ГЕОХИМИЯ

КАРБОНАТИТЫ ИЛЬМЕНО-ВИШНЕВОГОРСКОГО КОМПЛЕКСА: ГЕОХИМИЧЕСКИЕ И ГЕНЕТИЧЕСКИЕ ОСОБЕННОСТИ, РОЛЬ СИЛИКАТНО-КАРБОНАТНОЙ НЕСМЕСИМОСТИ И ФЛЮИДНО-ГИДРОТЕРМАЛЬНЫХ ПРОЦЕССОВ В КАРБОНАТИТООБРАЗОВАНИИ

И. Л. Недосекова, С. В. Прибавкин

Карбонатиты Ильмено-Вишневогорского щелочного комплекса (ИВК) имеют ряд особенностей геологии и геохимии, отличающих их от кольцевых комплексов щелочно-ультраосновной формации (УЩК), что явилось причиной продолжительной дискуссии о правомерности отнесения эндогенных карбонатных пород ИВК к карбонатитам [2, 5, 7, 19 и др.]. Наиболее дискуссионным вопросом в проблеме карбонатитообразования ИВК является пространственная и генетическая связь кар-

Рис. 1. Схема геологического строения северной части Вишневогорского массива (по материалам В. Я. Левина и др. [10]).

метаморфические образования игишской, саитовской, аргазинской, кыштымской толщ (R₁₋₂); 2 – плагиогнейсы, амфиболиты вишневогорской толщи (PR₁);
метаморфизованные гипербазиты; 4 – метасоматиты Центральной щелочной полосы (фениты, нефелинполевошпатовые мигматиты, миаскиты, карбонатиты);
миаскиты Вишневогорского массива; 6 – массивы гипербазитов: 1 – Булдымский, 2 – Сунгульский, 3 – Халдихинский, 4 – Спирихинский, 5 – Каганский;

бонатных пород ИВК с нефелиновыми сиенитами и зонами фенитизации вне традиционных для УЩК серий щелочно-ультраосновных магматитов и, как следствие, вопрос родоначальных магм для ИВК. Предметом дискуссии является также механизм формирования карбонатных жил ИВК, отличающийся отсутствием отчетливо выраженных геологических признаков магматического происхождения, широким распространением карбонатитов в виде жильных тел, штокверков, метасоматических зон, зависимостью состава карбонатитов от состава вмещающих пород. Особенностью ИВК является несколько иной характер геохимической эволюции карбонатитообразующих расплавовфлюидов по сравнению с карбонатитами УЩК. Одним из ключевых вопросов генезиса карбонатитов ИВК является роль процессов силикатнокарбонатной несмесимости и роль флюидов в карбонатитообразовании.

Нами получены новые данные для карбонатитов и миаскитов ИВК, свидетельствующие о возможности их формирования в результате силикатнокарбонатной несмесимости миаскитовых и карбонатитовых расплавов. Проведено сопоставление геохимических и изотопно-геохимических особенностей карбонатитов ИВК с классическими карбонатитовыми комплексами щелочно-ультраосновной формации.

Были изучены карбонатиты Вишневогорского миаскитового массива (Вишневогорское месторождение Nb), Булдымского ультрабазитового массива (Булдымское месторождение Nb и REE), карбонатиты Центральной щелочной полосы (Потанинское месторождение Nb, Байдашевское, Ишкульское, Увильдинское рудопроявления), карбонатиты Ильменогорского миаскитового массива и Ильменского рудопроявления Nb и REE.

Карбонатиты в ИВК залегают преимущественно в Вишневогорском массиве миаскитов, в метасоматитах Центральной щелочной полосы (ЦЩП), а также в экзоконтактовом ореоле миаскитовых интрузивов – в фенитизированных породах вишневогорской свиты (PR), в массивах ультрабазитов – Булдымском, Спирихинском, Халдихинском и др. (рис. 1).

Карбонатиты, залегающие в миаскитах Вишневогорского массива, представлены ранними и поздними кальциокарбонатитами (сёвитами І и сёвитами II). Сёвиты I образуют пластообразные и жильные тела протяженностью в сотни метров и мощностью до 10 м, залегающие согласно расслоенности миаскитов и контактам миаскитовой интрузии. Сёвиты I – массивные и брекчиевидные разности кальцитового состава, содержат перемещенные округлые включения миаскитов и миаскит-пегматитов и минералы миаскитов нефелин, калиевый полевой шпат, биотит, а также акцессорные гатчеттолит, красно-бурый пирохлор, циркон, ильменит, апатит, магнетит, пирротин, пирит. Сёвиты II образуют гнёзда и жилы в телах ранних карбонатитов и в миаскитах, иногда пересекают ранние карбонатиты. Сёвиты II содержат биотит, апатит, красный пирохлор, циркон, ильменит, пирротин, пирит.

