О ПРИРОДЕ ХРОМИТОВОГО ОРУДЕНЕНИЯ В ДУНИТ-КЛИНОПИРОКСЕНИТОВЫХ КОМПЛЕКСАХ УРАЛА: СЛЕДСТВИЯ ИЗ СОСТАВА ХРОМШПИНЕЛИ

И.С. Чащухин

Ранее, на примере Среднего Урала (Верхнейвинский, Ключевской, Первомайский массивы) и на основе состава рудообразующей хромшпинели была изучена природа хромитового оруденения, локализованного в породах дунит-клинопироксенитового комплекса офиолитов [Чащухин и др., 2005]. Была показана гетерогенность оруденения, обусловленная, с одной стороны, степенью сохранности первичных руд дунит-гарцбургитового комплекса и, с другой, - глубиной их преобразования под действием габброидов. Так, был сделан вывод о том, что в Верхнейвинском массиве сохранилось оруденение кемпирсайского типа, в Ключевском, наряду с реликтами руд алапаевского типа, ряд рудопроявлений имеет метаморфогенную природу, в Первомайском массиве сформировались реакционно-метасоматические руды оманского типа.

В статье на примере массивов Средний Крака и Хабарнинский изложены результаты дальнейшего изучения хромитовых рудопроявлений, пространственно связанных с дунит-клинопироксенитовыми комплексами, но залегающих в иных (неофиолитовых) обстановках.

Массив Средний Крака. В ходе полевых работ в районе руч. Саксей, в 3,5 км к северу от села Хамитово (южная часть массива) был опробован действующий карьер для добычи дунита, используемого Магнитогорским металлургическим комбинатом в качестве огнеупорного материала. Карьер размером 100×50 м и юго-восточного простирания, заложенный в подножье южного склона хребта, вскрыл однородные беспироксеновые дуниты, петельчато серпентинизированные на 80 мас. %. В забое карьера встречены убого- и редковкрапленные хромититы, по внешнему виду напоминающие хромититы месторождения «Геофизическое XII» в юго-восточном блоке Кемпирсайского массива.

Вмещающие дуниты слагают наиболее эродированную часть массива и выше по разрезу сменяются дунит-гарцбургитовым комплексом и далее гарцбургит-лерцолитовой серией. Данный разрез существенно отличается от типичного разреза офиолитовых ультрамафитов, как правило, сложенных однородными гарцбургитами с обособлениями дунитов и хромититов в верхах разреза [Колман, 1979].

К западу от выходов беспироксеновых дунитов встречены изолированные тела клинопироксенитов, в том числе оливин-содержащих, ввиду устойчивости к выветриванию хорошо выраженные в рельефе. Еще далее к западу обнажаются габбро. Таким образом, налицо типичная для офиолитов последовательность: орто- и клинопироксен-содержащие ультрамафиты – дуниты – клинопироксениты – габбро, отчетливо прослеживающаяся на карте, составленной сотрудниками Геологического института РАН [Савельева, Денисова, 1989]. В таком случае есть основания предполагать, что дуниты и залегающие в них хромититы слагают нижнюю часть дунит-клинопироксенитового комплекса и генетически оторваны от гарцбургит-лерцолитовой серии. Однако, для такого утверждения нет достаточных оснований: а) клинопироксениты не образуют непрерывную полосу, как следует из карты ГИНа, а слага-

