ОПРЕДЕЛЕНИЕ УЛЬТРАМАЛЫХ СОДЕРЖАНИЙ РЕДКИХ ЭЛЕМЕНТОВ В ГЕОЛОГИЧЕСКИХ ОБРАЗЦАХ АВТОКЛАВНЫМ КИСЛОТНЫМ РАЗЛОЖЕНИЕМ, ХРОМАТОГРАФИЧЕСКИМ РАЗДЕЛЕНИЕМ И АНАЛИЗОМ С ПОМОЩЬЮ СЕКТОРНОГО МАСС-СПЕКТРОМЕТРА ВЫСОКОГО РАЗРЕШЕНИЯ С ИОНИЗАЦИЕЙ В ИНДУКТИВНО-СВЯЗАННОЙ ПЛАЗМЕ (ID-SF-HR/ICP-MS)

Ю.Л. Ронкин, Д.З. Журавлев, О.П. Лепихина, Г.А. Лепихина

В настоящее время геохимические методы исследований заслуженно занимают одно из ведущих мест в геологических исследованиях, что стало возможным с развитием инновационных технологий и созданием новых поколений аналитических приборов, внедрение которых вывело прикладную геохимию на качественно новый уровень. Изучение разнообразных геологических объектов геохимическими методами позволило выявить неизвестные ранее закономерности и, главное, показало важность геохимических данных при построении разнообразных геологических моделей. Рассматривая базовые понятия и определения геохимических исследований, можно выделить несколько основных групп элементов, поведение которых является предметом геохимических изысканий: главные элементы (major elements) - Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P и рассматриваемые в рамках этой же подгруппы - летучие (volatiles) H₂O, CO₂, S; элементы примеси (trace elements) – представленные по сути всей, за исключением главных, Периодической системой элементов. При типичных геохимических исследованиях обычно изучают закономерности поведения 20-50 элементов, акцентируя внимание на подгруппы: крупноионных литофилов (LIL – large ion lithophyls) Cs, Rb, K, Ва; высокозарядных элементов (HFS – high field strength elements) Sc, REE (rare earth elements), Y, Th, U, Pb, Zr, Ti, Nb, Ta; транзитных элементов (transition elements) V, Cr, Co, Ni, Cu, Zn; платиноидов (platinum group elements) Ru, Rh, Pd, Os, Ir, Pt.

В перечисленных выше рядах, особое место занимают редкоземельные элементы (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), имеющие атомные номера с 57 по 71, представительные природные изотопные распространенности которых приведены в табл. 1. Изучению закономерностей поведения этих элементов в геологических процессах посвящено огромное количество литературы и, разумеется, степень достоверности интерпретационных выводов целиком определяется уровнем аналитики применяемой при определении соответствующих концентраций, поскольку методы исследований, использующие дискретные измерения техническими средствами количественных показателей геологического материала, неизбежно отягощены погрешностями. В свою очередь, исходя из общих соображений о погрешностях определения содержаний REE можно констатировать, что эта неопределенность находиться в известной зависимости от многих параметров, характеризующих тот или иной вид анализа и, в частности, от величин измеряемых абсолютных содержаний в исходном веществе и точности их определения. И если современные методы анализа этих элементов в большинстве геологического материала кислого, среднего и базитового составов позволяют изме-