Карбонатиты в экзоконтактовом ореоле миаскитовых массивов, а также в породах Центральной щелочной полосы образуют штокверки, жильные тела выполнения и метасоматические зоны. Ранние доломит-кальцитовые карбонатиты Булдымского массива (сёвиты III) содержат тетраферрифлогопит, рихтерит и акцессорные пирохлор, циркон, магнетит, ильменит, пирротин, пирит. Поздние доломитовые карбонатиты (бефорситы IV) содержат редкоземельную акцессорную минерализацию – монацит, эшинит, REE-пирохлор, ортит, а также флогопит (или хлорит), винчит, апатит, магнетит, ильменит, циркон.

По содержаниям редких элементов все разновидности карбонатитов ИВК сопоставимы со среднемировыми составами кальцио- и магнезиокарбонатитов [28]. Они имеют высокие концентрации Sr (11000–23000), Ва (300–3000), ∑REE (1500–3200) и значительные вариации Nb (до 1500), Zr (до 40), V (до 135), Th (до 1400) (г/т) (табл. 1, 2).

Сёвиты I Вишневогорского массива имеют высокие, но меньшие по сравнению с сёвитами II, концентрации Sr (11670–12340 г/т), Ва (550–660 г/т), REE (1500–1610 г/т), характерные для высокотемпературных разностей карбонатитов. Отношение Nb/Ta = 11–98 (в среднем 43) близко отношению Nb/Ta в магматических карбонатитах. Отношение Sr/Ba = 17–21 достаточно высокое, что характерно для высокотемпературных глубинных фаций карбонатитов в отличие от вулканических карбонатитов. Значения *Eu/Eu = 0.96–0.91 в сёвитах I близки к миаскитовым, что подтверждает их принадлежность к ранним высокотемпературным дифференциатам миаскитовых магм.

Сёвиты II Вишневогорского массива имеют максимальные содержания Sr (16500–21980 г/т) и REE (2900–3210 г/т) при высоких индикаторных отношениях Nb/Ta (582–1310), Sr/Ba (78) и в них отмечается некоторое снижение *Eu/Eu (до 0.75), что характерно для более поздних высокотемпературных членов карбонатитовых серий.

Сёвиты III Булдымского массива имеют близкие содержания Sr и более высокие – Nb, REE, Mn, HREE (низкое La/Yb = 18–37), относительно сёвитов I Вишневогорского массива.

Бефорситы IV Булдымского массива имеют максимальные содержания REE (до 48000 г/т) и Th (до 1400 г/т), концентрируя их в виде самостоятельных фаз – монацита и эшинита. Содержания Sr, Ba и Nb в них ниже при максимальных значениях и вариациях Nb/Ta, Zr/Hf и Sr/Ba, LREE/HREE, что характерно для низкотемпературных членов карбонатитовых серий.

Относительно карбонатитов кольцевых комплексов щелочно-ультраосновной формации все сёвиты ИВК содержат повышенные концентрации Sr (до 11518 г/т – сёвит I, до 21980 г/т – сёвит II) (рис. 2а). В ранних, наиболее обогащенных стронцием, высокотемпературных карбонатитах УЩК содержится в среднем лишь 5800 г/т Sr. Отношение Sr/Ba в сёвитах ИВК также повышено (17–78), что характерно для высокотемпературных глубинных фаций карбонатитов в отличие от вулканических карбонатитов, где Sr/Ba отношение равно 1.2–2.6 [16]. Эволюционный ряд карбонатитов ИВК от ранних (севитов I) к поздним (сёвитам II) характеризуется уменьшением Ba/Sr отношения при уменьшении концентраций Ba (рис. 3а).

По содержаниям Nb (3.5–930 г/т) и Та (0.01– 3.64 г/т) карбонатиты ИВК беднее по сравнению с карбонатитами УЩК (Nb – в среднем 800 г/т и до 4%, Та – в среднем 47 г/т и до 0.2%). При этом характерно высокое отношение Nb/Та и значительные его вариации (Nb/Ta = 66–1310) с максимальными значениями в пирохлорсодержащих разностях. В сёвитах I отношение Nb/Ta = 9–98 (в среднем равно 43 [10]), что близко отношению Nb/Ta в магматических карбонатитах [3]. В сёвитах II – Nb/Ta отношение значительно выше (217–1310). Высокие значения и значительные вариации Nb/Ta отношения характерны, как известно, для флюидногидротермальных процессов.

Содержания Zr (0.1–110 г/т) и Hf (0.1–1.0 г/т) в карбонатитах ИВК несколько ниже, чем в карбонатитах УЩК (рис. 4). Вариации Zr/Hf отношения (18-92) показывают как хондритовые, так и сверххондритовые значения (рис. 5а), что типично для карбонатитов и щелочных пород [21], а также для других сильнодифференцированных и флюидонасыщенных магматических систем [20]. На диаграмме Zr-Zr/Hf карбонатиты ИВК формируют два линейных тренда. Первый тренд составляют карбонатиты и миаскиты Вишневогорского массива и Центральной щелочной полосы, второй тренд образован карбонатитами Булдымского массива и фенитового ореола Вишневогорской интрузии. В карбонатитах и миаскитах Вишневогорского массива устанавливается близкая к линейной закономерность уменьшения содержания Zr и Zr/Hf отношения от ранних к поздним карбона-

