РЕТРОГРАДНЫЕ МЕТАСОМАТИТЫ ГУМЕШЕВСКОГО МЕСТОРОЖДЕНИЯ

А.И. Грабежев, Г.В. Пальгуева

На Гумешевском скарново-медно-порфировом месторождении [Грабежев, 2004] исключительным распространением пользуются разнообразные послескарновые метасоматиты ретроградного этапа с сопутствующим или наложенным магнетитовым и сульфидным оруденением. Метасоматиты сформировались в течение длительного периода минералообразования по различным исходным породам и представляют собой пакеты перемежающихся пород различного состава и мощности (от сантиметров до 5-30 м и более). Углы падения контактов пород составляют 60-80° на восток. Почти повсеместно метасоматиты имеют сегрегационно-полосчатую текстуру, все минералы или их агрегаты обычно линейно ориентированы согласно полосчатости. Это свидетельствует об интенсивных тектонических подвижках в течение всего периода формирования месторождения, что связано с его локализацией в пределах долгоживущего Серовско-Маукского глубинного разлома.

Намечается сложная многостадийная схема формирования постскарновых метасоматитов месторождения (табл. 1), однако последовательность образования не может считаться в достаточной мере обоснованной. Это связано с директивным характером всех структур (отсутствием секущих взаимоотношений) и обычным совмещением разностадийных ассоциаций ми-

Таблица 1

Вероятная последовательность образования минеральных ассоциаций по мраморам и скарнам

Мрамора	Экзоскарны андрадитовые	Эндоскарны						
		и эпидозиты						
Cal+Qtz+Tr(Act)+Mag	Cal+Qtz+Mag+Act ($\pm Ep$)	Cal+ <i>Czo(Ep)</i>						
Tr	Act+Cal+Qtz+Mag ($\pm Ep$)	$+Qtz+Tr(\pm Mag)$						
Cal+Tlc+Mag	Act							
Ank+Cal+Tlc+Mag (±Qtz)								
Ank+Cal+Qtz+Mag+Chl (±Tlc,Py)								
<i>Cal</i> +Qtz+Mag+Chl (±Tlc,Py)								
Ank+ <i>Cal</i> +Qtz++Py+Mag+Chl (±Tlc)								
<i>Cal</i> +Qtz+Mag+Py+Chl (±Tlc,Py)								
Mag+Cal	Mag+Cal $(\pm Adr)$							
Mag	Mag							
Ank+ <i>Cal</i> +Qtz+Py (±Chl,Tlc)								
<i>Cal</i> +Qtz+Py (±Chl,Tlc)								
<i>Cal</i> +Su	Cal+Su	Cal+Su						
Su (общая сульфидизация)	Su (общая сульфидизация)	Su						
	Po+Ccp ($\pm Adr$)							
Cal (общая кальцитизация)	Cal (общая кальцитизация)	Cal						

Примечание. Прямым шрифтом показаны новообразованные по отношению к исходным породам минералы, курсивом – реликтовые минералы, равновесные с метасоматической ассоциацией.

Под общей сульфидизацией имеется ввиду наложение Su на все ранние ассоциации (с замещением преимущественно магнетита), под общей кальцитизацией – развитие по метасоматитам позднего прожилково-метасоматического кальцита. Обозначения минералов: Act – актинолит, Adr – андрадит, Ank – анкерит, Cal – кальцит, Ccp – халькопирит, Chl – хлорит, Czo – клиноцоизит, Grs – гроссуляр, Ep – эпидот, Mag – магнетит, Qtz – кварц, Tlc – тальк, Tr – тремолит, Su – ассоциация пирита с резко подчиненным халькопиритом и редко другими сульфидами. Состав метасоматита отвечает фазовому составу ассоциации (±Su).

РУДООБРАЗОВАНИЕ И МЕТАЛЛОГЕНИЯ, МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

нералов. Изучение газово-жидких включений также не позволяет провести расчленение метасоматитов по температуре образования, так как включения являются в основном вторичными [Боровиков и др., 2002]. Поэтому в основу возрастного расчленения метасоматитов положено наличие стабильных минеральных ассоциаций, их пространственные соотношения (в том числе наложение одних ассоциаций на другие) и положение на диаграммах фазовых равновесий в координатах T-Х_{со2}.