Изотопная распространенность и гипотетические интерференции

Изотоп	Macca	Распрост- раненность							Изобарные
¹³⁸ La	137,9071	0,09	138 Ba(71,7)	138 Ce(0,3)	¹⁷ OH+ ¹²¹ Sb(57,1)	$^{40}\text{Ar}+^{98}\text{Mo}(23,9)$	$^{12}\text{C}+^{126}\text{Te}(18,5)$	$^{1}\text{H}+^{137}\text{Ba}(11,3)$	¹⁴ N+124Sn(6,0)
¹³⁹ La	138,9064	99,91	$^{40}\text{Ar} + ^{99}\text{Tc}(99,6)$	$^{12}\text{C} + ^{127}\text{I}(98,9)$	$^{1}\text{H} + ^{138}\text{Ba}(71,6)$	¹⁶ O+ ¹²³ Sb(42,6)	$^{40}\text{Ar} + ^{99}\text{Ru}(12,8)$	¹⁴ N+ ¹²⁵ Te(7,0)	$^{17}\text{OH}+^{122}\text{Sn}(4,7)$
¹³⁶ Ce	135,9071	0,19	¹³⁶ Xe(8,9)	136 Ba(7,8)	$^{16}\text{O}+^{120}\text{Sn}(32,9)$	$^{40}\text{Ar}+^{96}\text{Mo}(16,5)$	¹⁷ OH+ ¹¹⁹ Sn(8,6)	¹ H+ ¹³⁵ Ba(6,6)	$^{12}C+^{124}Sn(5,9)$
¹³⁸ Ce	137,9060	0,25	138 Ba(71,7)	¹⁷ OH+ ¹²¹ Sb(57,1)	$^{40}\text{Ar} + ^{98}\text{Mo}(23,9)$	$^{12}\text{C}+^{126}\text{Te}(18,5)$	$^{1}\text{H}+^{137}\text{Ba}(11,3)$	$^{14}N+^{124}Sn(6,0)$	$^{16}\text{O}+^{122}\text{Sn}(4,7)$
¹⁴⁰ Ce	139,9054	88,48	¹ H+ ¹³⁹ La(99,9)	¹⁷ OH+ ¹²³ Sb(42,6)	$^{12}C+^{128}Te(31,4)$	¹⁴ N+ ¹²⁶ Te(18,6)	⁴⁰ Ar+ ¹⁰⁰ Ru(12,6)	40 Ar+ 100 Mo(9,6)	$^{16}\text{O}+^{124}\text{Sn}(6,0)$
¹⁴² Ce	141,9092	11,07	¹⁴² Nd(27,1)	$^{1}\text{H}+^{141}\text{Pr}(100,0)$	$^{12}C+^{130}Te(34,1)$	$^{14}\text{N}+^{128}\text{Te}(31,7)$	40 Ar+ 102 Ru(31,2)	$^{16}\text{O}+^{126}\text{Te}(18,7)$	$^{17}\text{OH}+^{125}\text{Te}(7,0)$
¹⁴¹ Pr	140,9077	100	¹⁴ N+ ¹²⁷ I(99,6)	¹ H+ ¹⁴⁰ Ce(88,5)	¹² C+ ¹²⁹ Xe(26,1)	40 Ar+ 101 Ru(16,9)	$^{16}\text{O}+^{125}\text{Te}(7,0)$	$^{17}\text{OH}+^{124}\text{Sn}(6,0)$	¹⁷ OH+ ¹²⁴ Te(4,6)
¹⁴² Nd	141,9077	27,09	142 Ce(11,1)	$^{1}\text{H}^{141}\text{Pr}(100,0)$	$^{12}C+^{130}Te(34,1)$	$^{14}\text{N}+^{128}\text{Te}(31,7)$	$^{40}\text{Ar} + ^{102}\text{Ru}(31,2)$	$^{16}\text{O}+^{126}\text{Te}(18,7)$	$^{17}\text{OH}+^{125}\text{Te}(7,0)$
¹⁴³ Nd	142,9098	12,14	$^{16}\text{O}+^{127}\text{I}(99,8)$	40 Ar+ 103 Rh(99,6)	$^{1}\text{H}+^{142}\text{Nd}(27,1)$	$^{14}\text{N}+^{129}\text{Xe}(26,3)$	$^{12}\text{C}+^{131}\text{Xe}(20,9)$	$^{17}\text{OH}+^{126}\text{Te}(18,7)$	$^{1}\text{H+}^{142}\text{Ce}(11,1)$
¹⁴⁴ Nd	143,9101	23,83	¹⁴⁴ Sm(3,2)	$^{17}\text{OH}+^{127}\text{I}(99,7)$	$^{14}N+^{130}Te(34,4)$	$^{16}\text{O}+^{128}\text{Te}(31,7)$	$^{12}\text{C}+^{132}\text{Xe}(26,6)$	$^{40}\text{Ar}+^{104}\text{Ru}(18,2)$	$^{1}\text{H+}^{143}\text{Nd}(12,1)$
¹⁴⁵ Nd	144,9126	8,29	$^{12}\text{C}+^{133}\text{Cs}(98,9)$	$^{17}\text{OH}+^{128}\text{Te}(31,7)$	$^{16}\text{O}+^{129}\text{Xe}(26,4)$	$^{1}\text{H+}^{144}\text{Nd}(23,8)$	$^{40}\text{Ar}+^{105}\text{Pd}(22,5)$	$^{14}N+^{131}Xe(21,1)$	$^{1}\text{H+}^{144}\text{Sm}(3,2)$
¹⁴⁶ Nd	145,9131	17,26	¹⁴⁶ Ba O(0,1)	$^{16}\text{O}+^{130}\text{Te}(34,4)$	$^{40}\text{Ar}+^{106}\text{Pd}(27,0)$	$^{14}N+^{132}Xe(26,8)$	¹⁷ OH+ ¹²⁹ Xe(26,4)	$^{12}\text{C}+^{134}\text{Xe}(10,3)$	$^{1}\text{H}+^{145}\text{Nd}(8,3)$
148Nd	147,9169	5,74	148 Sm(11,3)	$^{16}\text{O}+^{132}\text{Xe}(26,8)$	$^{40}\text{Ar}+^{108}\text{Pd}(26,6)$	$^{17}OH+^{131}Xe(21,1)$	$^{1}\text{H}+^{147}\text{Sm}(15,1)$	$^{14}N+^{134}Xe(10,4)$	$^{12}C+^{136}Xe(8,8)$
¹⁵⁰ Nd	149,9209	5,63	$^{150}\text{Sm}(7,5)$	150 Ba O(2,4)	$^{17}OH+^{133}Cs(99,7)$	$^{12}C+^{138}Ba(70,9)$	$^{1}\text{H}+^{149}\text{Sm}(13,8)$	$^{40}\text{Ar}+^{110}\text{Pd}(13,4)$	$^{40}\text{Ar} + ^{110}\text{Cd}(12,4)$
144Sm	143,9120	3,16	¹⁴⁴ Nd(23,8)	$^{1}OH^{+12}I(99,7)$	$^{14}N+^{150}Te(34,4)$	$^{10}\text{O}+^{120}\text{Te}(31,7)$	$^{12}C+^{132}Xe(26,6)$	$^{40}\text{Ar}+^{104}\text{Ru}(18,2)$	$^{1}\text{H+}^{143}\text{Nd}(12,1)$
¹⁴ /Sm	146,9149	15,07	$^{14}N + ^{153}Cs(99,6)$	$40 \text{Ar} + \frac{10}{40} \text{Ag}(51, 1)$	$^{17}OH+^{130}Te(34,4)$	$^{10}\text{O}+^{131}\text{Xe}(21,1)$	$^{1}\text{H}+^{140}\text{Nd}(17,3)$	$^{12}C+^{135}Ba(6,5)$	$^{1}OH+^{130}Xe(4,1)$
148Sm	147,9148	11,27	140 Nd(5,7)	$^{10}\text{O}+^{132}\text{Xe}(26,8)$	$^{40}\text{Ar} + ^{108}\text{Pd}(26,6)$	$^{1}OH+^{131}Xe(21,1)$	$^{1}\text{H}+^{147}\text{Sm}(15,1)$	$^{14}N+^{134}Xe(10,4)$	$^{12}C+^{130}Xe(8,8)$
14 ⁹ Sm	148,9172	13,84	$^{10}O+^{155}Cs(99,8)$	$^{40}\text{Ar} + ^{109}\text{Ag}(48,5)$	$^{1}OH^{+132}Xe(26,8)$	$^{1}\text{H}+^{140}\text{Sm}(11,3)$	$^{12}C+^{13}Ba(11,2)$	$^{14}N+^{155}Ba(6,6)$	$^{1}\text{H+}^{146}\text{Nd}(5,7)$
¹⁵⁰ Sm	149,9173	7,47	¹⁵⁰ Nd(5,6)	150 Ba O(2,4)	¹⁷ OH+ ¹³ Cs(99,7)	$^{12}C^{+130}Ba(70,9)$	$^{1}\text{H}+^{149}\text{Sm}(13,8)$	⁴⁰ Ar+ ¹¹⁰ Pd(13,4)	$^{40}\text{Ar} + ^{110}\text{Cd}(12,4)$
¹³² Sm	151,9197	26,63	¹⁵² Gd(0,2)	¹³² Ba O(7,8)	152 Ce O(0,2)	$^{12}C+^{140}Ce(87,5)$	$^{14}N^{+138}Ba(71,4)$	¹ H+ ¹⁵¹ Eu(47,8)	$^{+0}\text{Ar} + ^{+12}\text{Cd}(23,7)$
^{1.54} Sm	153,9222	22,53	¹⁵⁴ Gd(2,1)	134 Ba O(71,5)	$^{1.54}$ Ce O(0,2)	$^{14}N^{+140}Ce(88,2)$	$^{10}\text{O}+^{138}\text{Ba}(71,5)$	¹ H+ ¹⁵⁵ Eu(52,2)	$^{+0}$ Ar+ $^{11+}$ Cd(28,7)
15 ^r Eu	150,9199	4/,7/	151 Ba O(6,6)	$^{12}C^{+13}La(98,8)$	$^{10}\text{Ar} + ^{11}\text{Cd}(12,8)$	1000000000000000000000000000000000000	$^{10}OH^{+13}Xe(10,4)$	H^{+130} Sm(7,5)	$1^{\circ}O+1^{\circ}Ba(6,6)$
152 C L	152,9212	52,23	$^{152}G_{11}(200)$	152 D (7.9)	152 $(98,9)$	$^{1}H^{+1}Sm(26,6)$	$^{16}\text{Ar}^{+16}\text{Cd}(12,3)$	10+33Ba(11,3)	$40 \text{ A}_{+} + \frac{112}{2} \text{ C}_{+} (22, 7)$
Gd	151,9198	0,2	Sm(26,6)	154 D $O(71.5)$	154 Ce O(0,2)	14 140 $(87,5)$	N+Ba(71,4)	H^+ Eu(4/,8)	Ar + Ca(23,7)
-Gd	153,9209	2,15	Sm(22,5)	Ba O(71,5)	40 A + 115 L (05 5)	N+Ce(88,2)	0+ Ba(/1,5)	H^+ Eu(52,2)	Ar + Ca(28, 7)
-Gd	154,9226	14,/3	156 C(99,7)	N+ Pr(99,6)	Ar + in(95,5)	160+140C+(89.2)	H^+ Sm(22,5)	C+ Nd(12,0)	H^+ Gd(2,1)
157Cd	155,9221	20,47	$160\pm^{141}\text{Pr}(00.8)$	$17OH^{140}Co(88.2)$	$10H^+$ La(99,7)	0+ Ce(88,5) $^{14}N^{143}Nd(12,1)$	1N+ INd(27,0) 12C+145NId(8.2)	$\frac{140}{4}$ Ar \pm ¹¹⁷ Sp(7.5)	H^+ Gd(14,7)