			Миаскиты			Фениты					
Компоненты	1	2	3	4	5	6	7	8			
	324	337	338	Сав-4	По-4	343	309	К-18			
SiO ₂	53.62	57.69	53.62	57.51	53.63	72.43	45.27	40.0			
TiO ₂	0.58	0.40	0.67	1.24	0.43	0.319	0.74	0.97			
Al ₂ O ₃	20.98	21.55	18.45	17.55	20.29	12.58	3.07	9.04			
Fe ₂ O ₃	1.64	1.25	1.43	1.90	1.42	Не опр.	9.76	8.46			
FeO	1.95	1.05	2.10	3.2	1.4	2.89	9.55	6.10			
MnO	0.16	0.05	0.09	0.21	0.07	0.05	0.60	0.45			
MgO	0.96	0.55	1.03	1.57	0.72	0.39	16.64	20.64			
CaO	2.21	1.02	3.95	2.80	3.11	0.93	5.55	1.17			
Na ₂ O	6.60	6.20	6.00	5.8	9.7	5.1	4.30	0.80			
K ₂ O	7.97	7.14	7.62	5.66	5.15	5.50	3.28	9.61			
P_2O_5	0.23	0.02	0.10	0.24	0.04	0.04	0.01	0.04			
S	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.			
П.п.п.	2.5	2.0	3.5	1.8	2.7	0.4	2.7	2.00			
Σ	99.45	98.91	98.61	99.48	98.67	100.64	101.43	99.33			
Li	9	2	5	32	2.2	43	55	189			
Rb	59	34	42	114	55	91	145	597			
Be	0.2	0.6	1.8	3.0	0.9	1.3	7	7			
Sr	2317	1661	2530	1405	1647	707	505	189			
Ва	1816	5667	9857	1589	2406	422	67	1277			
Sc	2	1	1	3	1	5	28	5			
V	179	194	100	78	69	33	263	119			
Cr	93	84	70	8	4	20	Не опр.	Не опр.			
Со	0.4	2	4	9	7	11	59	44			
Ni	1	16	2	9	7	27	2966	1850			
Cu	0.3	7	8	34	30	18	15	0.9			
Zn	61	22	64	87	25	74	1730	703			
Y	10	2	11	20	6	18	6.84	10			
Nb	57	45	51	188	54	40	2060	4517			
Та	2.4	2.1	3.6	20.4	4.3	4	1.43	111			
Zr	94	109	144	77	40	30	42.69	15			
Hf	1.5	0.8	0.9	1.3	0.7	0.7	1.54	0.41			
Мо	4	6	2	1	16	0.19	0.24	0.09			
Pb	3	1	1	12	2	47	0.35	14			
Th	2	0.3	1	13	1	5	38.60	92			
U	Не опр.	Не опр.	Не опр.	3.2	2.4	0.8	Не опр.	Не опр.			
Zr/Hf	62	141	151	58	56	42	27.8	36.4			
Sr/Ba	1.3	0.3	0.3	0.9	0.7	2	7.5	0.15			
Nb/Ta	24	21	14	9	12	10	1440	40.7			

Таблица 1. Химический состав (мас. %) и содержание редких элементов (г/т) в миаскитах, фенитах и карбонатитах Ильмено-Вишневогорского комплекса

Примечание. 1–3 – миаскиты Вишневогорского массива: 1 – миаскит (зона 147, г. Долгая), 2, 3 – лейкократовый и меланократовый миаскиты корневой части массива; 4 – миаскит Ильменогорского массива; 5 – антипертитовый миаскит Центральной щелочной полосы; 6 – пироксеновый фенит (жила 125); 7, 8 – апогипербазитовые фениты Булдымского массива: 7 – флогопит-рихтеритовые, 8 – флогопитовые; 9–13 – кальциокарбонатиты I, II: 9, 12 – Потанинское месторождение, 10, 13 – Вишневогорское месторождение, 11 – Ильменогорский массив; 14–16 доломит-кальцитовые карбонатиты III: 14, 16 – Булдымский мссив, 15 – Ильменское рудопро-