К ранней стадии ретроградного процесса отнесено замещение актинолитсодержащих андрадитовых экзоскарнов актинолит-магнетиткварц-кальцитовыми, магнетит-кварц-кальцитактинолитовыми и актинолитовыми метасоматитами (табл. 1). Актинолит метасоматитов наследуется из экзоскарнов или образуется при метасоматозе. Нередко присутствующий в метасоматитах эпидот (0-15 об.%, железистость 25-34 %) является первичным минералом скарнов, тем не менее он устойчив в вышеуказанной ассоциации. По тремолит-клиноцоизит (эпидот)-гроссуляровым эндоскарнам и тремолитовым клиноцоизититам (эпидозитам) образуются метасоматиты тремолит-клиноцоизит (эпидот)-кальцитового состава. Отличительной их чертой является повышенное содержание титана и алюминия. По-видимому, параллельно с этими процессами происходит замещение мраморов тонкополосчатыми магнетит-тремолит-кальцитовыми и магнетит-тальк-кальцитовыми, магнетит-тальк-кальцит-анкеритовыми метасоматитами. Тальксодержащие метасоматиты охарактеризованы нами ранее [Грабежев и др., 2004]. По-видимому, более поздними являются тонкополосчатые и пятнисто-полосчатые апоизвестняковые хлоритсодержащие (1-3 об.%, редко до 5-10 об.%) или безсиликатные магнетит-кварц-кальцит-анкеритовые (иногда карбонат представлен только кальцитом) метасоматиты, а также кальцит-пиритовые метасоматиты по мраморам. На месторождении отсутствуют зоны анкеритизации мрамора, не содержащие силикатов или магнетита.

Все вышеуказанные метасоматиты обычно содержат сульфиды (пирит с резко подчиненным халькопиритом и редко другими сульфидами), которые нами рассматриваются в качестве наложенных минералов, развивающихся обычно по магнетиту. Вместе с тем в хлоритсодержащих метасоматитах сульфиды могут быть частично и первичными (в том числе равновесными с магнетитом), что доказывается наличием редких секущих хлорит-пирит-карбонатных прожилков. По данным кальцит-доломитовой геотермобарометрии, температура формирования магнетитсодержащих метасоматитов составляет 337-398°С, а температура перекристаллизации карбонатов в период отложения сульфидов – 164-260°С (определения В.В. Мурзина). Химические составы метасоматитов приведены в табл. 2.

Обратимся к интерпретации условий и последовательности формирования метасоматитов на основе диаграмм фазовых равновесий. Наблюдаемое при ретроградном процессе на Гумешевском месторождении замещение андрадита ассоциацией Cal+Qtz+Mag, а гроссуляраассоциацией Cal+Czo+Qtz, характерно для большинства скарново-медно-порфировых месторождений. Апоэкзоскарновый метасоматит представлен равновесной ассоциацией Cal+Qtz+Mag+Act (±,Ер), апоэндоскарновый метасоматит – ассоциацией Cal+Czo(Ep)+Qtz+ Tr(±Mag). Присутствие в апоэкзоскарновом метасоматите магнетита и высокожелезистого эпидота (f = 0.30 - 0.34) свидетельствует о его формировании при большей фугитивности кислорода, чем апоэндоскарнового метасоматита. Согласно диаграмме Т-f₀₂ [Эйнауди и др., 1984], замещение андрадита ассоциацией Cal+Qtz+Mag должно происходить при T<430° С и lgf $_{\rm C2}$ < -23 (при Р=0.5 кбар и X $_{\rm CO2}$ =0.1) в поле между Нет-Мад и Мад-Ру-Ро буферами. Чем меньше во флюиде значение $X_{\rm CO2}$, тем при меньшей температуре могут идти указанные реакции замещения граната. Так, по экспериментально-расчетным диаграммам T-X_{CO2}[Bowman, 1998 и др.], температура образования апоандрадитовой ассоциация понижается с примерно 400°С при X_{co2} =0.1 до 350°С при X_{co2} =0.05 (для Р=0.5 кбар). Замещение гроссуляра ассоциацией Cal+Czo+Qtz происходит при очень низких значениях X_{CO2}- от примерно 0.01 при 300°С до 0.025 при 425°С. Низкие значения Х_{СО2} во флюиде Гумешевского месторождения могут определяться локализацией его в зоне глубинного разлома и отсутствием в минералах флюидных включений с углекислотой. Устойчивость при карбонатизации скарнов амфибола (и даже его образование) свидетельствует о повышенной активности магния во флюиде, однако недостаточной, как и значения Х_{СО2}, для образования анкерита вместо кальцита. Действительно, судя по экспериментальному моделированию бере-