158Cd	157 00/1	24.87	¹⁵⁸ Dv(0.9)	158 Ca $O(11.2)$	$^{17}\text{OH}^{141}\text{Pr}(00.7)$	10+100(12,1) 160+142Nd(27,0)	1000000000000000000000000000000000000	$^{14}N+^{144}NH(23.7)$	$^{12}C+^{146}Nd(17.1)$
¹⁶⁰ Cd	150 0070	24,87	160 Dy(0,9)	$^{1}\text{H+}^{159}\text{Tb}(100.0)$	$^{40}\text{Ar}^{+120}\text{Sn}(32.8)$	160+144Nd(23.8)	$^{14}N+^{146}Nd(17.2)$	170H+143Nd(12.1)	$^{12}C^{+148}Sm(11,1)$
¹⁵⁹ Th	158 9270	100	$17OH+^{142}Nd(27.0)$	$^{1}\text{H+}^{158}\text{Gd}(24.9)$	$^{12}C+^{147}Sm(14.9)$	$^{16}\text{O+}^{143}\text{Nd}(12.1)$	$^{17}\text{OH}+^{142}\text{Ce}(11.0)$	$\frac{40}{4r}$ Ar + $\frac{119}{5n(8.5)}$	$^{14}N+^{145}Nd(83)$
156Dv	155 9243	0.05	$^{156}Gd(20.5)$	156 Ce O(88 3)	156 Ba O(0.1)	$^{17}\text{OH}+^{139}\text{La}(99.7)$	$^{16}O+^{140}Ce(883)$	$^{14}N+^{142}Nd(27.0)$	$^{12}C+^{144}Nd(23.6)$
¹⁵⁸ Dv	157,9243 157,9244	0,00	158 Gd(24.9)	158 Ce O(11.2)	$^{17}\text{OH}+^{141}\text{Pr}(99.7)$	$^{16}\text{O}+^{142}\text{Nd}(27.0)$	40 Ar+ 118 Sn(23.9)	$^{14}N+^{144}Nd(23.7)$	$^{12}C+^{146}Nd(171)$
¹⁶⁰ Dv	159 9252	2 29	160 Gd(21.9)	$^{1}\text{H}^{159}\text{Tb}(100.0)$	$^{40}\text{Ar}+^{120}\text{Sn}(32.8)$	$^{16}\text{O}+^{144}\text{Nd}(23.8)$	$^{14}N+^{146}Nd(172)$	$^{17}\text{OH+}^{143}\text{Nd}(12.1)$	$^{12}C+^{148}Sm(11,1)$
¹⁶¹ Dv	160 9269	18.88	$^{40}\text{Ar}+^{121}\text{Sb}(57.0)$	$^{17}\text{OH}+^{144}\text{Nd}(23.8)$	$^{1}\text{H}^{160}\text{Gd}(21.9)$	$^{14}N+^{147}Sm(15.0)$	$^{12}C+^{149}Sm(13.7)$	$^{16}\text{O+}^{145}\text{Nd}(83)$	$^{17}\text{OH}+^{144}\text{Sm}(3.2)$
¹⁶² Dv	161.9268	25.53	162 Er(0,1)	$^{1}\text{H+}^{161}\text{Dv}(18.9)$	$^{16}\text{O} + ^{146}\text{Nd}(17.2)$	$^{14}N + ^{148}Sm(11.2)$	$^{17}\text{OH}^{+145}\text{Nd}(8.3)$	$^{12}C+^{150}Sm(7.4)$	$^{14}N+^{148}Nd(5.7)$
¹⁶³ Dv	162.9287	24.97	$^{12}C+^{151}Eu(47.2)$	40 Ar+ 123 Sb(42.6)	$^{1}\text{H}^{+162}\text{Dv}(25.5)$	$^{17}\text{OH}^{+146}\text{Nd}(17.2)$	$^{16}\text{O}+^{147}\text{Sm}(15.0)$	$^{14}N+^{149}Sm(13.8)$	40 Ar+ 123 Te(0.9)
¹⁶⁴ Dv	163,9292	28,2	164 Er(1,6)	$^{12}C+^{152}Sm(26,3)$	$^{1}\text{H}+^{163}\text{Dy}(25,0)$	¹⁷ OH+1 ⁴⁷ Sm(15,0)	$^{16}\text{O}+^{148}\text{Sm}(11,2)$	$^{14}N+^{150}Sm(7,4)$	$^{40}\text{Ar} + ^{124}\text{Sn}(6,0)$
¹⁶⁵ Ho	164,9303	100	$^{12}C+^{153}Eu(51,7)$	$^{14}N+^{151}Eu(47.6)$	$^{1}\text{H}+^{164}\text{Dy}(28,2)$	$^{16}\text{O}+^{149}\text{Sm}(13,8)$	$^{17}\text{OH}+^{148}\text{Sm}(11,2)$	40 Ar+ 125 Te(7,0)	$^{17}\text{OH}+^{148}\text{Nd}(5,7)$
¹⁶² Er	161,9288	0,14	162 Dy(25,5)	$^{1}\text{H+}^{161}\text{Dy}(18,9)$	$^{16}\text{O}+^{146}\text{Nd}(17,2)$	$^{14}N+^{148}Sm(11,2)$	¹⁷ OH+ ¹⁴⁵ Nd(8,3)	$^{12}C+^{150}Sm(7,4)$	$^{14}N+^{148}Nd(5,7)$
¹⁶⁴ Er	163,9292	1,56	¹⁶⁴ Dy(28,2)	$^{12}C+^{152}Sm(26,3)$	$^{1}\text{H}+^{163}\text{Dy}(25,0)$	¹⁷ OH+ ¹⁴⁷ Sm(15,0)	$^{16}\text{O}+^{148}\text{Sm}(11,2)$	$^{14}N+^{150}Sm(7,4)$	$^{40}\text{Ar}+^{124}\text{Sn}(6,0)$
¹⁶⁶ Er	165,9303	33,41	$^{1}\text{H}+^{165}\text{Ho}(100,0)$	$^{14}N+^{152}Sm(26,5)$	$^{12}C+^{154}Sm(22,3)$	40 Ar+ 126 Te(18,6)	¹⁷ OH+ ¹⁴⁹ Sm(13,8)	$^{16}\text{O}+^{150}\text{Sm}(7,5)$	¹⁶ O+ ¹⁵⁰ Nd(5,6)
¹⁶⁷ Er	166,9321	22,94	$^{40}\text{Ar}+^{127}\text{I}(99,6)$	¹⁴ N+ ¹⁵³ Eu(52,0)	$^{16}\text{O}+^{151}\text{Eu}(47,7)$	¹ H+ ¹⁶⁶ Er(33,4)	$^{12}C+^{155}Gd(14,6)$	¹⁷ OH+ ¹⁵⁰ Sm(7,5)	¹⁷ OH+ ¹⁵⁰ Nd(5,6)
¹⁶⁸ Er	167,9324	27,07	¹⁶⁸ Yb(0,1)	¹⁷ OH+ ¹⁵¹ Eu(47,6)	40 Ar+ 128 Te(31,7)	$^{16}\text{O}+^{152}\text{Sm}(26,6)$	$^{1}\text{H}+^{167}\text{Er}(22,9)$	$^{14}N+^{154}Sm(22,4)$	$^{12}C+^{156}Gd(20,2)$
¹⁷⁰ Er	169,9355	14,88	¹⁷⁰ Yb(3,0)	$^{1}\text{H}+^{169}\text{Tm}(100,0)$	¹⁷ OH+ ¹⁵³ Eu(52,1)	40 Ar+ 130 Te(34,4)	$^{12}C+^{158}Gd(24,6)$	$^{16}\text{O}+^{154}\text{Sm}(22,5)$	$^{14}N+^{156}Gd(20,4)$
¹⁶⁹ Tm	168,9342	100	$^{16}\text{O}+^{153}\text{Eu}(52,1)$	$^{1}\text{H}+^{168}\text{Er}(27,1)$	¹⁷ OH+ ¹⁵² Sm(26,6)	40 Ar+ 129 Xe(26,3)	$^{12}\text{C}+^{157}\text{Gd}(15,5)$	$^{14}N+^{155}Gd(14,7)$	$^{36}\text{Ar}+^{133}\text{Cs}(0,3)$
¹⁶⁸ Yb	167,9339	0,14	168 Er(27,1)	¹⁷ OH+ ¹⁵¹ Eu(47,6)	40 Ar+ 128 Te(31,7)	$^{16}O+^{152}Sm(26,6)$	$^{1}\text{H}+^{167}\text{Er}(22,9)$	¹⁴ N+ ¹⁵⁴ Sm(22,4)	$^{12}C+^{156}Gd(20,2)$
¹⁷⁰ Yb	169,9348	3,03	¹⁷⁰ Er(14,9)	$^{1}\text{H}+^{169}\text{Tm}(100,0)$	$^{17}\text{OH}+^{153}\text{Eu}(52,1)$	40 Ar+ 130 Te(34,4)	$^{12}\text{C}+^{158}\text{Gd}(24,6)$	$^{16}\text{O}+^{154}\text{Sm}(22,5)$	¹⁴ N+ ¹⁵⁶ Gd(20,4)
¹⁷¹ Yb	170,9363	14,31	$^{12}C+^{159}Tb(98,9)$	¹ /OH+ ¹⁵⁴ Sm(22,5)	$^{40}\text{Ar} + ^{131}\text{Xe}(21,1)$	¹⁴ N+ ¹⁵⁷ Gd(15,6)	$^{1}\text{H+}^{170}\text{Er}(14,9)$	¹⁶ O+ ¹⁵⁵ Gd(14,7)	$^{1}\text{H+}^{170}\text{Yb}(3,0)$
¹⁷² Yb	171,9364	21,82	$^{40}\text{Ar} + ^{132}\text{Xe}(26, 8)$	$^{14}N+^{158}Gd(24,8)$	$^{12}C+^{160}Gd(21,6)$	$^{10}\text{O}+^{156}\text{Gd}(20,4)$	^{1/} OH+ ¹⁵⁵ Gd(14,7)	$^{1}\text{H+}^{1/1}\text{Yb}(14,3)$	$^{12}C+^{160}Dy(2,3)$
¹⁷³ Yb	172,9382	16,13	¹⁴ N+ ¹⁵⁹ Tb(99,6)	$^{40}\text{Ar} + ^{133}\text{Cs}(99,6)$	$^{1}\text{H}+^{1/2}\text{Yb}(21,8)$	$^{1/}OH+^{156}Gd(20,4)$	$^{12}C+^{161}Dy(18,7)$	$^{16}\text{O}+^{157}\text{Gd}(15,6)$	$^{13}C+^{160}Gd(0,2)$
^{1/4} Yb	173,9389	31,84	$^{1/4}$ Hf(0,2)	$^{12}C+^{162}Dy(25,2)$	$^{10}\text{O}+^{158}\text{Gd}(24,8)$	$^{14}N+^{160}Gd(21,8)$	$^{1}\text{H}+^{1/3}\text{Yb}(16,1)$	$^{1}OH+^{15}Gd(15,6)$	$^{40}\text{Ar} + {}^{154}\text{Xe}(10,4)$
170Yb	175,9426	12,73	^{1/0} Hf(5,2)	^{1/0} Lu(2,6)	¹ OH+ ¹⁵ Tb(99,7)	$^{1}\text{H}^{1/3}\text{Lu}(97,4)$	$^{12}C+^{104}Dy(27,9)$	$^{1-}N^{+102}Dy(25,4)$	$^{10}O+^{100}Gd(21,8)$
1/3Lu	174,9408	97,4	¹⁰ O+ ^{1,39} Ib(99,8)	'H+'''Yb(31,8)	¹ OH+ ¹³ Gd(24,8)	$^{12}C^{+105}Dy(24,7)$	$^{17}N^{+101}Dy(18,8)$	$^{+0}$ Ar+ 153 Ba(6,6)	$^{1}OH^{138}Dy(0,9)$
1%Lu	175,9426	2,6	^{1/0} Yb(12,7)	^{1/0} Hf(5,2)	¹⁷ OH+ ¹⁵⁹ Tb(99,7)	¹ H+ ^{1/3} Lu(97,4)	¹² C+ ¹⁰⁴ Dy(27,9)	¹⁴ N+ ¹⁰² Dy(25,4)	¹⁰ O+ ¹⁰⁰ Gd(21,8)

