожалению, методов прямого определения возраста магнезитов пока не существует. Для месторождений магнезита в отложениях нижнего рифея есть доказательства образования на ранних стадиях преобразования осадочных пород. Магнезиты здесь имеют контактовые метаморфические изменения с интрузиями гранитов рапакиви (Сатка) и габбро-диабазов (Бакал) раннесреднерифейского возраста; время от седиментогенеза карбонатных отложений до магнезитового метасоматоза составляет не более 40-45 млн. лет [Крупенин, 2005 и др.]. Для магнезитовых месторождений в отложениях среднего рифея таких реперов нет, за исключением месторождений Семибратской группы, прорванных дайками габбро-диабазов позднерифейсковендского возраста [Алексеев, 1984] и палеозойскими гранитами [Шардакова, Крупенин, 2008]. Новая информация по этапам преобразования магнезитов в отложениях юрматиния получена для месторождений Белорецкой группы.

К Белорецкой группе Южно-Уральской провинции относятся месторождения магнезита Егорова Шишка, Егорова Поляна, Отнурок, Аболовское. Месторождения приурочены к карбонатным пачкам, представленным мраморизованными известняками и доломитами, авзянской свиты среднего рифея на восточной периферии Маярдакского антиклинория. Отложения метаморфизованы в зеленосланцевой и эпидотамфиболитовой фации и подвержены интенсивным тектоническим дислокациям, как и все образования Маярдакского антиклинория. В обнажениях можно наблюдать только незначительные фрагменты карбонатной толщи, относимой к катаскинской подсвите. Особенностью данной группы месторождений является приуроченность к изначально известняковой толще, содержащей доломитизированные известняки и доломиты в ореолах магнезитовых залежей, сложная линзовидная форма рудных магнезитовых тел, наличие переходных магнезит-доломитовых пород, представляющих собой зону густой вкрапленности магнезита в доломите [Крупенин, 2005].

Месторождение Егорова Шишка расположено на правом берегу р. Белой в скальном выходе около узкоколейной железной дороги Белорецк-Тирлян в 5 км севернее г. Белорецк. По данным Н.Д. Сухарева [1931 г] запасы магнезитов подсчитаны в количестве 540 тыс. т. Разрез протяженностью около 30 м представляет собой моноклинально падающую на юговосток под углом 80° карбонатную толщу, основную часть которой составляет магнезитовая залежь (рис. 1), расположенная субсогласно с общим падением толщи. Мощность магнезитов достигает 20 м. Южнее магнезитовой залежи толща интенсивно окварцована и представляет собой полосчатую доломит-кварц-магнезитовую породу. Разрез магнезитовой залежи с севера на юг имеет следующее строение:

1. Магнезит массивный среднезернистый серый (проба Bel-2-1)..... 1,5 м;

3. Магнезит среднезернистый массивный и волнистослоистый серо-бурого цвета (проба Bel-2-4)......1,5 м;

7. Магнезит среднезернистый, местами мелкозернистый массивный серый (проба Bel-2-8)......2,0 м;

8. Магнезит среднезернистый плитчатый (прослои от 2-3 до 15 см, разделенные серицитхлоритовым материалом) с редкими секущими

Рис. 1. Схематическая геологическая карта района месторождений Егорова поляна (ЕП) и Егорова Шишка (ЕШ) (по Н.Д. Сухареву, 1931 г).

1 – сланцы кварц-плагиоклаз-серицитовые; 2 – доломиты; 3 – доломиты окварцованные; 4 – магнезиты; 5 – делювий; 6 – аллювий; 7 – точки опробования.

Рис. 2. Магнезит среднезернистый плитчатый с секущей тальк-серицит-хлорит-карбонат-кварцевой жилой (линейка 1 см, проба Bel-2-9). кварц-хлорит-карбонатными жилами мощностью до 1 см (проба Bel-2-9, рис. 2)......2,1 м;