Таблица 1. Окончание

	К	арбонатить	ı I	Карбон	атиты II	Карбона	атиты III	Карбонатиты IV		
Компоненты	9 10		11	12	13	14	15	16	17	
	Л-По-1	354	Сав-2	Л-По-2	331	Т-1б	К-97–8	1–54	10-21	
SiO ₂	13.02	22.88	4.50	12.86	6.44	7.40	3.08	0.72	30.50	
TiO ₂	2.10	0.38	0.01	0.16	0.51	0.07	0.03	0.18	0.11	
Al_2O_3	4.57	8.71	1.36	3.38	2.00	1.40	0.56	0.02	1.29	
Fe ₂ O ₃	0.01	0.17	Не опр.	0.70	Не опр.	0.79	0.29	0.34	1.96	
FeO	7.00	2.00	1.10	4.50	6.50	2.10	1.10	3.00	1.00	
MnO	0.31	0.25	0.36	0.36	0.32	1.10	0.27	1.40	0.21	
MgO	2.93	1.54	0.22	1.23	0.65	7.27	6.20	17.68	25.50	
CaO	41.26	.26 33.36 54.40 4		49.00	48.66	44.00 50.33		33.22	17.91	
Na ₂ O	0.90	2.50	0.70	2.20	0.50	0.50 0.60		0.15	0.70	
K ₂ O	3.36	4.32	0.80	1.69	1.48	1.09	0.54	0.01	0.01	
P_2O_5	2.45 0.79		0.02	1.21	2.37	0.01	0.03	0.18	1.35	
S	Не опр.	Не опр.	Не опр.	1.31	1.24	Не опр.	Не опр.	Не опр.	Не опр.	
П.п.п.	19.80	19.40	37.00	23.10	28.50	34.50	38.45	43.25	17.80	
Σ	97.71	96.30	100.46	101.70	99.17	100.33	101.27	100.15	98.34	
Li	10	3	1	8	9	18	16	0.1	3	
Rb	120	52	14	64	29	52	42	0.4	0.1	
Be	0.8	0.4	0.1	0.8	0.2	1.3	0.8	0.5	0.6	
Sr	3953	9247	8349	11527	21982	9547	6336	6611	3796	
Ba	3405	3054	706	793	282	484	198	233	302	
Sc	4	3	3	5	3	6	1	1	2	
V	239	61	2	108	134	67	1	8	51	
Cr	53	25	8	14	5	138	23	23	35	
Co	20	4	2	13	10	7	4	16	7	
Ni	16	11	11	22	3	3 13		13	30	
Cu	21	15	25	25	8	24	32	20	24	
Zn	174	32	5	36	85	88	14	47	8	
Y	61	98	117	88	73	62	523	93	74	
Nb	123	57	36	1598	98	930	8	88	15	
Та	10.9	1.7	0.3	7.4	0.1	1.2	0.3	0.1	0.1	
Zr	21	109	1	32	7	42.3	1	24	37	
Hf	0.8	1.2	0.1	1.0	0.2	0.5	0.4	0.4	0.5	
Мо	0.1	0.3	0.1	1	2	0.6	0.07	1.2	0.0	
Pb	4	5	25	34	12	22.9	38	23	59	
Th	2	3	0.4	19	14	22.3	0.4	681	1418	
U	0.4	1	0.1	27	Не опр.	Не опр.	0.04	Не опр.	Не опр.	
Zr/Hf	25	92	7	31	31	83	3	55	80	
Sr/Ba	1	3	12	15	78	20	32	28	13	
Nb/Ta	11	34	106	217	1310	748	31	1136	104	

явление (копь 97); 17 – доломитовые карбонатиты IV (Булдымский массив). 324, 337 и т.д. – номера образцов. Образцы Л-По-1, Л-По-2 предоставлены для исследований минералогическим музеем Горной Академии, г. Екатеринбург, коллекция В.Я. Левина. Рентгеноспектральный силикатный анализ выполнен в ИГГ УрО РАН (Екатеринбург, 2006), аналитики – Л.А. Татаринова, Н.П. Горбунова, Г.М. Ятлук. Анализ редких элементов выполнен методом ICP-MS (ИГГ УрО РАН, Екатеринбург, 2004–2007 гг.), аналитики – Ю.Л. Ронкин, О.П. Лепихина, О.Ю. Попова.

НЕДОСЕКОВА, ПРИБАВКИН

Компо-	Миаскиты				Фениты			Карбонатиты І			Карбонати- ты II		Карбонати- ты III		Карбонати- ты IV		
ненты	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	324	337	338	Сав-4	По-4	343	309	К-18	Л-По-1	354	Сав-2	Л-По-2	331	Т-1б	К97–8	1–54	10-21
La	106	15	41	80	23	38	38	194	191	370	617	388	926	577	1003	2285	18959
Ce	163	28	77	142	35	60	69	333	394	641	1069	731	1513	1022	1822	4092	25500
Pr	15	1.3	8.0	17	4.5	7.0	6.3	28	56	70	94	71	121	58	168	180	913
Nd	42	4.4	27	57	15	23	19	82	211	221	290	239	385	180	550	543	2273
Sm	4.8	0.7	3.9	7.6	2.2	3.5	2.4	9.4	31	31	46	41	58	38	100	70	168
Eu	1.3	0.3	1.9	2.0	0.9	0.9	0.6	1.8	9.6	9.0	12	12	16	10	26	34	28.8
Gd	3.2	0.5	3.0	6.1	1.7	3.5	1.5	5.9	29	25	48	39	43	28	110	65	87
Tb	0.4	0.1	0.4	0.7	0.2	0.4	0.2	0.7	2.7	3.0	4.8	4.0	6.0	4.3	13	10	11
Dy	1.9	0.4	2.0	4.2	1.3	2.6	1.2	3.3	14	15	28	23	31	23	86	60	46
Но	0.4	0.1	0.4	0.8	0.2	0.5	0.3	0.6	2.5	3.1	3.7	4.3	5.8	5.0	20	11	6.6
Er	1.0	0.2	1.0	2.2	0.7	1.5	0.7	1.3	5.9	8.0	17	12	16	14	65	23	12
Tm	0.1	0.03	0.1	0.3	0.1	0.2	0.1	0.2	0.7	1.1	2.7	1.7	2.1	2.2	10.5	3.0	1.3
Yb	0.8	0.2	0.9	2.1	0.7	1.4	0.8	0.8	4.1	6.7	19	11	14	15	71	16	6.2
Lu	0.1	0.0	0.1	0.3	0.1	0.2	0.1	0.1	0.6	1.0	3.1	1.6	2.2	2.4	9.9	2.0	0.8
$\Sigma(TR+Y)$	348	53	178	342	93	161	147	671	1013	1504	2371	1666	3212	2043	4576	7487	48087
$ TR_{Ce}/TR_{Y} $	19	14	8	8	7	5	11	6	7	8	9	8	16	12	4	25	195
La/Yb	133	85	48	37	33	26	46	228	46	56	32	35	67	37	14	139	3045
Y/Ho	27	29	28	25	25	36	26	17	24	32	31	20	12	12	26	9	11
Eu/Eu*	0.95	1.29	1.65	0.87	1.32	0.80	0.88	0.68	0.96	0.95	0.80	0.89	0.93	0.87	0.75	1.54	0.66