рять их концентрации достаточно успешно, то для ультрабазитов, метеоритов и подобным им материалов, характеризующихся низкими кларками REE (n10⁻⁴-10⁻⁶ масс %) наблюдаются определенные трудности. Фокусируясь на современных методах анализа содержаний REE в геологическом материале следует отметить, что в данный момент времени наиболее популярной является динамично развивающаяся масс-спектромет-

МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

Таблица 1

редкоземельных элементов при анализе методом ICP-MS

$ \begin{array}{c} eq: 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$	интерференции	1							
$\begin{split} & \begin{array}{c} & (1+1)^{1+1} (1+1)$	$^{16}O + ^{122}Sn(4.7)$	$^{14}N+^{124}Te(4.6)$	$^{16}\text{O} + ^{122}\text{Te}(2.5)$	40 Ar $+^{98}$ Ru(2,2)	$^{15}N+^{123}Sb(0.2)$	${}^{36}\text{Ar}+{}^{102}\text{Ru}(01)$			
$ \begin{array}{c} & \mbox{Markev} [0 < 1 \\ \mbox{Markev} [0 \\ Ma$	$^{17}\text{OH}+^{122}\text{Te}(2.5)$	$^{16}O+^{123}Te(0.9)$	$^{36}\text{Ar}+^{103}\text{Rb}(0.3)$	$^{1}\text{H}+^{138}\text{Ce}(0,2)$	$^{13}C + ^{126}Te(0.2)$	$^{18}O+^{121}Sb(0,1)$			
$ \begin{array}{c} \label{eq:constraints} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\frac{40}{4r}$ Ar $\pm \frac{96}{2}$ Du (5.7)	$14_{\rm NL+122} Sp(4.7)$	$^{12}C^{+124}T_{2}(4.6)$	$40 \text{ Ar} + \frac{96}{7} r(2.8)$	$14_{\rm NI+122}T_{\rm 2}(2.5)$	$^{13}C^{+123}Sb(0,5)$	15_{NL} 121 Sb(0.2)		
$ \begin{array}{c} \label{eq:constraint} & (-1) $	$14N + 124T_{-}(4.0)$	$160 + 122T_{2}(2,5)$	$40 \text{ Am} + \frac{98}{98} \text{ Dm}(2, 2)$	15N ₁ 123 Sh(0, 2)	10+10(2,3)	C+ SO(0,3)	IN+ 30(0,2)		
$\begin{array}{c} 10^{+-1} \mathrm{Sect}(0, 1) & (1-3) \mathrm{Sect}(1, 1) & (1-3) \mathrm{Sect}(1, 1) & (1-3) \mathrm{Sect}(1, 2) \mathrm{Sect}(1, 2) \\ 10^{+-1} \mathrm{Sect}(0, 1) & (1-3) \mathrm{Sect}(1, 2) & (1-3) \mathrm{Sect}(1, 2) & (1-3) \mathrm{Sect}(1, 2) \\ 10^{+-1} \mathrm{Sect}(0, 3) & (1-3) \mathrm{Sect}(1, 2) & (1-3) \mathrm{Sect}($	10^{+} 1e(4,0)	0+1e(2,3)	Af + Ru(2,2)	17 OI + 30(0,2)	Af + Ku(0,1)				
$ \begin{array}{c} \label{eq:constraints} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	120+120 (4,6)	14 $1/28$ $1/$	$40 + 10^{2} \text{ P}(1,1)$	$15 \times 127 \times 10^{-15}$	$^{13}OH^{+11}Sb(0,1)$				
$ \begin{array}{c} \label{eq:constraints} & \begin{array}{c} \label{eq:constraints} \\ e$	$^{12}C^{+130}Xe(4,0)$	$^{14}N^{+120}Xe(1,9)$	$^{+0}$ Ar $^{+102}$ Pd(0,8)	$^{10}N^{+12}$ (0,4)	$^{13}C^{+12}Xe(0,3)$				
$ \begin{array}{c} \label{eq:constraints} & = \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$^{15}C+^{120}Te(0,4)$	14 120	40 102	10.107	12 120				
$ \begin{array}{c} \label{eq: 1.1} & \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$^{12}C+^{130}Xe(4,0)$	$^{14}N+^{128}Xe(1,9)$	$^{40}\text{Ar} + ^{102}\text{Pd}(0,8)$	$^{15}N+^{12}I(0,4)$	$^{15}C+^{129}Xe(0,3)$				
$ \begin{array}{c} & a_{1} \\ & a_{1} \\ & (P_{1} + \mathbb{V}_{SC}(4)) \\ & (P_{1} + \mathbb{V}_{SC}$	$^{13}C+^{130}Te(0,4)$	$^{36}\text{Ar}+^{107}\text{Ag}(0,2)$	$^{15}\text{N}+^{128}\text{Te}(0,1)$						
$ \begin{tabular}{ c c c c c c c c c c c c c $	$^{40}\text{Ar}+^{104}\text{Pd}(9,3)$	$^{14}N+^{130}Xe(4,1)$	$^{16}\text{O}+^{128}\text{Xe}(1,9)$	$^{13}C+^{131}Xe(0,2)$					
$ \begin{array}{c} \label{eq:constraints} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$^{17}\text{OH}+^{128}\text{Xe}(1,9)$	$^{13}C+^{132}Xe(0,3)$	$^{18}\text{O}+^{127}\text{I}(0,2)$	$^{36}\text{Ar}+^{109}\text{Ag}(0,2)$					
$ \begin{array}{c} \label{eq:construction} & \label{eq:construction} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$^{16}\text{O}+^{130}\text{Xe}(4,1)$	$^{12}C+^{134}Ba(2,4)$	$^{40}\text{Ar}+^{106}\text{Cd}(1,2)$	$^{13}C+^{133}Cs(1,1)$					
	$^{12}C+^{136}Ba(7,7)$	$^{14}N+^{134}Ba(2,4)$	$^{40}\text{Ar}+^{108}\text{Cd}(0,9)$	$^{15}\text{N}+^{133}\text{Cs}(0,4)$					
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$^{16}\text{O}+^{134}\text{Xe}(10.4)$	$^{14}N+^{136}Xe(8.8)$	$^{14}N+^{136}Ba(7.8)$	$^{16}\text{O}+^{134}\text{Ba}(2.4)$					
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	40 Ar $+^{104}$ Pd(9 3)	$^{14}N+^{130}Xe(4.1)$	$^{16}\text{O} + ^{128}\text{Xe}(1.9)$	$^{13}C + ^{131}Xe(0.2)$					
$ \frac{1}{10^{-113}} \frac{1}{2} \frac{1}{10^{-113}} 1$	$^{13}C+^{134}Xe(0.1)$	$^{17}\text{OH}+^{130}\text{Ba}(0.1)$	0 110(1,5)	0 10(0,2)					
$ \begin{array}{c} C = Da(1,7) & P(1) = Da(2,7) & P(2) = Da(2,7) & P$	$^{12}C + ^{136}Ba(7.7)$	$^{14}N+^{134}Ba(2.4)$	$^{40}Ar + ^{108}Cd(0.9)$	$^{15}N+^{133}Cs(0.4)$	$^{12}C+^{136}Ce(0,2)$				
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	C^{+} $Da(7,7)$	11, Du(2,-)	7 u + Cu(0,9)	11, C3(0,4)	0, 00(0,2)				
$ \begin{array}{c} 0 \\ 0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ $	$^{16}O+^{134}Ve(10.4)$	$^{14}N+^{136}V_{2}(8.8)$	$^{14}N \pm ^{136}Ba(7.8)$	$^{16}O + ^{134}B_{2}(2.4)$	$^{12}C + ^{138}C_{2}(0,2)$	$^{14}N+^{136}C_{2}(0,2)$			
$ \begin{array}{c} \frac{1}{10^{-11}} \frac{1}{10^{-11}$	160 ± 136 V ₂ (8 8)	$160 \pm 136 Po(7.8)$	17 OL + 135 Pa(6.6)	$13C^{+139}L_{2}(1,1)$	$40 \text{Ar} \pm 112 \text{Sp}(0, 0)$	$^{14}N+^{138}C_2(0,2)$			
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$12C \pm 142$ Nd(26.8)	$170 \text{ H}^{137} \text{ Pa}(11.2)$	$12C^{+142}C_{2}(10,0)$	C+ La(1,1) ${}^{13}C+{}^{141}Dr(1,1)$	$40 \text{ Ar} + \frac{114}{5} \text{ m}(0,9)$	$15 \text{N} \pm 139 \text{Le}(0,2)$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1111150 Nd(5.6)	$17011 + 134D_{2}(2,4)$	13C + 138Be(0.8)	C + FI(1,1) $^{36}Ar + ^{115}In(0,2)$	$^{18}O + ^{133}C_{2}(0,2)$	10+1 La(0,4)			
$ \begin{array}{c} 0 \text{ H}^{-1} \text{ Bd}(3) & 24^{-1} \text{ II}(4,1) & 0^{-1} \text{ C}^{-1} \text{ C}^{-1} \text{ II}(4,1) & 4^{-1} \text{ II}(4,1) & 4^{-1} \text{ II}(5,1) & 4^{-1} \text{ II}(5,$	$17 \text{OL} + \frac{136}{17} \text{De}(7.8)$	$40 \text{ Ar} + \frac{113}{12} \ln(4.1)$	13C + 140Ca(1,0)	AI + III(0,3) $^{15}N + ^{138}D_{2}(0,3)$	1_{111} 1_{52} Cd(0,2)	$17011 + 136C_{2}(0,2)$			
$ \begin{array}{c} 0^{+} \operatorname{AdS}(8) & 0^{++-} \operatorname{Bd}(7,6) & 0^{++-} \operatorname{Bd}(7,6) & 0^{++-} \operatorname{Ed}(8,0) & 0^{+-} \operatorname{Ed}(8,0) & 0^{++-} \operatorname{Ed}(7,0) & 0^{++++} \operatorname{Ed}(7,0) & 0^{+++++} \operatorname{Ed}(7,0) & 0^{+++++} \operatorname{Ed}(7,0) & 0^{++++++} \operatorname{Ed}(7,0) & 0^{+++++++} \operatorname{Ed}(7,0) & 0^{++++++} \operatorname{Ed}(7,0) & 0^{++++++} \operatorname{Ed}(7,0) & 0^{+++++++} \operatorname{Ed}(7,0) & 0^{++++++++++++++++++++++++++++++++++++$	$160 + 136V_{2}(9, 9)$	AI + III(4,1)	17011 + 135Dr((0))	13C + 139L + (1, 1)	$^{40}A_{r} + ^{112}S_{r}(0,0)$	14NI 138 Cr(0,2)			
$ \begin{array}{c} \label{eq:constraints} \begin{array}{c} \label{eq:constraints} eq$	120 + 142 V $1/2(-9)$	17011+137 D (11.2)	$12C_{+}$ $142C_{-}$ (10.0)	$\frac{13}{13} + \frac{14}{12} + 14$	Ar + Sn(0,9)	N^+ Ce(0,2)			
$ \begin{array}{c} & \operatorname{Ar+1}^{rs}\operatorname{Sn}(4,2) & \operatorname{Ar+1}^{rs}\operatorname{Cd}(0,3) & \operatorname{Ch+1}^{rs}\operatorname{Cd}(0,3) & \operatorname{Ch+1}^{rs}\operatorname{Cd}(0,2) & \operatorname{Ch+1}^{rs}\operatorname{Cd}(0,1) & \operatorname{IIC+1}^{rs}\operatorname{Sn}(0,1) & \operatorname{IIC+1}^{\mathsf$	40 + 1150 (26,8)	$10H^{+30}Ba(11,3)$	130,142 140 2	17011 + 1380 + (0,0)	$^{13}\text{Ar}^{+13}\text{Sn}(0,6)$	$^{10}N^{+10}La(0,4)$			
$ \begin{array}{c} \label{eq:approx} & \mbox{"Ach}^{-n} {\rm Sn}(1,2) & \mbox{"Ach}^{-n} {\rm Sn}(2,1) & \mbox{"Ach}^{-n} {\rm Ach}^{-120} {\rm Sn}(2,1) & \mbox{"Ach}^{-120} $	Ar + Sn(0,3)	N+Ce(0,3)	$^{+}C^{+}$ Nd(0,3)	$12 \text{ Cm}^{+1} \text{Ce}(0,2)$	$15 \times 141 \mathbb{P}(0,1)$	180,1380, (0.1)	13 C . 143 L 1(0, 1)	36 + 120 - (0.1)	
$ \begin{array}{c} \label{eq:constraint} \begin{array}{c} \label{eq:constraint} eq$	$^{10}\text{Ar} + ^{110}\text{Sn}(14,2)$	N+12Ce(11,0)	¹⁰ Ar+ ¹¹⁰ Cd(7,6)	-C+-Sm(3,1)	$^{10}N^{+11}Pr(0,4)$	$^{10}O+^{10}Ba(0,1)$	$^{10}C+^{110}Nd(0,1)$	$^{\circ}$ Ar+ $^{\circ}$ Sn(0,1)	
$\begin{array}{c} \label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	100+157 La(0,2)	$^{36}\text{Ar}^{+121}\text{Sb}(0,2)$	$OH^{+10}Ba(0,1)$	19011-1391 (0.0)	180,1400,000				
$ \begin{array}{c} \label{eq:rescaled_rescale} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$^{1}\text{H}^{+13}/\text{Gd}(15,7)$	$^{10}O+^{142}Ce(11,0)$	$^{14}N^{+14}Sm(3,1)$	$^{10}OH^{+10}La(0,2)$	$^{10}O+^{140}Ce(0,2)$				
$\begin{array}{c} ^{+1+3} {}^{+3} {}^{-5} {}^{-1} {}^{-1} {}^{+3} {}^{-1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{-1} {}^{+1} {}^{+1} {}^{-1}$	$^{12}C^{+140}Nd(5,7)$	$1^{10}O+1^{14}Sm(3,2)$	$^{10}OH^{+141}Pr(0,2)$	$^{13}C+^{147}Sm(0,2)$	36 . 122				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{1}\text{H}^{+1.56}\text{Dy}(0,9)$	$^{10}O+^{141}Pr(0,2)$	$^{13}C+^{140}Nd(0,2)$	$^{19}OH + ^{140}Ce(0,2)$	$^{30}\text{Ar} + ^{123}\text{Sb}(0,1)$	15 141	10 - 120	12 - 142	26 . 120