Магнезит образует зерна округло-изометричной формы размером 1-3 мм, взаимно прорастающие друг в друга и разделенные агрегатом зерен мелкозернистого магнезита и доломита неправильно-угловатой формы размером около 0,1 мм. В мелкозернистом агрегате и реже в крупных зернах магнезита встречается до 5 % слабо корродированных кварцевых зерен неправильной формы размером 0,1-0,2 мм, тонкие игольчатые лейсты мусковита, редко – гнезда хлорита округлой формы размером до 0,2 мм и сноповидно-чешуйчатые агрегаты талька. Содержание магнезита составляет от 70 до 96 %, доломита – от 1 до 7 %, содержание остальных примесей – менее 5 %. Минералогический состав магнезита по данным термического и рентгеновского анализов представлен в табл. 1. Магнезит относится к железистой разновидности с содержанием (масс. %): MgO - 35-41; Fe₂O₃ - 4,7-8,5; CaO - 0,4-3,1; $SiO_2 - 1,2-6,9; Al_2O_3 - 0,14-1,1.$

Севернее магнезитовой залежи наблюдаются доломиты с вкрапленностью магнезита, затем, после закрытого интервала, в направлении на север по борту долины встречены разрозненные выходы кварц-серицитовых сланцев и скальное обнажение доломитов с вкрапленностью магнезита. Здесь же расположены следы заросших горных выработок с развалами буроватых доломитов с вкрапленностью мелко- и среднезернистого бурого магнезита, прожилками кварца, крупнозернистого доломита и вкрапленностью талька, серицита (см. рис. 1, пробы Eg-3-1 ... Eg-3-5), являющиеся, вероятно, продолжением на правом берегу р. Белой рудного тела месторождения Егорова поляна.

Таблица 1

№ проб	Литология	Dm	Mgz	Cc	Tc	Qu	Chl	Mi	Ру	Gt
Bel-1-2	Dm слоистый	73	_	18	-	сл	-	?	-	_
Bel-1-3	Dm слоистый	+	_	0	-	0	-	0	-	_
Bel-2-1	Mgz сз массивный		81	-	—	0	10	_	-	_
Bel-2-3	Mgz сз скорлуповатый	2	88	—	сл	0	10	0	0,5	сл
Bel-2-4	Mgz сз слоистый	3	89	-	-	сл	8	сл	-	-
Bel-2-5	Mgz сз-мз массивный с Qu	4	84	_	0	0	5	сл	0,5	сл
Bel-2-6	Mgz сз плитчатый	2	96	-	-	сл	-	сл	-	_
Bel-2-7	Mgz-Qu-Mi	1	71	-	?	10	?	15	-	0
	рассланцованный									
Bel-2-8	Mgz сз-мз массивный	7	87	?	—	0	—	0	—	_
Bel-2-9	Mgz сз плитчатый с Qu-	0	+	-	—	0	0	0	-	—
	Chl жилами									
Bel-2-9a	Qu-Dm-Chl жила	6	46	—	0	+	14	0	1	сл
Bel-2-10	Mgz сз плитчатый с Qu-	2	94	-	0	0	0	0	0,5	сл
	Dm жилами									
Bel-2-11	Mgz сз полосчатый с Qu	3	92	—	0	0	0	0	-	—
Bel-2-12	Mgz сз полосчатый с Qu,	3	60	-	0	~25	5	_	-	_
	Chl, Tc									

Вещественный состав магнезитов месторождения Егорова Шишка по данным термического и рентгеновского анализов (масс. %)

Примечание. Обозначения в таблице: (30) – в %; (+) – много; (о) – мало; (сл) – следы; (?) – предполагаемые следы; (-) – отсутствует; Mgz – магнезит; Dm – доломит; Сс – кальцит; Tc – тальк; Qu – кварц; Ру – пирит; Mi – мусковит; Gt - гетит; мз – мелкозернистый; сз – среднезернистый.