РУДООБРАЗОВАНИЕ

Таблица 1

	1									
Компо-	Массив Средний Крака									
ненты,	Гцб	Дуниты								
мас. %	8930	8931	8950	8951	8952	8953	8954	8955	8956	
TiO ₂	0,00	0,00	0,18	0,16	0,12	0,21	0,16	0,20	0,23	
Al ₂ O ₃	28,56	30,24	9,36	10,14	12,17	10,22	12,94	9,94	12,23	
Cr_2O_3	37,81	36,80	56,16	55,36	52,80	52,61	54,49	53,98	53,52	
FeO*	19,13	18,59	24,40	24,52	24,19	28,33	22,22	26,68	21,78	
MnO	0,24	0,21	0,40	0,41	0,38	0,42	0,43	0,43	0,38	
MgO	13,89	13,87	10,02	10,36	10,53	9,32	10,45	9,58	11,69	
Сумма	99,63	99,71	100,52	100,95	100,19	101,11	100,69	100,81	99,83	
Cr#, %	47,03	44,94	80,10	78,55	74,42	77,54	73,85	78,46	74,59	
<i>f</i> , %	37,80	38,36	50,12	48,95	48,37	53,80	48,95	52,38	42,80	

Химический состав хромититов и вмещающих пород массивов Средний и Южный Крака

Компо-	Массив Средний Крака									
ненты,	Дуниты					Хромититы				
мас. %	8958	8959	8960	8961	8962	8932	8963	8964	8965	
TiO ₂	0,18	0,18	0,21	0,47	0,15	0,17	0,13	0,13	0,10	
Al_2O_3	12,12	11,67	11,46	12,46	12,66	24,25	9,71	9,03	9,61	
Cr_2O_3	52,89	54,97	53,59	53,39	52,70	29,66	56,68	57,31	56,90	
FeO*	24,94	21,88	24,94	24,94	23,63	19,02	23,17	23,63	22,51	
MnO	0,43	0,38	0,43	0,41	0,38	0,26	0,38	0,40	0,40	
MgO	10,17	11,79	10,44	9,17	11,10	13,40	10,28	10,44	10,56	
Сумма	100,73	100,87	101,07	100,84	100,62	86,76	100,35	100,94	100,08	
Cr#, %	74,53	75,96	75,82	74,19	73,63	45,06	79,65	80,98	79,88	
f», %	50,10	42,81	48,84	54,45	46,07	31,30	49,00	48,37	47,57	

Компо-	М-ние Б. Башарт, массив Южный Крака									
ненты,	Хромититы									
мас. %	7611	7612	7613	7614	7615	7616	7617	7618	7619	
TiO ₂	0,18	0,20	0,22	0,19	0,22	0,28	0,18	0,18	0,22	
Al ₂ O ₃	11,01	12,47	11,39	14,56	11,97	12,54	11,76	12,35	12,73	
Cr_2O_3	59,05	59,61	60,16	56,84	59,32	60,14	59,41	58,89	59,05	
FeO*	14,75	14,71	14,85	14,70	14,95	12,11	15,93	15,70	16,29	
MnO	0,22	0,19	0,19	0,20	0,17	0,20	0,19	0,19	0,20	
MgO	14,69	14,66	14,82	14,62	14,94	15,60	12,50	13,41	12,53	
Сумма	99,90	101,84	101,63	101,11	101,57	100,87	99,97	100,72	101,02	
Cr#, %	78,25	76,23	77,99	72,36	76,87	76,28	77,21	76,18	75,68	
f", %	29,56	31,26	30,13	31,59	29,80	26,54	39,38	35,97	39,97	

Примечания. Образцы 8930-8932 отобраны из канав старого рудопроявления, пройденных в 1 км к северу от села Хамитово; обр. 8932 представлен густовкрапленным хромититом. Остальные образцы дунитов и убого-редковкрапленных хромититов шлирово-полосчатой текстуры в массиве Средний Крака отобраны при опробовании дунитового карьера «Саксей». Обр. 7611-7613 – сплошные крупнозернистые хромититы, обр. 7614 – густовкрапленный среднезеристый хромитит, обр. 7615 – чередование густовкрапленного крупнозернистого и средневкрапленного среднезернистого хромитита, обр. 7616 – нодулярный хромитит, обр. 7617 – контакт почти сплошного хромитита с дунитом, обр. 7618 и 7619 – контакт средневкрапленного хромитита с дунитом. FeO* = суммарная массовая доля железа в форме FeO; Cr#=Cr/(Cr+Al); f"= Fe²⁺/ (Fe²⁺+Mg). Анализы выполнены на микроанализаторе JXA-5 (аналитик В.Г. Гмыра).