Таблица 2

Fe ₂ O ₃₀	16.16	23.05	23.34	9.44	6.20	21.74	35.14	30.42	27.36	20.19	5.56	20.62	25.14	19.13	13.72	14.83	21 29	29.03	27.39	19.33	23.87	24.91	21.90	15.13	19.98	11.82	15.09	25.87	30.75	34.85	20.71	22.89	24.00	16.54	26.79	19.90	24.53	1
Sum	99.25	100.89	100.23	99.16	99.20	99.20	98.91	98.72	100.47	98.73	99.37	98.79	98.58	10.66	99.56	99.54	98.91	100.26	98.82	81.57	89.41	82.00	82.50	54.07	75.37	56.34	71.40	68.72	82.31	48.88	49.93	71.32	46.00	76.69	69.94	82.49	71.84	1
Ρ	0.30			1.20	1.24	1.36	1.06	1.01	0.50	2.52	1.20	3.10	29.99	35.01	30.32																							
CuFeS ₂		5.20	2.03				2.05	5.29	5.06		0.58	3.71				5.96	1.50	6.12	3.67	6.27	7.23	1.91	5.78	1.76	4.54	3.81	6.07	5.29	5.46	4.42	4.31	3.61	6.36	4.22	6.13	5.75	0.12	3.67
FeS_2	0.05		0.00	0.84	2.02	24.64	38.48	36.41	0.00	0.24	2.09	0.00	6.01	2.44	6.96	9.22	00.00	0.00	38.91	12.92	6.55	5.31	0.22		3.65		19.39	17.24	23.11			17.45		5.82	12.27	25.41	1.63	
CO_2	23.67	21.29	19.70	20.77	22.80	16.99	7.62	10.34	18.00	18.20	22.68	23.48				26.70	74 47	22.38	21.40																			
Cr_2O_3	0.030		0.010	0.030	0.010	0.010			0.003		0.003	0.003					0.006	0.008																				
P_2O_5	0.04	0.01	0.01	0.10	0.02	0.03							0.03	0.02	0.06	0.08	0.01	0.14				0.04												0.04			0.01	
K_2O	0.05	0.05	0.05	0.05	0.05	0.05			0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.31				0.11						0.15						0.65			0.31	
Na_2O	0.05	0.05	0.05	0.09	0.12	0.39			0.05	0.05	0.05	0.05	0.10	0.05	0.05	0.05	0.05	0.17				0.05						0.46						0.08			0.11	
CaO	30.74	27.96	25.06	29.42	33.85	21.91	10.87	14.90	21.87	18.75	29.89	27.41	29.34	30.24	31.78	26.45	31 47	27.47	26.57	12.80	26.26	24.78	30.47	19.30	22.10	22.84	16.04	16.33	15.06	14.80	17.10	17.60	15.70	21.89	14.52	28.92	27.59	16.98
MgO	0.76	1.14	0.99	1.58	3.94	0.87	1.64	6.32	1.20	2.81	2.31	5.30	10.63	11.30	7.68	9.81	1111	0.77	0.41	5.88	5.08	2.04	3.44	8.91	5.82	6.75	7.68	6.73	6.11	9.67	9.56	5.47	6.95	1056	6.30	5.96	7.75	5.97
MnO	0.21	0.21	0.25	0.17	0.24	0.13			0.20	0.16	0.29	0.34	0.23	0.24	0.24	0.43	0.78	0.25				0.27			0.23									0.25			0.30	
FeO	5.07	7.71	7.94	3.54	2.81	1.28	8.44	3.72	7.08	6.01	2.88	9.57	8.43	9.81	3.55	4.84	6.78	8.65	0.00	0.00	3.28	3.48	4.07		1.80		0.00		0.00			0.00		3.33	0.00	0.00	8.90	
Fe_2O_3	10.49	12.85	13.74	4.95	1.73	0.05	0.00	0.00	19.57	13.58	2.39	10.09	11.83	6.70	5.14	0.77	13,18	16.89	0.00	1.54	1.77	1.52	14.80		13.60	1.04	0.10	0.89	1.18	1.85	1.60	9.77	1.79	0.93	1.07	1.83	1.31	
Al_2O_3	0.82	0.45	0.85	1.93	1.91	1.25	0.53	0.31	0.99	0.75	2.96	3.47	0.42	0.64	0.22	1.24	2.00	1.99	0.23			0.06	0.89	0.95	0.53		1.22					2.02		0.06			0.03	3.97
TiO_2	0.01	0.01	0.01	0.04	0.05	0.02	0.01	0.01	0.02	0.01	0.10	0.06	0.02	0.01	0.01	0.01	0.02	0.02	0.01				0.01		0.07													
SiO_2	27.96	23.96	29.54	34.45	28.41	30.22	28.28	20.42	25.88	35.60	31.90	12.16	1.50	2.50	13.50	13.94	18.07	15.09	7.63	33.88	26.48	25.74	22.82	23.15	23.03	21.90	20.90	21.63	18.50	18.14	17.36	15.40	15.20	14.98	13.90	10.34	10.13	8.18
Z	1	5	ŝ	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