Таблица 2. Содержания РЗЭ в карбонатитах и миаскитах Ильмено-Вишневогорского комплекса, г/т

Примечание. 1–3 – миаскиты Вишневогорского массива: 1 – миаскит (зона 147, г. Долгая), 2, 3 – лейкократовый и меланократовый миаскиты (корневая часть массива); 4 – миаскит Ильменогорского массива; 5 – антипертитовый миаскит Центральной щелочной полосы; 6 – пироксеновый Фенит (жила 125); 7, 8 – "апогипербазитовые фениты" Булдымского массива: 7 – флогопитрихтеритовые, 8 – флогопитовые; 9–17 – карбонатиты: 9, 12 – Центральная щелочная полоса, Потанинское месторождение, 10, 13 – Вишневогорское месторождение, 11 – Ильменогорский массив, 14, 16, 17 – Булдымское месторождение, 15 – Ильменское рудопроявление (копь 97). 324, 337 и др. – номера проб. Анализ РЗЭ выполнен методом ICP-MS (ИГГ УрО РАН, Екатеринбург, 2004–2007 гг.), аналитики – Ю.Л. Ронкин, О.П. Лепихина, О.Ю. Попова.

титам (см. рис. 5а), что может свидетельствовать о роли кристаллизационной дифференциации при их формировании и соответствует трендам поведения Zr и Hf в плюмазитовых силикатных магмах [8].

Как и в комплексах УЩК, для всех разностей сёвитов Ильмено-Вишневогорского комплекса характерно преобладание LREE относительно HREE (LREE/HREE = 7–25). При этом необходимо от-

Рис. 2. Диаграммы Sr–Ba и La/Yb–REE (г/т) для карбонатитов формации УЩК и нефелин-сиенитовой формации ("линейно-трещинных зон").

а: 1 – ИВК; 2 – Черниговская зона, 3 – Печенгинский комплекс [1, 4, 6, 12, 16, 17]; карбонатиты щелочноультраосновной формации: 4 – Томтор, 5 – Карело-Кольская провинция, 6 – комплекс Фен, 7 – Канадская провинция (комплекс Ока), 8 – Восточно-Африканская провинция, 9 – Западно-Африканская провинция, 10 – Восточно-Саянская провинция [9, 14, 16, 18, 26]; 11 – средний кальциокарбонатит по [24]; 12 – средний кальциокарбонатит по [28]. 6: 1–5, 8, 10 – см. рис. 2а; 6 – Олдоиньо-Ленгаи, 7 – Кения, 9 – Маймеча-Котуйская провинция (Гулинский массив и др.), 11 – Алданская провинция, 12 – Амба-Донган (Индия).

Рис. 3. Вариационные диаграммы Ba–Ba/Sr (а) и La–La/Yb (б) для карбонатитов и миаскитов ИВК. 1 – миаскиты Вишневогорского массива, 2 – миаскиты Центральной щелочной полосы, 3 – сёвиты I, 4 – сёвиты II, 5 – сёвиты III, 6 – бефорситы IV, 7 – сёвиты II в фенитах, 8 – сёвиты Центральной щелочной полосы по данным [15].