ют редкие изолированные тела (см. геологическую карту масштаба 1:50000, составленную геологами бывшего Башкирского ТГУ; наши наблюдения подтвердили такую рисовку); 2) отсутствуют непрерывные переходы между дунитами и клинопироксенитами, в том числе верлиты; 3) дуниты стерильны от клинопироксена, обычного для дунитов переходной дунитклинопироксенитовой зоны.

Помимо хромититов, залегающих в бес-

Рис. 1. Соотношения хромистости и железистости хромшпинели в породах и рудах массива Средний Крака.

1 – дунит-гарцбургит-лерцолитовая серия, 2-3 - хромитит-дунитовая серия: 2 - дуниты, 3 - хромититы, 4 – метасоматический дунит, 5 – метасоматический хромитит; 6 - клинопироксениты, в том числе оливин-содержащие. Эллипсы – поля составов хромшпинели хромититов: I – ортомагматических (м-ние Геофизическое XII, юго-восточный блок Кемпирсайского массива), II-III – дунит-верлит-клинопироксенитовых комплексов: II – м-ние Талицкое-2, Первомайский массив, Средний Урал, III - Оман (Arai et al., 2004). Коннодами соединены составы хромшпинелей из гарцбургита и продуктов их метасоматоза - дунитов и хромититов. Прямыми линиями показаны статистические границы составов хромшпинелей в ультрамафитах шпинелевых фаций дунитгарцбургит-лерцолитовых серий альпинотипных комплексов Земли.

пироксеновых дунитах карьера Саксей, нами была встречена старая горная выработка, пройденная выше по разрезу в породах дунит-гарцбургитового комплекса, и отобраны образцы хромитовых руд и вмещающих пород.

Для выяснения природы ультрамафитов и залегающих в них хромититов были использованы закономерности состава хромшпинели (табл. 1) и построены диаграммы «железистость-хромистость» и соотношений трехвалентный компонентов и титана в сопоставлении с составами хромшпинели из ранее изученных месторождений (рис. 1-3).

Рис. 2. Соотношения массовых долей глинозема и окиси хрома в хромшпинелях из ультрамафитов массива Средний Крака. Эллипс I – поле составов рудных хромшпинелей м-ния Б. Башарт, массив Южный Крака. Остальные условные обозначения те же, что на рис. 1.

Состав акцессорной хромшпинели подтвердил полевые наблюдения: ультрамафиты массива Средний Крака сложены преимущественно гарцбургит-лерцолитовой серией в шпинелевой и плагиоклазовой фациях (см. рис. 1). Хромититы представлены двумя типами – высокохромистым и глиноземистым; железистых разностей не обнаружено. Состав рудной глиноземистой хромшпинели (обр. 8932) в пределах погрешности анализов идентичен акцессорной хромшпинели вмещающих гарцбургитов и дунитов, что дает право предполагать метасоматическую апогарцбургитовую природу дунитов и хромититов [Чащухин и др., 2001]. Смещение на рис. 2 фигуративной точки от линии Al₂O₂-Cr₂O₂ в сторону Fe₂O₂ при низкой концентрации TiO₂ (рис. 3) свидетельствует о высокой летучести кислорода, характерной для продуктов метасоматоза [Чащухин и др., 2007].

Вскрытые карьером Саксей дуниты и хромититы на всех использованных диаграммах образуют единую серию. По составу рудная и акцессорная хромшпинели отвечают высокохромистой разности. Тренд состава на диаграмме Ирвина аналогичен высокохромистым хромшпинелям кемпирсайского типа, в частно-

Рис. 3. Соотношения TiO₂ и Fe₂O₃ в хромшпинелях пород и руд массива Средний Крака.