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{1}\text{H}^{+155}\text{Gd}(14,7)$	$^{40}\text{Ar} + ^{110}\text{Sn}(14,2)$	$^{14}N+^{42}Ce(11,0)$	$^{40}\text{Ar}+^{110}\text{Cd}(7,6)$	$^{12}C+^{144}Sm(3,1)$	$^{15}N+^{141}Pr(0,4)$	$^{10}O+^{130}Ba(0,1)$	$^{13}C+^{143}Nd(0,1)$	$^{50}\text{Ar}+^{120}\text{Sn}(0,1)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$^{1}\text{H}+^{13}\text{Gd}(15,7)$	$^{10}\text{O}+^{142}\text{Ce}(11,0)$	$^{14}N+^{144}Sm(3,1)$	$^{19}OH+^{139}La(0,2)$	$^{10}O+^{140}Ce(0,2)$				
$ \begin{array}{ c } & f + f ^{6} Dy(2,3) & f - \xi^{1+8} Sm(0,1) & f - \xi^{1+8} Sm(0,2) & f - \xi^{1+8} Sm(0,3) & f $	$^{12}C+^{148}Nd(5,7)$	$^{10}\text{O}+^{144}\text{Sm}(3,2)$	$^{19}OH+^{141}Pr(0,2)$	$^{13}C+^{14}Sm(0,2)$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{1}\text{H}+^{160}\text{Dy}(2,3)$	$^{13}C+^{148}Sm(0,1)$	10 100						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{12}C+^{150}Nd(5,6)$	$^{40}\text{Ar}+^{122}\text{Sn}(4,7)$	$^{40}\text{Ar}+^{122}\text{Te}(2,5)$	$^{13}C+^{149}Sm(0,2)$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{36}\text{Ar}+^{127}\text{I}(0,3)$	$^{1}\text{H}+^{162}\text{Er}(0,1)$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{16}\text{O}+^{148}\text{Nd}(5,7)$	$^{14}\text{N}+^{150}\text{Nd}(5,6)$	40 Ar+ 124 Te(4,6)	$^{13}C+^{151}Eu(0,5)$	$^{12}C+^{152}Gd(0,2)$	$^{36}\text{Ar}+^{128}\text{Te}(0,1)$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1}\text{H}+^{164}\text{Er}(1,6)$	$^{13}C+^{152}Sm(0,3)$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{12}C+^{150}Nd(5,6)$	$^{40}\text{Ar}+^{122}\text{Sn}(4,7)$	40 Ar+ 122 Te(2,5)	$^{13}C+^{149}Sm(0,2)$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{16}\text{O}+^{148}\text{Nd}(5,7)$	¹⁴ N+ ¹⁵⁰ Nd(5,6)	$^{40}\text{Ar} + ^{124}\text{Te}(4,6)$	$^{13}C+^{151}Eu(0,5)$	$^{12}C+^{152}Gd(0,2)$	$^{36}\text{Ar} + ^{128}\text{Te}(0,1)$			
$\frac{^{13}\text{C}+^{154}\text{Sm}(0,2)}{^{14}\text{N}+^{154}\text{Gd}(2,1)} \xrightarrow{^{40}\text{Ar}+^{128}\text{Xe}(1,9)} \xrightarrow{^{16}\text{O}+^{152}\text{Gd}(0,2)} \xrightarrow{^{15}\text{N}+^{153}\text{Eu}(0,2)} \xrightarrow{^{13}\text{C}+^{155}\text{Gd}(0,2)} \xrightarrow{^{15}\text{C}+^{155}\text{Gd}(0,2)} ^{1$	$^{12}C+^{154}Gd(2,1)$	$^{13}C+^{153}Eu(0,6)$	$^{14}N+^{152}Gd(0,2)$	$^{15}N+^{151}Eu(0,2)$	$^{36}\text{Ar}+^{130}\text{Te}(0,1)$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{13}C+^{154}Sm(0,2)$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{14}N+^{154}Gd(2,1)$	$^{40}\text{Ar}+^{128}\text{Xe}(1.9)$	$^{16}\text{O}+^{152}\text{Gd}(0.2)$	$^{15}N+^{153}Eu(0.2)$	$^{13}C+^{155}Gd(0.2)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{40}\text{Ar} + ^{130}\text{Xe}(4.1)$	$^{16}\text{O}+^{154}\text{Gd}(2.1)$	$^{12}C+^{158}Dv(0.9)$	$^{13}C+^{157}Gd(0.2)$	$^{40}\text{Ar}+^{130}\text{Ba}(0,1)$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{13}C+^{156}Gd(0.2)$	$^{17}\text{OH}+^{152}\text{Gd}(0.2)$	$^{1}\text{H}^{+168}\text{Yb}(0.1)$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{14}N+^{154}Gd(2,1)$	$^{40}\text{Ar} + ^{128}\text{Xe}(1.9)$	$^{16}\text{O}+^{152}\text{Gd}(0,2)$	$^{15}N+^{153}Eu(0,2)$	$^{13}C+^{155}Gd(0,2)$				
$\frac{17}{OH} + \frac{154}{Gd(2,1)} - \frac{13}{13}C + \frac{158}{Gd(0,3)} - \frac{18}{O} + \frac{153}{Eu(0,1)} - \frac{16}{O} - \frac{16}{O$	$^{40}\text{Ar}+^{130}\text{Xe}(4,1)$	$^{16}\text{O}+^{154}\text{Gd}(2.1)$	$^{12}C+^{158}Dv(0.9)$	$^{13}C+^{157}Gd(0,2)$	$^{40}\text{Ar}+^{130}\text{Ba}(0,1)$				
$\frac{^{13}\text{C}^{+139}\text{B}(1,1)}{^{40}\text{A}^{+138}\text{B}(2,4)} \frac{^{14}\text{N}^{+158}\text{D}y(0,9)}{^{40}\text{A}^{+138}\text{B}(0,2)} \frac{^{15}\text{C}^{+169}\text{T}b(0,4)}{^{40}\text{A}^{+138}\text{B}(2,4)} \frac{^{14}\text{N}^{+160}\text{D}y(2,3)}{^{40}\text{A}^{+138}\text{B}(2,3)} \frac{^{15}\text{C}^{+168}\text{D}y(0,9)}{^{15}\text{N}^{+159}\text{T}b(0,4)} \frac{^{36}\text{A}r^{+138}\text{B}a(0,2)}{^{13}\text{C}^{+161}\text{D}y(0,2)} \frac{^{12}\text{C}^{+162}\text{Er}(0,1)}{^{12}\text{C}^{+162}\text{Er}(0,1)} \frac{^{40}\text{A}r^{+136}\text{B}a(7,8)}{^{13}\text{C}^{+169}\text{D}y(2,3)} \frac{^{15}\text{C}^{+169}\text{T}b(0,4)}{^{12}\text{C}^{+164}\text{Er}(1,5)} \frac{^{36}\text{A}r^{+138}\text{B}a(0,2)}{^{13}\text{C}^{+163}\text{D}y(0,3)} \frac{^{40}\text{A}r^{+136}\text{Ce}(0,2)}{^{14}\text{N}^{+162}\text{Er}(0,1)} \frac{^{16}\text{C}^{+169}\text{D}y(2,3)}{^{16}\text{C}^{+169}\text{D}y(2,3)} \frac{^{12}\text{C}^{+164}\text{Er}(1,5)}{^{16}\text{C}^{+164}\text{Er}(1,5)} \frac{^{36}\text{A}r^{+140}\text{Ce}(0,2)}{^{13}\text{C}^{+163}\text{D}y(0,3)} \frac{^{40}\text{A}r^{+136}\text{Er}(0,2)}{^{14}\text{N}^{+162}\text{Er}(0,1)} \frac{^{16}\text{C}^{+169}\text{D}y(2,3)}{^{16}\text{C}^{+169}\text{D}y(2,3)} \frac{^{12}\text{C}^{+164}\text{Er}(1,5)}{^{16}\text{C}^{+164}\text{Er}(1,5)} \frac{^{36}\text{A}r^{+140}\text{Ce}(0,2)}{^{13}\text{C}^{+163}\text{D}y(0,3)} \frac{^{40}\text{A}r^{+136}\text{Er}(0,2)}{^{16}\text{C}^{+169}\text{D}y(2,3)} \frac{^{12}\text{C}^{+164}\text{Er}(1,5)}{^{16}\text{C}^{+164}\text{Er}(1,5)} \frac{^{36}\text{A}r^{+140}\text{Ce}(0,2)}{^{13}\text{C}^{+163}\text{D}r}(0,2)} \frac{^{40}\text{A}r^{+136}\text{Er}(0,2)}{^{16}\text{C}^{+164}\text{Er}(1,5)} \frac{^{16}\text{C}^{-164}\text{Er}(1,5)}{^{16}\text{C}^{-164}\text{Er}(1,5)} \frac{^{16}\text$	$^{17}\text{OH}+^{154}\text{Gd}(2,1)$	$^{13}C+^{158}Gd(0.3)$	$^{18}O+^{153}Eu(0,1)$	0 00(0,2)					
$ \frac{^{40}Ar^{+134}Ba(2,4)}{^{40}Ar^{+136}Dy(2,3)} \frac{^{16}O^{+158}Dy(0,9)}{^{16}O^{+169}Dy(2,3)} \frac{^{15}N^{+159}Tb(0,4)}{^{12}C^{+164}Er(1,5)} \frac{^{36}Ar^{+138}Ba(0,2)}{^{36}Ar^{+139}La(0,3)} \frac{^{13}C^{+161}Dy(0,2)}{^{13}C^{+163}Dy(0,3)} \frac{^{14}O^{+162}Er(0,1)}{^{14}O^{+162}Er(0,1)} \frac{^{16}O^{+169}Dy(2,3)}{^{14}O^{+164}Er(1,5)} \frac{^{12}C^{+164}Er(1,5)}{^{36}Ar^{+140}Ce(0,3)} \frac{^{13}C^{+163}Dy(0,3)}{^{13}C^{+163}Dy(0,3)} \frac{^{14}O^{+162}Er(0,1)}{^{14}O^{+164}Er(1,5)} \frac{^{16}O^{+164}Er(1,5)}{^{16}O^{+164}Er(1,5)} \frac{^{16}O^{+163}Dy(0,3)}{^{16}O^{+163}Dy(0,3)} \frac{^{16}O^{+162}Er(0,1)}{^{16}O^{+164}Er(1,5)} \frac{^{16}O^{+164}Er(1,5)}{^{16}O^{+164}Er(1,5)} \frac{^{16}O^{+164$	$^{13}C+^{159}Tb(1,1)$	$^{14}\text{N}+^{158}\text{Dv}(0.9)$	$^{19}\text{OH}^{+153}\text{Eu}(01)$						
$ \frac{^{40}\text{Ar} + ^{134}\text{Ba}(2,4)}{^{40}\text{Ar} + ^{136}\text{Dy}(2,3)} \frac{^{16}\text{C} + ^{158}\text{Dy}(0,9)}{^{16}\text{C} + ^{158}\text{Dy}(0,9)} \frac{^{15}\text{N} + ^{159}\text{Tb}(0,4)}{^{16}\text{Ar} + ^{138}\text{Ba}(0,2)} \frac{^{13}\text{C} + ^{161}\text{Dy}(0,2)}{^{12}\text{C} + ^{162}\text{Er}(0,1)} \frac{^{12}\text{C} + ^{162}\text{Er}(0,1)}{^{16}\text{Ar} + ^{136}\text{Ba}(7,8)} \frac{^{16}\text{C} + ^{160}\text{Dy}(2,3)}{^{16}\text{C} + ^{160}\text{Dy}(2,3)} \frac{^{12}\text{C} + ^{164}\text{Er}(1,5)}{^{16}\text{Ar} + ^{136}\text{Ce}(0,3)} \frac{^{13}\text{C} + ^{163}\text{Dy}(0,3)}{^{13}\text{C} + ^{163}\text{Dy}(0,3)} \frac{^{14}\text{Ar} + ^{136}\text{Er}(0,1)}{^{16}\text{Ar} + ^{136}\text{Se}(6,2)} \frac{^{16}\text{Ar} + ^{136}\text{Er}(0,1)}{^{16}\text{Ar} + ^{136}\text{Se}(6,2)} \frac{^{16}\text{Ar} + ^{136}\text{Er}(0,1)}{^{16}\text{Ar} + ^{136}\text{Se}(6,2)} \frac{^{16}\text{Ar} + ^{136}\text{Er}(0,2)}{^{16}\text{Ar} + ^{136}\text{Er}(0,2)} ^{16$		2, 2, 2, (3, 2)	211 24(0,1)						
$\frac{^{40}\text{Ar} + ^{136}\text{Xe}(8,8)}{^{36}\text{Ar} + ^{136}\text{Ba}(7,8)} = \frac{^{16}\text{C} + ^{160}\text{Dy}(2,3)}{^{16}\text{C} + ^{160}\text{Dy}(2,3)} = \frac{^{12}\text{C} + ^{164}\text{Er}(1,5)}{^{36}\text{Ar} + ^{140}\text{Ce}(0,3)} = \frac{^{13}\text{C} + ^{163}\text{Dy}(0,3)}{^{13}\text{C} + ^{163}\text{Dy}(0,3)} = \frac{^{16}\text{Ce}(0,2)}{^{14}\text{Ar} + ^{136}\text{Ce}(0,2)} = \frac{^{16}\text{Ce}(0,2)}{^{16}\text{Ar} + ^{136}\text{Ce}(0,2)} = \frac{^{16}\text{Ce}(0,2)$	$^{40}\text{Ar} + ^{134}\text{Ba}(2.4)$	$^{14}N+^{160}Dv(2.3)$	$^{16}\text{O}+^{158}\text{Dv}(0.9)$	$^{15}\text{N}+^{159}\text{Tb}(0.4)$	$^{36}\text{Ar}+^{138}\text{Ba}(0,2)$	$^{13}C+^{161}Dv(0.2)$	$^{12}C+^{162}Er(0,1)$		
$\frac{^{36}\text{Ar} + ^{139}\text{La}(0,3)}{^{40}\text{Ar} + ^{136}\text{Eq}(2,8)} \frac{^{13}\text{C} + ^{162}\text{Dy}(0,3)}{^{11}\text{C} + ^{174}\text{Hf}(0,2)} + \frac{^{126}\text{C} + ^{162}\text{C} + ^{1$	$^{40}\text{Ar}^{+136}\text{Xe}(8.8)$	$^{40}\text{Ar} + ^{136}\text{Ba}(7.8)$	$^{16}\text{O}+^{160}\text{Dv}(2.3)$	$^{12}C+^{164}Er(1.5)$	$^{36}\text{Ar}^{+140}\text{Ce}(0.3)$	$^{13}C+^{163}Dv(0.3)$	$^{40}\text{Ar}^{+136}\text{Ce}(0.2)$	$^{14}N+^{162}Er(0\ 1)$	
$\frac{13}{12} \frac{13}{12} 13$	$^{36}\text{Ar}^{+139}\text{La}(0.3)$	$^{13}C+^{162}Dv(0.3)$	$^{1}\text{H}^{174}\text{Hf}(0.2)$				= = = = = = = = = = = = = = = = = = = =		
$[A_1] = A_1(0,0)$ $A_1 = Da_1(0)$ $U^{+} = D_2(2,0)$ $U^{+} = E_1(1,0)$ $A_1^{+} = U(0,0)$ $U^{+} = D_2(0,2)$ $A_1^{+} = U(0,2)$ $A_1^{+} = U(0,2)$ $A_1^{+} = U(0,2)$	40 Ar+ 136 Xe(8.8)	$^{40}\text{Ar} + ^{136}\text{Ba}(7.8)$	$^{16}\text{O}+^{160}\text{Dv}(2.3)$	$^{12}C+^{164}Er(1.5)$	$^{36}\text{Ar}+^{140}\text{Ce}(0.3)$	$^{13}C+^{163}Dv(0.3)$	40 Ar+ 136 Ce(0.2)	$^{14}N+^{162}Er(0,1)$	