метить некоторую обогащенность карбонатитов ИВК тяжёлыми редкими землями и пониженные La/Yb отношения (La/Yb = 14–67), значительно отличающие их от карбонатитов формации УЩК (La/Yb = 75–256) (см. рис. 26). Лишь вулканические и субвулканические карбонатитовые комплексы Восточно-Африканского рифта имеют такие же низкие La/Yb отношения (28–41) [18]. Низкие La/Yb отношения характерны также для карбонатитовых комплексов формации "линейно-трещинных зон" [1]. Содержания REE для сёвитов I ИВК (1540– 2370 г/т) соответствуют содержаниям в высокотемпературных карбонатитах УЩК. В сёвитах II ∑REE возрастает до 3210 г/т. Максимальные содержания ∑REE (7480 г/т и 48000 г/т) устанавливаются в поздних бефорситах IV Булдымского массива, что связано с присутствием редкоземельных фаз – монацита, эшинита, ортита. Также устанавливается синхронное увеличение ∑REE и доли лёгких лантаноидов от ранних карбонатитов к поздним. На диа-

Рис. 4. Диаграмма Zr–Sr (г/т) для карбонатитов формации УЩК и формации "линейно-трещинных зон": 1 – кальциокарбонатиты комплексов формации УЩК (Алданский, Ковдорский, Озерная Варака, Турьий мыс, Фен, Саллалаванта, Большесаянский, Малосаянский [16], Томторский [9]); 2–3 – кальциокарбонатиты ИВК: 2 – карбонатиты I, II, III Вишневогорского и Булдымского массивов [11–13]; 3 – карбонатиты I, II Центральной щелочной полосы [15].

Рис. 5. Составы карбонатитов и миаскитов ИВК на диаграммах Zr–Zr/Hf (а) и Y–Y/Ho (б) и их положение относительно поля CHARAC.

1 – миаскиты Вишневогорского массива, 2 – миаскиты Центральной щелочной полосы, 3 – сёвиты I, 4 – сёвиты II, 5 – сёвиты III, 6 – бефорситы IV, 7 – сёвиты II в фенитах.

грамме La/Yb–La карбонатиты ИВК также формируют два различающихся между собой линейных тренда (см. рис. 2б). Первый тренд образован карбонатитами Вишневогорского массива и ЦЩП, второй тренд – сёвитами и бефорситами Булдымского массива и карбонатитами фенитового ореола Вишневогорской интрузии. Линейные тренды, характеризующиеся увеличением La/Yb отношения от ранних карбонатитов к поздним, могут свидетельствовать о процессах фракционирования внутри этих карбонатитовых серий. Значение *Eu/Eu (которое часто связывают со степенью дифференцированности пород щелочных комплексов и которое является индикатором дифференциации карбонатитовых серий [18]) в ранних карбонатитах ИВК близко к значениям в мискитах (~1). Близость *Eu/Eu миаскитов и карбонатитов подтверждает возможность фракционирования карбонатитовой жидкости из миаскитовых магм. В карбонатитах ИВК *Eu/Eu уменьшается от ранних к поздним карбонатитам (от 0.95 до 0.6), что, вероятно, обусловлено накоплением Eu в ранних высокотемпера-

Рис. 6. Коэффициенты разделения редких элементов между сосуществующими карбонатным и силикатным расплавом при *P* = 1 кбар [25] и коэффициенты разделения между сёвитами I, II и миаскитами ИВК. Пунктирные линии – севиты I, точечная линия – севиты II.

173

турных карбонатитах, и обычно отмечается во всех дифференцированных карбонатитовых комплексах.

У/Но отношения в ранних карбонатитах (24–32), также как в миаскитах ИВК, близки хондритовым (см. рис. 5б), демонстрируя СНАRAC-поведение Y и Но при образовании карбонатитовых расплавов. В поздних карбонатитах Y/Но отношение находится за пределами области CHARAC, что характерно для флюидно-гидротермальных карбонатных систем [20].

Таким образом, от ранних к поздним карбонатитам в Ильмено-Вишневогорском комплексе происходит накопление Sr, Nb, REE (причем, REE накапливаются с двумя максимумами концентрирования – при образовании сёвитов II и при образовании бефорситов Булдымского массива), увеличение относительных содержаний LREE относительно HREE, падение Ва и индикаторных Ba/Sr- и Zr/Hf отношений, рост Nb/Ta отношения и уменьшение *Eu/Eu. Закономерности поведения редких элементов в процессах карбонатитообразования в Ильмено-Вишневогорском комплексе, в целом, соответствует трендам эволюции карбонатитовых магм, установленных в комплексах УЩК [16].

При этом, по сравнению с карбонатитами УЩК, карбонатиты Ильмено-Вишневогорского комплекса

имеют более высокие содержания Sr в ранних разностях и, как следствие, отсутствие собственных минералов Sr в поздних низкотемпературных карбонатитах; пониженные содержания Ba, Nb, Ta, Ti, Zr, Hf и некоторую обогащенность HREE (низкое La/Yb). Эти особенности отмечены и в других карбонатитовых комплексах формации нефелиновых сиенитов и линейно-трещинных зон (см. табл. 1, рис. 2, 4) [1].

Сопоставление первичных отношений изотопов Nd и Sr в карбонатитах и миаскитах ИВК (тест на несмесимость [22]) показали близость их изотопных параметров [13], что указывает на единый источник их вещества, а также на возможность отделения карбонатитовых жидкостей из миаскитовых магм путем кристаллизационного фракционирования или силикатно-карбонатной жидкостной несмесимости. Наиболее вероятным механизмом развития магматического процесса миаскито- и карбонатитообразования является достижение производными карбонатизированного миаскитового расплава так называемого разрыва смесимости с последующим расслоением на силикатную и карбонатную жидкости, что подтверждается геологическими фактами, петрохимическими данными и данными по геохимии редких элементов.