1 -хромититы м-ния Талицкое-2, 2 -хромититы Омана. Остальные условные обозначения те же, что на рис. 1. Расчет массовых долей Fe₂O₃ в хромшпинели проведен по данным микрозондового рентгеноспектрального анализа при допущении стехиометрии состава.

сти, хромитит-дунитовой серии месторождения «Геофизическое XII» (см. рис. 1). Массовая доля трехокиси железа в хромшпинели хромититов и дунитов с учетом содержания титана близка таковой гарцбургит-лерцолитовой серии (см. рис. 2), а массовая доля TiO_2 в рудных хромшпинелях существенно меньше по сравнению с залегающими в породах дунит-верлитклинопироксенитовых комплексов рудами месторождения Талицкое-2 (Первомайский массив на Среднем Урале) и Омана [Чащухин и др., 2004] (см. рис. 3).

Таким образом, хромитовое оруденение массива Средний Крака полигенно. Глиноземистые руды и вмещающие их дуниты являются метасоматическими апогарцбургитовыми образованиями. Дуниты карьера Саксей и залегающие в них хромититы, располагающиеся в массиве между гарцбургит-лерцолитовой серией и клинопироксенитами, являются наиболее деплетироваными фрагментами этой серии, генетически не связанными с формированием клинопироксенит-габбрового комплекса.

Хабарнинский массив. Как известно, Хабарнинский массив является гетерогенным образованием [Варлаков, 1978; Петрология..., 1991]. В его строении принимают участие породы дунит-гарцбургит-лерцолитового и расслоенного дунит-верлит-клинопироксенит-габброидного комплексов, разделенных Восточно-Хабарнинской ассоциацией (ВХА). Последняя по набору пород (дуниты, клинопироксениты, габбро-нориты), составу минералов, геохимии РЗЭ и редокс-состоянию близка Платиноносному поясу Урала. Дуниты преобладают. В пределах их развития в 30-е годы прошлого века проводилась добыча хромитовых руд. Предметом изучения явились руды, вскрытые карьером 2 месторождения 5, а также породы ВХА, опробованные серией пересечений. Образование руд принято связывать с формированием дунит-верлитовой серии, а само оруденение относить к типу повышенной железистости [Реестр..., 2000].

Вариации состава акцессорных хромшпинелей из реститогенных ультрамафитов подтверждают их принадлежность дунит-гарцбургит-лерцолитовой серии (рис. 4). В породах ВХА состав рудных акцессориев в координатах «железистость-хромистость» чрезвычайно разнообразен. Здесь независимо от количественных соотношений оливина и клинопироксена можно выделить три дискретные группы: 1) относительно высокохромистые (Cr# = 80 ± 5 %) и маложелезистые (f'=50±10 %) хромшпинели, близкие по составу хромшпинелям из дунитов Платиноносного пояса, 2) среднехромистые (Cr# = 55 \pm 5 %) хромшпинели повышенной (60-80 %) железистости и 3) титансодержащие хроммагнетиты (TiO₂=0,5-3,8 мас. %, Cr₂O₂ =1-8 мас. %). Эти же группы акцессориев отчетливо различаются по содержанию Fe₂O₃ и TiO₂ (рис. 5, 6). Величина отклонения фигуративных точек от линии «глинозем-оксид хрома» (сv/ рис. 5) пропорциональна суммарному содержанию этих компонентов: ближе всего к линии располагаются составы маложелезистой группы, наиболее удалены акцессории третьей группы, вторая, «среднехромистая» группа занимает промежуточное положение. В координатах Fe₂O₂-TiO₂ первые две группы обнаруживают четкую прямую зависимость (шпинелевый тренд), третья группа показывает обратную зависимость (титаномагнетитовый тренд) – см. рис. 6. Нередко в пределах одного обнажения можно встретить все три группы акцессориев.