Особенностью магнезитов является присутствие в них эпигенетической серицитизации. Наложенный характер мусковитовых лейстов в магнезите наиболее отчетливо проявлен в прослое 6 разреза Егорова Шишка, представленного хлорит-кварц-серицит-магнезитовой рассланцованой породой (проба Bel-2-7) мощностью до 0,3 м. Мусковит здесь развивается в виде чешуек толщиной до 0,05 мм и длиной до 0,2 мм и изгибающихся прожилков между зернами магнезита (рис. 3); содержание мусковита достигает 15 %. В местах пересечения систем прожилков образуются скопления мусковита с кварцем и пиритом мощностью до 0,4 мм, иногда огибающих крупные магнезитовые кристаллы. Все это доказывает позднее развитие мусковита относительно процесса образования магнезита и его перекристаллизации. Очевидно, что формирование кварц-пирит-мусковитовых лейстов и прожилков связано с наложенным тектоническим процессом. Значение возраста, определенное K-Ar методом из фракции крупности -0,4+0,1 мм, обогащенной мусковитом (неэлектромагнитная с откаткой на наклонной поверхности), получен возраст 405±5 млн. лет (табл. 2). Мусковит, по данным рентгенографии хорошо окристаллизован, с островершинными симметричными пиками, представлен модификацией 2M₁, данные термического анализа подтверждают присутствие одной генерации мусковита (эндопик дегидратации около 1000° С), что может говорить об одноактной кристаллизации слюды на возрастном рубеже около 400 млн. лет.

Маярдакский антиклинорий имеет очень сложное геологическое строение: здесь представлены породы всех трех стратонов рифея [Швецов, 1980], подверженные зональному метаморфизму и образующие Белорецкий метаморфический комплекс. По данным А.А. Алексеева с соавторами [2002] здесь выделяются изограды омфацита, граната, биотита и хлоритоида, соответствующие эклогит-амфиболитовой, эпидот-амфиболитовой и зеленосланцевой метаморфическим зонам [Glasmacher et al., 1999]. Месторождение Егорова Шишка находится в зеленосланцевой зоне. Существующие многочисленные датировки метаморфизма пород Белорецкого метаморфического комплекса составляют от 650-590 [Гаррис, 1977; Алексеев и др., 2002 (К-Аг метод)] до 510-550 [Matte et al., 1993; Glasmacher et al., 1999 (Ar-Ar метод)]. Какой-либо выраженной зональности возраста в пределах метаморфического комплек-

ЕЖЕГОДНИК-2007

са не выявлено. Метаморфизм связывается с кадомским орогенезом [Пучков, 2000], по другим представлениям – с рифтогенезом [Русин, 1998]. За пределами комплекса в примерно 20 км к северу серицитсодержащие доломиты авзянской свиты в Верхне-Аршинском месторождении имеют возраст 610-615 млн. лет по данным K-Ar метода, близкий фоновым датировкам возраста хлорит-гидрослюдистых сланцев рифея региона на уровне 615-650 млн. лет ([Крупенин, Эльмис, 2000], К-Аг метод; [Glasmacher et al., 1999], Ar-Ar метод). Приведенное выше значение возраста около 405 млн. лет, отождествляемое нами со временем проявления процесса серицитизации магнезитов, моложе существующих датировок Белорецкого комплекса и отражает, вероятно, наложенные процессы в раннепалеозойской истории региона. Сходные датировки получены нами для серицитизированных слабо рассланцованных кварцитов (метапесчаников), относимых к зильмердакской свите верхнего рифея из данного района. Проба отобрана в 2,5 км к востоку от месторождения Егорова Шишка, восточнее р. Мата на левом берегу р. Белой (проба 3223-4, А.Э. Шалагинов, ООО «Геопоиск»). Кварцит содержит проблематические органические остатки, представленные тонкими послойными отпечатками удлиненной формы, выполненными шунгитоподобным углеродистым веществом. Под микроскопом кварцит состоит преимущественно из кварца, реже плагиоклаза и калишпата (содержание до 5 %), мусковита (10 %). Порода имеет лепидобластовую неравномернозернистую структуру, иногда угадываются реликты обломочных зерен кварца и полевого шпата, форма обломков изменена в

Рис. 3. Вторичные прожилки мусковита (Mu) с пиритом (Ру) между крупными изометричными кристаллами магнезита (Mgz). Линей-ка 0,5 мм, проба Bel-2-7.