ЕЖЕГОДНИК - 2004

РУДООБРАЗОВАНИЕ И МЕТАЛЛОГЕНИЯ, МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Примечание. 1-19 – метасоматиты северного и южного флангов месторождения: 1-5 – магнетитактинолит-кварц-кальцитовые метасоматиты с небольшим количеством сульфидов, в том числе с высоким содержанием магнетита (1-3) и реликтового эпидота (3-5); 6-7 – то же с полным замещением магнетита и актинолита сульфидами; 8 – тонкополосчатый кальцит-кварц-тальк-сульфидный метасоматит; 9-10 – магнетит-кварц-кальцитовые метасоматиты с небольшим количеством сульфидов, в том числе с хлоритом (9); 11 – хлорит-кварц-кальцитовый метасоматит с небольшим количеством сульфидов; 12 – тонкополосчатый халькопирит-хлорит-тальк-магнетит-кальцитовый метасоматит; 13-16 – сульфидно-магнетит-кальцит-анкеритовые метасоматиты, в том числе с тальком (16); 17-19 – сульфидно-кварц-магнетит-кальцитовые метасоматиты, в том числе с полностью замещенным сульфидами магнетитом (19). 20-38 – апоизвестковые метасоматиты центральной части месторождения (по данным В.Ф. Красовского и И.И. Бугаева). Содержания Fe₂O₃ и FeO отвечают (если приведены содержания сульфидов) их количеству, связанному с магнетитом, силикатами и карбонатом. Fe₂O₃o – общее содержание железа в окисной форме. Пустая клетка – компонент не определялся (для графы CuFeS₂ – содержание ниже 0.2 мас.%, для графы FeO – все железо приводится как Fe₂O₃). P – содержание воды (если анализ включает определение CO₂ и S или потери при прокаливании (если определение CO, и S отсутствует).

зитовых метасоматических колонок [Зарайский, 1989], кальцит образуется при значении X_{CO2} примерно 0.01, анкерит – 0.1, а ассоциация кальцита и анкерита – при промежуточных значениях X_{CO2} (при прочих равных условиях). Понижение температуры также может приводить к смене кальцита анкеритом.