ЕЖЕГОДНИК-2007

Таблица 2

Компоненты, мас. %	8870	8871	8872	8873	8874	8876	8877
TiO ₂	0,31	0,34	0,32	0,24	0,25	0,40	0,49
Al_2O_3	11,25	11,10	10,69	10,83	11,11	11,06	10,85
Cr_2O_3	54,64	56,00	56,39	54,47	53,12	52,94	53,27
FeO*	18,09	17,36	17,64	22,20	22,56	22,56	21,38
MnO	—	_	_	_	0,53	_	0,59
MgO	14,45	14,09	14,11	11,05	11,24	11,55	12,10
Сумма	98,74	98,88	99,15	98,79	98,81	98,51	98,68
Cr#, %	76,51	77,19	77,96	77,13	76,23	76,25	76,71
f", %	30,27	31,80	31,78	45,41	43,81	42,86	39,27
Плотность, г/см ³	3,50	3,48	3,56	3,55	2,62	2,68	3,26

Химический состав и плотность хромититов м-ния 5 в Хабарнинском массиве

Примечания. Хромититы: обр. 8870 – средневкрапленный массивный, обр. 8871, 8873 – средневкрапленный полосчатый, обр. 8872 – пятнисто-полосчатый средневкрапленный, обр. 8874, 8876 – убоговкрапленный полосчатый, обр. 8877 – средневкрапленный полосчато-такситовый. Остальные примечания – в табл. 1.

Состав рудной хромшпинели варьирует в узких пределах, близок составу первой группы акцессорных хромшпинелей и практически аналогичен рудной хромшпинели латераль-секреционных месторождений кемпирсайского типа, например, месторождению Б. Башарт в массиве Южный Крака (см. рис. 4). Аналогия с кемпирсайским типом прослеживается и в зависимости состава хромшпинели от ее количества [Чащухин и др., 2007] (рис. 7).

По-видимому, отмеченные особенности состава оксидов отражают этапы формирования пород Восточно-Хабарнинской ассоциации, включая стадию метасоматической переработки реликтов реститогенных ультрамафитов под действием магмы, в ходе дифференциации которой образовались породы этой ассоциации. Породы и руды по-разному реагировали на эту переработку - об этом можно судить по степени изменчивости состава хромшпинелей, прежде всего, по вариациям концентраций трехвалентных компонентов и титана (см. рис. 5, 6). Наиболее устойчивы хромититы, состав хромшпинели которых изменился слабо. По сравнению с ними хромшпинели пород первой группы (можно предполагать, что их эдуктом были породы дунит-гарцбургит-лерцолитовой серии) содержат заметно больше TiO₂ и Fe₂O₃, замещающих оксид хрома. Повышенные концентрации оксида железа в акцессорных хромшпинелях отражают увеличение летучести кислорода в ходе метасоматической переработки, что подтверждается прямыми расчетами с привлечением данных мессбауэровской спектроскопии [Чащухин и др., 2007].

Рис. 4. Соотношения хромистости и железистости хромшпинели в породах и рудах Хабарнинского массива.

1 – дунит-гарцбургит-лерцолитовая серия, 2-5 – Восточнохабарнинская ассоциация: 2 – дуниты, 3 – клинопироксеновые дуниты, 4 – клинопироксениты, в том числе оливин-содержащие, 5 – хромититы карьера 5-2. Штриховыми линиями ограничены поля составов акцессорных хромшпинелей и магнетитов. Эллипсы: І-ІІ – высокохромистые хромшпинели руд кемпирсайского типа: І – ГРП юго-восточного блока Кемпирсайского массива, II – м-ния Б. Башарт, массив Южный Крака; IIІ-ІV – [Иванов, 1990, 1997]: ІІІ – акцессорные хромшпинели дунитов Платиноносного пояса, IV – акцессорные и рудные хромшпинели Сарановского массива. Расчет количества катионов Fe²⁺ в хромшпинели проведен при допущении стехиометрии ее состава.