рия с ионизацией в индуктивно-связанной плазме (ICP-MS), представляющая собой один из наиболее совершенных методов атомной спектроскопии, благодаря высокой чувствительности, точности и возможности выполнения многоэлементного анализа в ходе одного эксперимента. Однако, возможности этого метода применительно к анализу ультрамалых количеств REE в геологическом материале без специальной пробоподготовки все еще имеют известные ограничения, преодолению которых, при реализации соответствующего вида микроанализа в ИГГ УрО РАН, посвящена данная работа.

Выбор ICP-MS анализатора

Как известно, наиболее уязвимым моментом при анализе вещества методом ІСР-MS является наличие большого количества спектроскопических интерференций, возникающих вследствие специфического способа ионизации исходного вещества. В случае ICP-MS анализа REE перечень возможных масс-спектральных наложений в диапазоне масс 138-176 приведен в табл. 1. Очевидно, что наиболее рациональное решение возникающей проблемы может быть реализовано путем применения высокоразрешающего (M/DM>10000) массспектрометра, с двойной фокусировкой, и в частности FS-HR/ICP-MS Element2 [http:// www.thermo.com/com/cda/product/detail/ 1,1055,11756,00.html], представляющего собой одну из самых чувствительных и компактных масс-спектрометрических систем, позволяющих достигнуть пределов обнаружения на уровне ppt [Giessmann & Greb, 1994], и что особенно важно, для минимизации соответствующих изобарных интерференций [Jakubowski, 1998]. По скорости сканирования Element2 не уступает стандартным квадрупольным системам ICP-MS и значительно превосходит анализаторы, снабженные камерами соударений. Широчайший диапазон детектора позволяет в одной съемке образца анализировать матрицу и микропримеси, отличающиеся по концентрации друг от друга до 10 порядков. Экстремальные, для своего класса, точностные характеристики прибора позволяют использовать его и для изотопного скрининга, что определяется, в первую очередь, возможностью получения платообразной формы масс-пиков, причем точность определения изотопных отношений может достигать сотые доли процента. По перечисленным параметрам этот прибор значительно превосходит квадрупольные системы, что в конечном итоге и предопределило выбор ICP-MS анализатора. Операционные параметры прибора используемого в настоящей работе приведены в табл. 2.

Метод изотопного разбавления. К настоящему времени известны различные методики определения концентраций микроэлементов в геологическом материале, использующие предварительное разложение и последующий ICP-MS анализ с применением внутренней и внешней калибровок [Longerich et al., 1990; Jenner et al., 1990; Dulski, 1994, 2001; Eggins et al., 1997; Ронкин и др., 2005]. Однако сравнительно более совершенным, является анализ с помощью масс-спектрометрического метода изотопного разбавления ID-ICP-MS [Xie and Kerrich, 1995; Griselin et al., 1999; David et al., 1999; Weyer et al., 2002; Baker et al., 2002; LeFevre & Pin, 2002; Meisel et al., 2003]. Meтод изотопного разбавления, основным преимуществом которого является высокие точность и чувствительность, основан на использовании индикатора (spike, трассера, индикатора, метки) – элемента, приготовленного искусственно таким образом, что бы его изотопный состав имел отличие от природного (применяются как стабильные и радиоактивные изотопы). В настоящей статье обсуждается смешанный трассер (ориентированный на анализ ультрамалых содержаний REE методом FS-HR/ICP-MS), содержащий 10 обогащенных, относительно природных распространенностей, изотопов: ¹³⁸La, ¹⁴²Ce, ¹⁴⁵Nd, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁶¹Dv, ¹⁶⁸Er, ¹⁷¹Yb, ¹⁷⁶Lu (табл. 3).

Для успешного расчета концентраций анализируемого элемента ($C_{\rm E}$) в соответствии с выражением:

$$C_{E} = C_{SE} F \times (W_{S} / W_{E})$$
(1)

необходимо знать содержание этого элемента в трассере (C_{sE}), весовые количества образца (W_E), трассера (W_s), а также соответствующие изотопные составы трассера (I_s), образца (I_{sE}) и их смеси (I_M), что позволяет вычислить величину F как:

$$F=(I_{s}-I_{M})/[I_{s}\times(I_{M}-I_{sE})$$
(2)

Величина C_{se} (уравнение 1), характеризующая концентрацию обогащенного изотопа элемента в смешанном трассере (табл. 3), строго говоря, не отражает истинное содержание обогащенного изотопа, а отличается от него на некоторый коэффициент K, зависящий от атомного веса элемента (A_{we}), изотопа X (A_{wx}) и относительного содержания изотопа Y (A_{wy}) в природной смеси изотопов данного элемента:

 $K=(A_{WX}/A_{WE})\times(A_{WY})(Z/100)$ (3) где: Z=X/Y

Точное масс-спектрометрическое определение изотопного состава индикатора (в случае если он не является моноизотопом), является весьма непростой методической задачей в связи с дискриминационными эффектами при соответствующих измерениях.

МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

Таблица 2

Мощность высокочастотного генератора	1200 ватт
Расход охлаждающего газа	16 л/мин
Расход плазмообразующего газа	0,8 л/мин
Расход распыляющего газа	0,95 л/мин
Скорость расходования пробы	100 мкл/мин
Материал входного конуса	никель, диаметр входного отверстия 1 мм
Материал скимера	никель, диаметр входного отверстия 0,5 мм
Режим сканирования	комбинированный: скачки магнитным полем с дальнейшим сканированием ускоряющим напряжением
Распылитель	микроконцентрический тефлоновый
Распылительная камера	тефлоновая
Время интегрирования	0,1сек
Число точек на пик	20

Операционные параметры масс-спектрометра SF-HR/ICP-MS Element2

Таблица 3

Элемент	Трассерный изотоп	Измеряемое отношение	Природное отношение	Отношение в трассере	±1σ	Обогащение	
La	¹³⁸ La	¹³⁸ La/ ¹³⁹ La	0,00090	0,0681	0,0001	76	
Ce	¹⁴² Ce	¹⁴² Ce/ ¹⁴⁰ Ce	0,125	15,54	0,02	124	
Nd	¹⁴⁵ Nd	¹⁴⁵ Nd/ ¹⁴³ Nd	0,681	204,7	0,5	300	
Sm	¹⁴⁹ Sm	149Sm/147Sm	0,920	422,6	0,2	459	
Eu	¹⁵³ Eu	¹⁵³ Eu/ ¹⁵¹ Eu	1,092	124,5	0,2	114	
Gd	¹⁵⁷ Gd	¹⁵⁷ Gd/ ¹⁵⁶ Gd	0,765	49,71	0,08	65	
Dy	¹⁶¹ Dy	¹⁶¹ Dy/ ¹⁶³ Dy	0,759	111,33	0,28	147	
Er	¹⁶⁸ Er	¹⁶⁸ Er/ ¹⁶⁷ Er	1,168	120,8	0,2	103	
Yb	¹⁷¹ Yb	¹⁷¹ Yb/ ¹⁷² Yb	0,653	37,10	0,04	57	
Lu	¹⁷⁶ Lu	¹⁷⁶ Lu/ ¹⁷⁵ Lu	0,027	1,201	0,002	45	

Параметры смешанного REE трассера

В свою очередь, концентрации C_{SE} были определены также методом изотопного разбавления (анализ изотопного состава элементов с помощью твердофазного масс-спектрометра TIMS) относительно так называемых «опорных» растворов, приготовление которых осуществлялось «весовым» способом, из наиболее чистых (как по катиону, так и по аниону) стехиометрических солей редких земель, поскольку нестехиометричность солей применяемых для приготовления «опорных» растворов определяет значительную погрешность в дальнейших аналитических процедурах [Laeter et. al., 1973].

Дискриминация по массам

К настоящему времени общепризнано,

что дискриминация по массам является серьезным препятствием на пути достижения достоверности измерений с помощью масс-спектрометрических анализаторов. Впервые термин «mass bias» (в применении к масс-спектрометрии с индуктивно связанной плазмой) упоминается в работах [Vaughan, 1990; Ross, 1991; Turner, 1991; Ketterer, 1991], опубликованных в начале 1990-х годов. К этому же время времени относятся первые публикации по детальному анализу и разработке способов учета эффекта «mass bias» в аналитической практике [Heumann et. al., 1998; Ketterer, 1992, Walder, 1993; Walder et al., 1993].

Для количественного описания «mass bias» справедливо выражение [Heumann et. al., 1998]:

 $MB = [(I_{true}/I_m)-1] \times 1/\Delta m \qquad (4)$ где: $I_{true} = X_{true}/Y_{true}$ «истинное», $I_m = X_m/Y_m$ измеренное отношения изотопов X и Y, а Δm – разница их массовых чисел [а.е.м.]. Исходя из указанной зависимости величина MB может достигать значений > 0,01 на а.е.м., для масс меньших 100. Для аппроксимации экспериментально-полученной зависимости на графике в координатах «m-MB» используют линейное, степенное и экспоненциальное представления [Taylor et al., 1995; Platzner et al., 1999].

Для относительно широкого диапазона масс (от ⁴⁷Ti до ²³⁸U) обсуждаемая зависимость может быть представлена (рис. 1) в виде [Весker и Dietze, 2000], причем опорными точками для построения указанной зависимости могут быть известные значения отношений ⁴⁷Ti/⁴⁹Ti, ⁹⁹Ru/¹⁰¹Ru (измеренные при разрешении m* Δm^{-1} =300), ¹⁵¹Eu/¹⁵³Eu (m* Δm^{-1} =10000) и ¹⁸⁵Re/¹⁸⁷Re [Rosman и Taylor, 1998]. Интерполяция значений «mass bias» для остальных изме-

ренных отношений может быть вычислена, исходя из выражения:

 $MB [a.e.M.^{-1}] = a \times b^{m-c} + d$ (9)

где: m – массовое число [а.е.м., Loss, 2003], а (0,05~0,30), b (0,96~0,98), с (-10~10), и d (-0,005 ~0,005) – коэффициенты, диапазон вариаций типичных значений которых указан в круглых скобках соответственно.