Рис. 7. Коэффициенты разделения для REE (DREE) между сёвитами I, II и миаскитами ИВК (соответственно пунктирная и точечная линия), а также между: а) сосуществующими карбонатным и силикатным расплавом при P = 5-20 кбар; б) между силикатным (и карбонатным) расплавом и CO₂ паром при P = 5-20 кбар [27].

Так, расчет коэффициентов разделения D между карбонатитами и миаскитами ИВК, проведенный нами с использованием проб миаскитов с У/Но и Zr/Hf отношениями, близкими к полю CHARAC (т.е. проб, пригодных для моделирования магматических процессов [20]), показал значимые различия в коэффициентах для ранних и поздних карбонатитов. Коэффициенты разделения (D_{карбонатит/миаскит}) для REE, Sr, Zr, Hf, Nb, Та между сёвитами I и миаскитами Вишневогорского массива соответствуют экспериментально определенным (D_{карбонатный расплав/сили-} катный расплав) при силикатно-карбонатной жидкостной несмесимости для щелочных расплавов при 5 кбар [25, 27] (рис. 6, рис. 7а). Сёвиты II и карбонатиты в экзоконтактах миаскитового интрузива (сёвиты III) имеют более высокие D, которые близки коэффициентам разделения между карбонатным флюидом и силикатным расплавом (рис. 7б), что свидетельствует о значительной роли щелочно-карбонатного флюида при формировании поздних карбонатитов Ильмено-Вишневогорского комплекса.

Возможность формирования карбонатитов ИВК из миаскитовых магм в результате силикатнокарбонатной жидкостной несмесимости подтверждается также положением составов карбонатитов ИВК на диаграмме Фристона-Гамильтона, которая иллюстрирует положение и параметры области несмесимости силикатного и карбонатного расплавов [23]. Точки составов карбонатитов ИВК находятся на линии несмесимости при $T = 1000^{\circ}$ С и P = 5 кбар [13].

выводы

1. Закономерности поведения редких элементов в процессах карбонатитообразования в ИВК, в целом, соответствует трендам формирования и эволюции карбонатитовых магм, изученных в УЩК комплексах. При этом, для карбонатитов ИВК установлены черты геохимии, отличающие их от карбонатитов щелочно-ультраосновной формации и характерные для карбонатитов нефелин-сиенитовой формации (или формации "линейно-трещинных" зон). Это более высокие содержания Sr в ранних разностях (и, как следствие, отсутствие собственных минералов Sr в поздних низкотемпературных карбонатитах), пониженные содержания Ва, Nb, Ta, Ті, Zr, Hf и некоторая обогащенность HREE (низкое La/Yb). Многие из этих закономерностей отмечены в других карбонатитовых комплексах формации "линейно-трещинных зон".

2. Петрохимические, геохимические и изотопные данные свидетельствуют о возможности формирования карбонатитов и миаскитов ИВК в результате процессов силикатно-карбонатной жидкостной несмесимости. Составы пород ИВК соответствуют границе области несмесимости силикатного и карбонатного расплавов при $T = 1000^{\circ}$ С и P = 5 кбар. Коэффициенты разделения редких элементов между ранними карбонатитами и миаскитами в ИВК соответствуют экспериментально определенным коэффициентам при силикатнокарбонатной жидкостной несмесимости для щелочных расплавов при тех же температурах и давлениях (P = 5 кбар и T = 1000°C). При этом закономерности поведения редких элементов на заключительных стадиях карбонатитообразования свидетельствуют о значительной роли щелочнокарбонатного флюида при формировании поздних карбонатитов ИВК. Близость изотопных параметров карбонатитов и миаскитов Вишневогорского массива также свидетельствует о возможности отделения карбонатитов ИВК от миаскитовых магм, в отличие от карбонатитов щелочно-ультраосновной формации, которые фракционируют на более ранних стадиях дифференциации преимущественно из щелочно-ультраосновных материнских расплавов.

Авторы выражают глубокую признательность В.Я. Левину и Н.В. Владыкину за консультации и обсуждение материалов и коллективу лаборатории ФХМИ ИГГ УрО РАН за проведение изотопных и геохимических исследований.