результате перекристаллизации. Размер зерен 0,1-0,3 мм, форма их вытянутая в направлении рассланцевания. Лейсты мусковита расположены по сланцеватости, размер 0,01-0,05Ч0,1-0,4 мм. Рентгеновский анализ подтверждает присутствие хорошо окристаллизованной слюды модификации 2M₁. Определения возраста K-Ar методом выполнены из валовой пробы фракции крупности -0,1 мм и фракции крупности 0,4-0,1 мм (откатанной на наклонной поверхности электромагнитной фракции) составляют соответственно 355±12 млн. лет. и 466±4 млн. лет. (см. табл. 2). Образование наложенного мусковита в кварцитах и магнезитах района может быть связано с тектоно-термальной перестройкой при формировании уралид на границе девона и карбона. В расположенном в данной структурно-формационной зоне Максютовском мета-

Таблица 2

№ пробы	№ анализа	Место отбора,	К,	Аг-40,	Возраст,	Примечание
		литологический состав	%	$H\Gamma/\Gamma$	млн. лет	
Bel-2-7	A-5130	Метаморфизванные магнезиты,		125,0	410	
		Егорова Шишка, обогащение	ащение 3,92		399	405 + 5
		мусковитом		125,0	410	
		Микрокварцит рассланцованный				
3223-4	A-5131	серицитизированный,		69,3	462	
		зильмердакская свита, р,Белая	1,90	70,4	469	455 + 15
		в 6 км от г,Белорецка, фракция		65,6	440	
		(-0,4 + 0,1 мм)				
				42,1	366	
3223-4	A-5132	То же, там же, фракция (-0,1 мм)	1,49	37,1	343	355 + 11
				39,0	545	

К-Аг возраст мусковитсодержащих пород района месторождения магнезита Егорова Шишка

морфическом комплексе возраст фенгитов и глаукофанов, связанных с высокобарическим метаморфизмом, составляет 389-411 млн. лет [Лепезин и др., 2006].

Образование самих магнезитов Белорецкой группы следует связывать с более ранними этапами развития региона, вероятно, с тектоно-термальной перестройкой в начале позднего рифея, когда на рифтогенном этапе растяжения нагретые эвапоритовые высокомагнезиальные рассолы внедрились в карбонатные отложения авзянской свиты и сформировали метасоматические залежи [Крупенин, 2005].

> Исследование выполняется при финансовой поддержке гранта РФФИ 06-05-64592 и НШ-1227.2008.5.

Список литературы

Алексеев А.А. Рифейско-вендский магматизм западного склона Южного Урала. М.: Наука, 1984. 136 с.

Алексеев А.А., Алексеева Г.В., Галиева А.Р. и др. Белорецкий эклогитоносный метаморфический комплекс (Южный Урал) – представитель особой фациальной серии метаморфизма // Доклады РАН. 2002. Т. 383. № 3. С. 366-370.

Гаррис М.А. Стадии магматизма и метаморфизма в доюрской истории Урала и Приуралья. М.: Наука, 1977. 296 с. Крупенин М.Т. Геолого-геохимические типы и систематика РЗЭ месторождений Южно-Уральской магнезитовой провинции // Доклады РАН. 2005. Т. 405. № 2. С. 243-246.

Крупенин М.Т., Эльмис Р. Основные этапы образования стратифицированного оруденения в рифейских толщах Башкирского мегантиклинория (к созданию генетических моделей) // Осадочные бассейны Урала и прилегающих регионов: закономерности строения и минерагения. Екатеринбург, ИГГ УрО РАН, 2000. С. 117-123.

Лепезин Г.Г., Травин А.В., Юдин Д.С. и др. Возраст и термическая история Максютовского метаморфического комплекса (по 40 Ar/³⁹Ar данным) // Петрология. 2006. Т. 14. № 1. С. 1-18.

Пучков В.Н. Палеогеодинамика Южного и Среднего Урала. Уфа: Даурия, 2000. 146 с.

Русин А.И., Поздневендская коллизия в зоне Урала: миф или реальность? // Ежегодник-1997. Екатеринбург: ИГГ УрО РАН, 1998. С. 56-61.

Шардакова Г.Ю., Крупенин М.Т. Гранитоиды Семибратской площади – новый член ряда раннеорогенных гранитоидов Южного Урала? // Ежегодник-2007. Екатеринбург: ИГГ УрО РАН, 2008.

Швецов П.Н. Стратиграфия белорецкого комплекса Южного Урала // Советская геология. 1980. № 3. С. 43-45.

Glasmacher U., Reynolds P., Alekceyev A.A. et al. ⁴⁰Ar/³⁹Ar Thermochronology west of the Main Uralian fault, Southern Urals, Russia // Geologische Rundschau. 1999. V. 87. P. 515-525.