Рис. 5. Соотношения массовых долей глинозема и окиси хрома в хромшпинелях из ультрамафитов Хабарнинского массива.

Эллипсы – поля составов рудных хромшпинелей: I – м-ния Б. Башарт, II – Платиноносного пояса, III – Сарановского массива. Остальные условные обозначения те же, что на рис. 4.

Рис. 6. Соотношения TiO_2 и Fe_2O_3 в хромшпинелях и магнетитах из пород и руд Хабарнинского массива.

Условные обозначения те же, что на рис. 4.

Рис. 7. Зависимость хромистости рудной хромшпинели от плотности руд из карьера 2 месторождения 5 в Восточнохабарнинской ассоциации Хабарнинского массива. Проведена линия наименьших квадратов. Таким образом, на основе изучения закономерностей состава хромшпинели можно предполагать, что хромитовое оруденение, локализованное в пределах Восточнохабарнинской ассоциации, относится к кемпирсайскому типу и генетической связи с ней не имеет.

Выводы

1. Хромитовое оруденение массива Средний Крака полигенно. Высокохромистые хромититы генетически связаны с реститогенными дунитами и образуют единый комплекс, аналогичный ортомагматической хромитит-дунитовой серии кемпирсайского типа. Глиноземистые руды и вмещающие их дуниты являются метасоматическими апогарцбургитовыми образованиями алапаевского типа.

2. Есть основания предполагать, что хромитовые руды Восточно-Хабарнинской ассоциации представляют собой реликты высокохромистого латераль-секреционного оруденения кемпирсайского типа.

ЕЖЕГОДНИК-2007

Работа выполнена при финансовой поддержке программы ОН3-2 «Фундаментальные проблемы геологии, условия образования и принципы прогноза традиционных и новых типов крупномасштабных месторождений стратегических видов минерального сырья» и гранта Президента РФ «Поддержка ведущих научных школ».

Список литературы

Варлаков А.С. Петрография, петрохимия и геохимия гипербазитов Оренбургского Урала. М.: Наука, 1978. 238 с.

Иванов О.К. Расслоенные хромитоносные ультрамафиты Урала. М.: Наука, 1990. 243 с.

Иванов О.К. Концентрически-зональные пироксенит-дунитовые массивы Урала. Екатеринбург: УрГУ, 1997. 488 с.

Колман Р.Г. Офиолиты. М.: Мир, 1979. 262 с.

Петрология пост-гарцбургитовых интрузивов кемпирсайско-хабарнинской офиолитовой ассоциации. Свердловск: УрО РАН, 1991. 160 с.

Реестр хромитопроявлений в альпинотипных ультрабазитах Урала. Пермь, 2000. 474 с. Савельева Г.Н., Денисова Е.А. Структурно-геологическая карта ультраосновных массивов Крака. Масштаб 1:100000 // Типовые геологические карты разных районов территории СССР / Ред. Ю.М. Пущаровский. М.: ГИН АН СССР, 1989.

Чащухин И.С., Сурганов А.В., Булыкин Л.Д. и др. Закономерности состава акцессорного и рудообразующего хромшпинелида в ультрамафитах Алапаевского массива // Ежегодник-2001. Екатеринбург: ИГГ УрО РАН, 2002. С. 281-289.

Чащухин И.С., Вотяков С.Л., Щапова Ю.В. Кристаллохимия хромшпинели и окситермобарометрия ультрамафитов складчатых областей. Екатеринбург: ИГГ УрО РАН, 2007. 310 с.

Чащухин И.С., Булыкин Л.Д., Чащухина В.А. О природе хромитового оруденения в породах дунит-клинопирксенитового комплекса офиолитов Среднего Урала // Ежегодник-2004. Екатеринбург: ИГГ УрО РАН, 2005. С. 353-358.

Arai S., Uesugi J., Ahmed A.H. Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration // Contrib. Mineral. Petrol. 2004. V. 147. P. 145-154.