Работа выполнена по целевой программе междисциплинарных проектов УрО РАН, СО РАН и ДВО РАН 2009–2011 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. Багдасаров Ю.А. О главных петро- и геохимических особенностях карбонатитов линейного типа и условиях их образования // Геохимия. 1990. № 8. С. 1108–1119.
- 2. Багдасаров Ю.А. О полиформационности карбонатитов и объеме термина «карбонатит» // ЗВМО. 1992. № 2. С. 110–116.
- 3. Багдасаров Ю.А. Редкометальный рудный потенциал магматических и гидротермально-метасоматических карбонатитов // Геол. рудн. местор. 1994. Т. 36. № 4. С. 326–335.
- Врублевский В.В., Покровский Б.Г., Журавлев Д.З., Аношин Г.Н. Вещественный состав и возраст пенченгинского линейного комплекса карбонатитов, Енисейский кряж // Петрология. 2003. Т. 11. № 2. С. 145–163.
- 5. Гинзбург А.И., Самойлов В.С. К проблеме карбонатитов // ЗВМО. 1983. Вып. 2. Ч. 112. С. 164–176.
- 6. Глевасский Е.Б., Кривдик С.Г. Докембрийский карбонатитовый комплекс Приазовья. Киев: Наук. думка, 1981. 228с.
- Егоров Л.С. Проблема полиформационности карбонатитов и псевдокарбонатиты // ЗВМО. 1990. Вып. 3. Ч. 119. С. 99–111.
- Зарайский Г.П. Условия образования редкометальных месторождений, связанных с граниным магматизмом // Смирновский сбрник-2004. М.: МГУ, Фонд акад. В.И. Смирнова, 2005. С. 105–192.
- 9. Кравченко С.М., Заманский Д., Федоренко В.А. Геохимия карбонатитов массива Томтор (Полярная Сибирь) // Геохимия. 2003. № 6. С. 608–622.

- Левин В.Я., Роненсон Б.М., Самков В.С и др. Щелочно-карбонатитовые комплексы Урала. Екатеринбург: Уралгеолком, 1997. 274 с.
- 11. *Недосекова И.Л.* Новые данные по карбонатитам Ильмено-Вишневогорского комплекса // Геол. руд. местор. 2007. Т. 49. № 2. С. 146–164.
- Недосекова И.Л., Прибавкин С.В., Пушкарев Е.В. Новые данные по геохимии Ильмено – Вишневогорского щелочного комплекса // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2005. С. 198–206.
- Недосекова И.Л., Прибавкин С.В., Ронкин Ю.Л. Геохимическая эволюция и источники вещества карбонатитов Ильмено-Вишневогорского комплекса // Геология Урала и сопряженных территорий. Екатеринбург: ИГГ УрО РАН, 2007. С. 229–246.
- 14. Октябрьский Р.А., Вржосек А.А., Ленников А.М. и др. Новые данные о карбонатитах и ассоциирующих породах Кокшаровского щелочно-ультраосновного массива // Глубинный магматизм, его источники и их связь с плюмовыми процессами. Иркутск–Улан-Удэ, 2004. С. 293–307.
- Расс И.Т., Абрамов С.С., Утенков У.В., Козловский В.М., Корпечков Д.И. Роль флюидов в петрогенезисе карбонатитов и щелочных пород: геохимические индикаторы // Геохимия. 2006. № 7. С. 692–711.
- 16. Самойлов В.С. Геохимия карбонатитов. М.: Наука, 1984. 190 с.
- Самойлов В.С., Роненсон Б.М. Геохимические особенности щелочного палингенеза // Геохимия. 1987. № 11. С. 1537–1546.
- Самойлов В.С., Смирнова Е.А. Поведение редкоземельных элементов в процессе карбонатитообразования и некоторые аспекты генезиса карбонатитов // Геохимия. 1980. № 12. С. 1844–1858.
- 19. Соколов С.В. В продолжение дискуссии: что считать

карбонатитом? // ЗВМО. 1991. № 5. С. 108-111.

- Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lantanide tetrad effect // Contrib. Mineral. Petrol. 1996. V. 123. P. 323–333.
- Fabio Ramos Dias De Andrade, P. Moller, P. Dulski. Zr/ Hf in carbonatites and alcaline rocks: new date and a re-evaluation // Revista Brasileira de Geocienciacias. 2002. № 32 (3). P. 361–370.
- Harmer R.E., Gittins J. The Case for primary, Mantlederived Carbonatite Magma // J. Petrol. 1998. V. 39. P. 1895–1903.
- 23. *Kjarsgaard B.A., Hamilton D.L.* The genesis of carbonatites by liquid immiscibility // In Bell K. (ed.) Carbonatites: genesis and evolution. London: Union Hyman, 1989. P. 388–404.
- Le Bas M.J. Sovite and alvikite: two chemically distinct calciocarbonatites C1 and C2 // S. Afr. J. Geol. 1999. V. 102. № 2. P. 109–121.
- Veksler V., Petibon C., Jenner G.A., Dorfman A.M., Dingwell D.B. Trace element partitioning in immisible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave // Jorn. Petrol. 1998. V. 39. № 11–12. P. 2095–2104.
- 26. *Wall F., Zaitsev A.N.* Phoscorites and Carbonatites from Mantle to Mine: the key Example of the Kola Alkaline Province. London, 2004. 498 p.
- 27. Wendlandt R.F., Harrison W.J. Rare Earth Partioning Between Immiscible Carbonate and Silicate Liquids and CO2 Vapor // Contrib. Mineral. Petrol. 1979. V. 69. № 4. P. 409–419.
- Wooley A.R., Kempe D.R.C. Carbonatite: nomenclature, average chemical compositions, and element distributions // In Bell K. (ed.) Carbonatites: genesis and evolution. London: Union Hyman, 1989. P. 1–14.