Устойчивость амфибола в апоскарновых и апоизвестковых Cal+Qtz+Mag+Tr(Act) метасоматитах свидетельствует о наиболее высоких температурах их формирования по сравнению с другими ретроградными апоизвестковыми метасоматитами (тальк- и хлоритсодержащими). Так, интерпретация Т-Х_{СО2} диаграммы системы Ca-Mg-Si-C-О-Н при общем давлении 2 кбар [Эйнауди и др., 1984; Bowman, 1998 и др.] показывает, что Cal+Qtz+Tr ассоциация устойчива в магнезиальной среде при T > 400° C (Х_{со2}=0.1). При понижении величины Х_{со2} до 0.01 температура формирования этой ассоциации может уменьшаться на 50-100°С. При Р_{фл}=1 кбар и Х_{со2}=0.1 данная ассоциация сменяется тальккарбонатной и далее кварц-карбонатной при понижении температуры от 420 до 370° С. Состав карбоната определяется, по-видимому, прежде всего величиной Х_{СО2}[Зарайский, 1989]. Данные ассоциации – Tlc+Cal (±Qtz), Tlc+Cal+Ank (±Qtz), Chl+Cal+Ank+Qtz, Chl+Cal+Qtz, Cal+Ank+Qtz (в которые следует добавить магнетит), представляют широко распространенные на месторождении апоизвестковые метасоматиты. Все эти рудоносные апоизвестковые метасоматиты образуются при воздействии флюида, характеризующегося повышенной концентрацией магния, что в значительной степени может определяться предшествующим взаимодействием флюида с широко распространенными на месторождении тектоническими линзами серпентинитов. При образовании апоизвестковых метасоматитов имеет место привнос большого количества железа и кремния, источник которых может быть связан с карбонатизацией экзоскарнов. Химические анализы метасоматитов приведены в табл. 2.

Апосерпентинитовые метасоматиты представлены кальцит-хлорит-тальковыми сланцами, пятнисто-полосчатыми магнезиттальковыми и другими тальксодержащими метасоматитами. Встречаются мелкие прожилковидные участки (мощностью до 5-10 см), сложенные магнезитом с примесью кальцита, анкерита, каолинита. На южном фланге месторождения встречаются тела массивных халькопирит-пирротиновых руд мощностью до 13 м, сформировавшихся, по-видимому, по экзоскарнам. Линзы массивного магнетита мощностью 0.1-3 м не являются редкостью на месторождении, встречаясь в мраморах и экзоскарнах. Гранитоиды Гумешевской дайки повсеместно пропилитизированы, широко развиты более поздние локальные зоны (мощностью до десятков метров) серицитизированных гранитоидов, серицит-кварцевых, парагонит-серицит-кварцевых, карбонат-слюдисто-кварцевых и иных метасоматитов. В пределах Восточного массива наблюдается объемная серицитизация гранитоидов, вмещающих детально не изученное прожилково-вкрапленное оруденение. Установлены и другие типы метасоматитов.

Таким образом, для месторождения ха-

рактерно развитие исключительно интенсивных метасоматических процессов с образованием разнообразных метасоматических фаций, большая часть которых является рудоносной.

Авторы признательны коллегам за помощь в работе.

Исследования выполнены при финансовой поддержке РФФИ (грант 03-05-64206).

Список литературы

Боровиков С.С., Грабежев А.И., Сотников В.И. Низкотемпературная флюидная перекристаллизация гидротермалитов Гумешевского месторождения // Ежегодник-2001. Екатеринбург: ИГГ УрО РАН. 2002. С. 207-210. *Грабежев А.И.* Скарны Гумешевского скарново-медно-порфирового месторождения // Петрология. 2004. № 2. С. 176-190.

Грабежев А.И., Мурзин В.В., Молошаг В.П. и др. Тальк-сульфидно-карбонатные метасоматиты Гумешевского месторождения // Ежегодник-2003. Екатеринбург: ИГГ УрО РАН, 2004. С. 319-324.

Зарайский Г.П. Зональность и условия образования метасоматических пород. М.: Наука, 1989. 341с.

Эйнауди М.Т., Мейнерт Л.Д., Ньюберри Р.Дж. Скарновые месторождения // Генезис рудных месторождений. Т. 1. М.: Мир, 1984. С. 401-515.

Bowman J.R. Basic aspects and application of phase equilibrium in the analysis of metasomatic Ca-Mg-Al-Fe-Si skarns // Mineralogical Association of Canada Short Course. Ser. V. 26. Quebec City, Quebec.1998. P. 1-49.