Экспериментальное определение соответствующих изотопных отношений для Sr, Zr, Ba, Nd, Sm, Hf, Pb, и U стандартного образца базальта BCR-1 [Wilson, 1997], показало, что обсуждаемая эмпирическая зависимость (в пределах доверительных интервалов $\pm 1\sigma$) удовлетворительно описывает положение фигуративных точек в указанных координатах (см. рис. 1).

Кислотное разложение и хроматографическое отделение REE от матрицы проводилось в соответствии со схемой изображенной на рис. 2. Пробы горных пород (в виде тщательно перетертой пудры) весом около 50

Рис. 1. Дискриминация по массам «mass bias» как функция массового числа [a.e.м]. Параметры аппроксимирующей кривой (залитые кружки) вычислены по результатам измерения интенсивностей изотопов ⁴⁷Ti, ⁴⁹Ti, ⁹⁹Ru, ¹⁰¹Ru, ¹⁸⁵Re, ¹⁸⁷Re (черный точки). Дискриминация по массам для элементов Sr, Zr, Ba, Nd, Sm, Hf, Pb, и U (незалитые кружки), определенная по результатам измерений геологического стандарта (базальт) BCR-2 Геологической службы США, находится в удовлетворительном согласии с эмпирической кривой в пределах доверительных интервалов ($\pm 1\sigma$).

МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

Рис. 2. Упрощенная схема кислотного разложения геологического материала с последующим хроматографическим выделением суммы редких земель. Аналитические процедуры предусматривают двухэтапную экстракцию, первая стадия – непосредственное выделение суммы REE, вторая – доочистка, главным образом, от следов бария (см. табл. 1).

мг и строго определенным количеством смешанного трассера (исходя из условий оптимального смешения и минимизации погрешностей изотопного разбавления) помещались в тефлоновые капсулы, армированные кожухом из нержавеющей стали и разлагались под давлением смесью плавиковой и азотной кислот (соотношение 5:1), при температурах 130-180 °С до полного разложения на электроплитах с тефлоновым покрытием Bytac[®] и цифровым

Рис. 3. REE концентрации в стандартных образцах DTS-1 (дунит) и PCC-1 (перидотит), определенные в настоящей работе с помощью ID-SF-HR/ICP-MS, в сравнении с другими значениями [Jain et al., 2000; Eggins et. al., 1997; Govindoraju, 1994; Hooker et. al., 1975; Sands and Rosman, 1997; Falloon et al., 2006; Qi et al., 2005; Raczek et al., 2001; Dulski, 2001; Ebihara et al., 1995; Willbold and Jochum, 2005; Makishima and Nakamura, 2006]. Залитые кружки соответствуют значениям, полученным в настоящей работе (колонка (12) в табл. 4). Вертикальные отрезки демонстрируют разброс величин указанных в табл. 4, за исключением данных колонки (12).

управлением, позволяющим поддерживать температуру с высокой точностью. Дальнейшие аналитические процедуры предусматривали двухэтапную экстракцию, первая стадия – непосредственное выделение суммы REE, вторая – доочистку, главным образом, от следов бария (см. табл. 1). Реализованная методика хроматографического отделения суммы редких позволила существенно минимизировать влияние матричных элементов на конечные результаты ID-SF-HR/ICP-MS анализа.

Контроль контаминации ксеногенным материалом, посуда и реагенты

Все процедуры кислотного разложения стандартных и опытных образцов выполнялись в специальном стерильно-производственном помещении, в пределах которого было реализовано избыточное давление (относительно внешней среды), предварительно очищенного [Ронкин и др., 2005]. Используемые в работе кислоты (HF, HNO₂) и вода были очищены методом недокипения [Kuehner et. al., 1972; Mattinson, 1972; Рыбкин и др., 1987; Лепихина и др., 1988] в специально изготовленных из кварца и политетфторэтилена аппаратах для этих целей. Уровень загрязнений оценивался для каждой партии используемых реактивов и контролировался периодически при исполнении анализа.

Стандартные образцы

DTS-1 – стандартный образец дунита [Flanagan, 1967]. Отбор был осуществлен из окрестности Twin Systers, Hamilton, Washington, USA. Порода состоит из оливина (99 %) с ортопироксеном, клинопироксена. Кроме того, содержит хромит, амфибол и серпентин (продукт изменения оливина).

РСС-1 – стандартный образец перидотита был также описан в [Flanagan, 1967]. Отобран из массива ультрамафитов, именуемого Cazadero, Sonoma County, California, USA. Примерный минеральный состав: неизмененный оливин (58 %), ортопироксен (9 %), серпентин (32 %). Менее распространены хромит, вторичные магнетит, тальк и карбонат. Предполагается, что исходная порода представляла собой гарцбургит.

Результаты ID-SF-HR/ICP-MS анализа концентраций REE в стандартных образцах DTS-1 и PCC-1 приведены в табл. 4 и рис. 3. Кроме цифр, полученных в настоящей работе, табл. 3 содержит данные по содержанию REE в этих же образцах, опубликованных в соответствующей литературе [Jain et al., 2000; Eggins et. al., 1997; Govindoraju, 1994; Hooker et. al., 1975; Sands and Rosman, 1997; Falloon et al., 2006; Qi et al., 2005; Raczek et al., 2001; Dulski, 2001; Ebihara et al., 1995; Willbold and Jochum, 2005; Makishima and Nakamura, 2006], что по-

Таблица 3

Сравнительные результаты определений концентраций REE в стандартных образцах DTS-1 и PCC-1 (нг/г)

	(12)	24,3	52,6	•	22,4	4,26	0,95	•	,	4,89	•	4,6		9,03	1,96
	Kvar % (1-10)	9,4	32	3,0	=	13	22	7,1	15	17	10	7,6	20	5,6	9,1
	Сред- нее (1-10)	24,8	62,7	6,15	24,3	4,17	1,01	4,18	0,73	4,21	1,28	4,59	1,08	9,27	2,05
<u>-</u>	(10)	22,6	53	6,2	24,6	4,44	0,88	4,37	0,9	4,94	•	4,85		9,62	2,08
Ξ	(6)	22,6	45,3	5,8	21,5	4,2	0,9	4,3	0,6	4,5	1,4	4,5	0,9	9,4	2,0
	(4)	29	72	6,3	29	4,6	1,2	3,8	0,8	ω	1,3	4	1,4	10	2,4
	(3)	24,6	100	6,3	23,4	3,1	1,3	4,4	0,7	3,8	1,4	5		6	1,9
	(2)	25	51	6,1	23	4,2	0,7	3,8	0,65	4,8	1,21	4,7	1,02	9,1	1,99
	(1)	25	55	6,2	24	4,5	1,1	4,4	0,7	4,2	1,1	4,5	1,0	8,5	1,9
	(12)	27,1	58,5	•	28,1	5,9	1,1			10,1		11,3		21,1	4,4
	K _{var} % (1-11)	78	24	26	28	24	37	43	18	7,5	9,1	5,3	10	7,9	8,4
	Сред- нее (1-11)	49,7	67,1	8,17	31,7	6,33	1,18	7,85	1,13	9,63	2,73	11,3	2,45	22,8	4,80
	(11)	30,9	59,8	8,1	25,6	7,9	0,6	8,9	1,5	10,9	3,1	11	2,4	25,5	4,9
	6	31,5	57,0	6,5	28,2	5,3	1,1	6,2	1,1	9,9	2,9	11,5	2,5	23,3	4,9
Ŀ	8)	50,1	82,2	8,83	32,1	5,96	1,04	5,29	1,11	9,57	2,76	11,1	2,43	21,7	4,42
PO	6	42	56	7,3	27	5,9	1,1	6,8	1,2	9,7	2,9	11,2	2,7	22,5	4,7
	(9)			•		9,6		9	•			•			•
	(2)	150	80	ı	51	7	2	14		10		12		25	ı
	(4)	52	100	13	42	6,6	1,8	14	0,8	10	2,5	12	2,7	24	5,7
	(3)	29	53	6,8	25	5	1,1	6,1	1,2	8,7	2,7	11,3	•	21,3	4,6
	(2)	29	56	7,2	28	5,1	1,00	5,93	1,12	9,41	2,69	11,3	2,44	22,1	4,65
	(1)	33	60	7,6	26	4,9	0,9	5,3	-	8,5	2,3	10	7	20	4,5
Эл-т		La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu

- [Fallon et al., 2006]; 8 - [Qi et al., 2005]; 9 - [Makishima and Nakamura, 2006]; 10 - [Raczek et al., 2001]; 11 - [Willbold and Jochum, 2005]; 12 -

настоящая работа, n=5.

МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

ЕЖЕГОДНИК-2007

зволяет произвести их взаимное сравнение, в связи с чем на рис. З по оси ординат приведены отношения полученных нами величин (С_м) к среднему значению (С_в), вычисленному по результатам, полученным авторами работ [Jain et al., 2000; Eggins et. al., 1997; Govindoraju, 1994; Hooker et. al., 1975; Sands and Rosman, 1997; Falloon et al., 2006; Qi et al., 2005; Raczek et al., 2001; Dulski, 2001; Ebihara et al., 1995; Willbold and Jochum, 2005; Makishima and Nakamura, 2006]. Кроме того, вертикальными отрезками обозначены пределы вариаций значений концентраций соответствующих элементов, за исключением полученных в настоящей работе. Для обоих стандартов большинство проанализированных элементов демонстрирует незначительную разницу (рис. 4), причем разброс значений концентраций REE для дунита DTS-1 менее, нежели для перидотита РСС-1, несмотря на меньшее содержание суммы редких земель (150 против 227 нг/г, соответственно), что, возможно, связано с большей представительностью DTS-1 в сравнении с РСС-1. Рассмотрение графиков, нормированных к хондриту значений, полученных методом перечисленными выше авторами и данных ID-SF-HR/ICP-MS, позволяет усомниться в правильности предложенных авторами [Govindoraju, 1994] величин содержаний для перидотита РСС-1, поскольку характер нормированных спектров, построенных по предлагаемым значениям C_в [Govindoraju, 1994], имеет явно выраженный «пилообразный» облик. То же самое, однако в менее выраженной форме, характерно и для обоих стандартов по La и Ce. Более сходящимися значениями с полученными в настоящей работе результатами характеризуются данные, полученные авторами в последние годы [Willbold and Jochum, 2005; Makishima and Nakamura, 2006], что, вероятно, связано с применением более совершенной аналитики. Таким образом, в результате проведенного с помощью ID-SF-HR/ICP-MS анализа содержаний REE перидотита PCC-1 и дунита DTS-1, можно утверждать о коррекции рекомендованных [Govindoraju, 1994] абсолютных значений концентраций исследованных стандртов.

Заключение

Реализованная методика определения концентраций редких элементов масс-спектрометрическим методом изотопного разбавления (ID-SF-HR/ICP-MS) позволяет существенно минимизировать известные погрешности ICP-MS анализа, связанные с влиянием интерференций, изотопной дискриминации и матричного влияния, что в конечном итоге позволяет успешно, а главное метрологически аттестованно анализировать следовые количества REE в мафических и ультрамафических породах, что существенно расширяет круг решаемых с помощью геохимических методов исследований геологических проблем.

Авторы выражают благодарность коллегам из Мэриленского Университета (США) за предоставленные стандартные образцы дунита (DTS-1) и перидотита (PCC-1).

Список литературы

Лепихина О.П., Ронкин Ю.Л., Рыбкин В.В. Способы снижения фоновых загрязнений при изотопном анализе Rb и Sr // Ежегодник-1987. Екатеринбург: ИГГ УрО АН, 1988. С. 126-129.

Ронкин Ю.Л., Лепихина О.П., Голик С.В. и др. Мультиэлементный анализ геологических образцов кислотным разложением и окончанием на HR ICP-MS Element2 // Ежегодник-2004. Екатеринбург: ИГГ УрО РАН, 2005. С. 423-433.

Ронкин Ю.Л., Лепихина О.П., Ершов В.М. Стерильно-производственное помещение для химической подготовки проб для изотопного анализа // Тезисы научной конференции «Изотопное датирование геологических процессов: новые методы и результаты». 2000. С. 297-299.

Рыбкин В.В., Ронкин Ю.Л., Лепихина О.П. О возможности применения метода направленной кристаллизации с целью концентрирования микроэлементов для изотопного анализа // Методы изотопной геологии. Москва: АН СССР, 1987. С. 194-195.

Baker J., Waight T., Ulfbeck D. Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry // Geochimica et Cosmochimica Acta 66. P. 3635–3646.

Becker J., Dietze H. Precise and accurate isotope ratio measurements by ICP-MS // Fresenius Journal of Analytical Chemistry. 2000. 368. P. 23-30.

David K., Birck J., Telouk P., Allegr'e C. Application of isotope dilution for precise measurement of Zr/Hf and Hf-176/Hf-177 ratios by mass spectrometry (IDTIMS/ID-MC-ICP-MS) // Chemical Geology. 1999. V. 157. P. 1-12.

De Laeter J.R., Vernon M.J., Compston W. Revision of lunar Rb-Sr ages // Geochimica et Cosmochimica Acta. V. 37. Issue 3. March 1973. P. 700-702.

Dulski P. Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values // Geostandards Newsletter: Journal of Geostandards and Geoanalysis. 2001. V. 25. P. 87-125.

Dulski P. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare-earth elements in geological samples by Inductively-Coupled Plasma-Mass Spectrometry / / Fresenius Journal of Analytical Chemistry. 1994. V. 350. P. 194-203.

Dulski P. Reference materials for geochemical studies: New analytical data by ICPMS and critical discussion of reference values. Geostandards Newsletter // Journal of Geostandards and Geoanalysis. 2001. V. 25. P. 87-125.

Ebihara M., Kimura S., Akaiwa H. Radiochemical neutron activation analysis of trace lanthanoids in geological and cosmochemical samples // Fresenius Journal of Analytical Chemistry. 1995. V. 351. P. 514-520.

Eggins S.M., Woodhead J.D., Kinsley L.P.J. et all. A simple method for the precise determination of i 40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation // Chemical Geology. 1997. V. 134. P. 311-320.

Eggins S., Woodhead J., Kinsley L. et all. A simple method for the precise determination of 40 trace elements in geological samples by ICPMS using enriched isotope internal standardization // Chemical Geology. 1997. V. 134. P. 311-326.

Falloon T.J., Berry R.F., Robinson P. et all. Whole-rock geochemistry of the Hili Manu peridotite, East Timor: Implications for the origin of Timor ophiolites // Australian Journal of Earth Sciences. 2006. V. 53. P. 637-649.

Flanagan F.J. U.S. Geological Survey silicate rock standards // Geochimica el Cosmochimica Acta. 1967. V. 31. P. 289-308.

Giessmann U., Greb. U. High resolution ICP-MS – a new concept for elemental mass spectrometry // Fresenius Journal of Analytical Chemistry, 1994. V. 350. № 4-5. P. 186-193.

Govindaraju K. Compilation of working values and sample description for 383 geostandords Geostandards Newsletier, 1994. 18

(Special Issue). 158 p.

Griselin M., Pearson D., Ottley et all. A low-blank, low detection limit method for REE analysis of geological samples by isotope dilution ICP-MS. In: Holland, J., Tanner, S. (Eds.), Plasma Source Mass Spectrometry – New Developments and Applications, 234 // Royal Society of Chemistry Special Publication. 1999. P. 246-252.

Heumann K.G., Gallus S.M., Radlinger G. et all. Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry // Journal of Analytical Atomic Spectrometry. 1998. V. 13. P. 1001-1008.

Hooker P.J., O'Nions R.K., Pankhurst R.J. Determination of rare-earth elements in USGS standard rocks by mixed-solvent exchange and mass-spectrometric isotope dilution // Chemical Geology. 1975. V. 16. P. 189-196.

Jain J.C., Field M.P., Neal C.R. et all. Determination of the REE in geological reference materials DTS-1 (dunite) and PCC-1 (peridotite) by ultrasonic and microconcentric desolvating nebulisation ICP-MS // Geostandards Newsletter, 2000. V. 24. №. 1. P. 65-72

Jakubowski N., Moens L., Vanhaecke F. Sector field mass spectrometers in ICP-MS // Spectrochimica Acta Part B 53, 1998. P. 1739-1763.

Jenner G., Longerich H., Jackson S. et all. ICP-MS – A powerful tool for highprecision traceelement analysis in Earth sciences - Evidence from analysis of selected USGS reference samples // Chemical Geology. 1990. 83. P. 133-148.

Ketterer M.E. Assessment of overall accuracy of lead isotope ratios determined by inductively coupled plasma mass spectrometry using batch quality control and the Youden two-sample method // J. Anal. At. Spectrom. 1992. V. 7. P. 1125-1129.

Ketterer M.E., Peters M.J., Tisdale P.J. Verification of a correction procedure for measurement of lead isotope ratios by inductively coupled plasma mass spectrometry // J. Anal. At. Spectrom. 1991. V. 6. P. 439-443.

Kuehner E.C., Alvarez R. Paulsen P.J. et all. Production and analysis of special high purity acids by sub-boiling distillation // Analytical Chemistry. 1972. V. 44. No. 12. P. 2050-2056.

LeFevre B., Pin C. Determination of Zr, Hf, Th and U by isotope dilution and inductively coupled plasma-quadrupole mass spectrometry after concomitant separation using extraction chromatography. Geostandards Newsletter // The Journal of Geostandards and Geoanalysis, 2002. 26. P. 161-170. Longerich H., Jenner G., Fryer B. et all. Inductively coupled plasma-mass spectrometric analysis of geological samples – a critical evaluation based on case-studies. Chemical Geology. 1990. V. 83. P. 105-118.

Loss R. Atomic weights of the elements 2001 – (IUPAC Technical Report) // Pure and Applied Chemistry. 2003. V. 75. P. 1107-1122.

Makishima A., Nakamura E. Determination of major, minor and trace elements in silicate samples by ICP-QMS and ICP-SFMS applying isotope dilution-internal standardisation (ID-IS) and multi-stage internal standardization // Geostandards and Geoanalytical Research. 2006. V. 30. P. 245-271.

Mattinson J.M. Preparation of hydrofluoric, hydrochloric and nitric acids at ultralow lead levels // Analytical Chemistry. 1972. V. 44. No. 9. P. 1715-1716.

Meisel T., Fellner N., Moser J. A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir, and Pt) using IDICP-MS with an inexpensive on-line matrix seperation in geological and environmental materials // Journal of Analytical Atomic Spectrometry. 2003. V. 18. P. 720-726.

Platzner I., Becker J., Dietze H. Stability study of isotope ratio measurements for uranium and thorium by ICP-QMS // Atomic Spectroscopy. 1999. V. 20. P. 6-12.

Qi L., Zhou M.F., Malpas J. et all. Determination of rare earth elements and Y in ultramafic rocks by ICP-MS after preconcentration using $Fe(OH)_3$ and $Mg(OH)_2$ coprecipitation // Geostandards and Geoanalytical Research. 2005. V. 29. P. 131-141.

Raczek I., Stoll B., Hofmann A.W. et all. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-2, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards Newsletter // The Journal of Geostandards and Geoanalysis. 2001. V. 25. P. 77-86.

Rosman K., Taylor P. Isotopic compositions of the elements 1997 // Pure and Applied Chemistry. 1998. V. 70. P. 217-236.

Ross B.S., Hieftje G.M. Alteration of the Ion-Optic Lens Configuration to Eliminate Mass-Dependent Matrix-Interference Effects in Inductively Coupled Plasma-Mass Spectrometry // Spectrochim. Acta. 1991. Part B. 46B. P. 1263-1273.

Sands D.S., Rosman K.J.R. Cd. Gd and Sm concentrations in BCR-1. BHVO-1. BIR-1. DNC-1. MAG- I, PCC-1 and W-2 by isotope dilution thermal ionisation mass spectrometry // Geostandards

Newsletter The Journal of Geostandards and Geoanalysis. 1997. V. 21. P. 77-83.

Taylor D., Bievre P. D., Walder A. et all. Validation of the analytical linearity and mass discrimination correction model exhibited by a multiple collector inductively coupled plasma mass spectrometer by means of a set of synthetic uranium isotope mixtures // Journal of Analytical Atomic Spectrometry. 1995. V. 10. P. 395-398.

Turner P.J. Isotope ratio measurement by hexapole ICP-MS: mass bias effect // Applications of Plasma Source Mass Spectrometry / Ed. G. Holland, A.N. Eaton. Cambridge: Royal Society of Chemistry. 1991. P. 71-78.

Vaughan M.A., Horlick G. Ion trajectories through the input ion optics of an inductively coupled plasma – mass spectrometer // Spectrochim. Acta. Part B, 1990. V. 45. P. 1301-1311.

Walder A.J. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, hafnium and hafnium – lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer / A.J. Walder, I. Platzner, P.A. Freedman // J. Anal. At. Spectrom. 1993. V. 8. № 1. P. 19-23.

Walder A.J., Koller D., Reed N.M. et all. Isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry incorporating a high efficiency nebulization system // J. Anal. At. Spectrom. 1993. V. 8. № 7. P. 1037-1041.

Weyer S., Munker C., Rehkomper M. et all. Determination of ultra-low Nb, Ta. Zr and Hf concentrations and the chondritic Zr/Hf and Nb/ Ta ratios by isotope dilution analyses with multiple collector ICP-MS // Chemical Geology. 2002. V. 187. P. 295-313.

Willbold M., Jochum K.P. Multi-element isotope dilution sector field ICP-MS: A precise technique for the analysis of geological materials and its application to geological reference materials // Geostandards and Geoanalytical Research. 2005. V. 29. P. 63-82.

Wilson S.A. The collection, preparation, and testing of USGS reference material BCR-2, Columbia River, Basalt // U.S. Geological Survey Open-File Report 98-xxx. 1997.

Xie Q., Kerrich R. Application of isotopedilution for precise measurement of Zr and Hf in low-abundance samples and international reference materials by inductivelycoupled plasma-mass Spectrometry - Implications for Zr (Hf) REE fractionations in komatiltes // Chemical Geology. 1995. V. 123. P. 17-27.