МИНЕРАЛОГИЯ =

АПАТИТ ПИРОКСЕНИТОВ СУРОЯМСКОГО МАССИВА

Е. С. Шагалов, В. В. Холоднов, В. Н. Пучков¹, И. В. Жилин²

Суроямский массив с одноименным месторождением вкрапленных апатитсодержащих титаномагнетитовых руд находится в составе Нязепетровского аллохтона, расположенного в Уфимском амфитеатре, к западу от Главного Уральского разлома [5]. Массив относится к дунит-пироксенит-габбровой формации. По данным [4] породы массива подверглись кали-натровому метасоматозу, а в работах [11, 12] указывается на наличие крупных тел нефелиновых сиенитов в его структуре. Разброс К-Аг датировок [4] пород массива, 594-333 млн. лет, может, хотя и не буквально, указывать на длительный диапазон его формирования (включая поздние метасоматические процессы калишпатизации). Однако полученная недавно Rb-Sr изохрона по пироксениту и флогопиту определяет возраст соответствующей минеральной ассоциации 415.2 ± 1.1 млн. лет [10], а Sm-Nd данные указывают возраст 444 ± 27 млн. лет [8]. По данным [15] среди подобных ультрамафитовых комплексов массив имеет наибольшие концентрации редких и редкоземельных элементов.

Ниже приводятся первые результаты исследований образцов Суроямского массива, предоставленных В.Н. Пучковым и отобранных им совместно с И.В. Жилиным. Образцы представлены крупногигантозернистыми флогопитовыми рудными пироксенитами (обр. 4 и 29) с разрозненными скоплениями титаномагнетита и среднезернистой разностью с сидеронитовой структурой (обр. 25).

В рудных пироксенитах содержится порядка 6.5% апатита (среднее значение $P_2O_5 = 2.03\%$ [11]). В образце 29 апатита существенно больше, чем в других образцах. Апатит образует ксеноморфные сегрегации нескольких зерен, выполняя друзовые пустоты в породе. Размер сегрегаций в исследованных образцах составляет порядка 1 см³. Отмечаются и отдельные идиоморфные в сечении зерна размером до 3 мм в поперечнике. Как включение в пироксене и в слюде апатит очень редок. Рентгеноструктурными исследованиям (по методике [3]) было определено, что апатит является фторапатитом с содержанием F – 2.5–2.95%, Cl – 0.2–0.24%. По содержанию галогенов он приближается к значениям в апатитах некоторых пород Платиноносного пояса Урала - неизмененных рудных пироксенитов качканарского типа, габбро-амфиболитам Нижнетагильского массива и др. [14]. Апатиты в рудах и породах Баронского месторождения содержат несколько больше хлора за счет ОН–-группировки при тех же значениях фтора, ранние породы и титаномагнетитовые руды Волковского массива содержат на 0.5-1% больше хлора и на 1-1.5% меньше фтора.

Исследования апатита в ИК-области спектра проведены на ИК-Фурье спектрометре Spectrum

Рис. 1. Нормированное на хондрит содержание РЗЭ в апатитах из пироксенитов Суроямского массива, вмещающих пироксенитах (suroyam [15]), апатите (КІ6/25) и апатитовом оливините (В24/17) Боронского масторождения [1].

¹ Институт геологии Уфимского научного центра РАН, Уфа.

² Челябинский Государственный Университет, Челябинск.

Опе в диапазоне 4000-400 см⁻¹. Основными линиями на ИК-спектре (рис. 1) являются: 469 см⁻¹, 570 см⁻¹, 600 см⁻¹, 646 см⁻¹, 959 см⁻¹, 1011 см⁻¹ 1037 см⁻¹ и 1090 см⁻¹, которые связанны с различными колебаниями комплекса (PO₄)³⁻; 1462 см⁻¹ и 1739 см⁻¹, отвечающие колебаниям (СО₃)²⁻; 674 см⁻¹, 724 см⁻¹, 3530 см⁻¹, связанные с существованием связей (ОН)-F, направленных вдоль оси [0001] апатита [7]; 2851 см⁻¹ и 2923 см⁻¹, соответствующие колебаниям ОН- группировок. Размер пиков (рис. 2) и содержание галогенов указывают на небольшую примесь (СО₃)²⁻ и (ОН)⁻ группировок. Присутствие карбонат-анионной группировки характерно для апатитов пород щелочных комплексов и их окружения [13], таким образом можно предположить влияние щелочных флюидов, содержащих углекислоту при формировании рудных пироксенитов.

Исследования микроэлементного состава выполнено на ИСП-масс-спектрометре ELAN-9000, результаты представлены в табл. 1. Апатит является основным концентратором РЗЭ в данных породах. Спектры РЗЭ (рис. 1) характеризуются отсутствием европиевой аномалии и существенным преобладанием легких лантаноидов над тяжелыми (La/Yb = 59–72). Этот параметр больше чем в апатите Баронского месторождения, где La/Yb = 40 [1]. Сумма РЗЭ варьирует в небольших пределах 1473 ± 20 г/т, что почти в 1.5 раза больше чем в апатитах Баронского месторождения и существенния и существенно больше (3 раза) чем в апатите из ранних титаномагнетитовых габброидов са-

мого Волковского массива [1]. В этих апатитах в сравнении с апатитом Баронского месторождения в 1.5–2.5 раза больше Sr, Zr, Ba, As, что отражает повышенную щелочность пород Суроямского массива, но несколько меньше Y, V, Zn, Se и Cu, но на Баронском месторождении медь главный компонент, и тонкие включения медь-содержащих минералов могли повлиять на анализ.

Высокие концентрации РЗЭ в минерале проявились и на спектрах катодолюминесценции (рис. 3), выполненных на приборе импульсной катодолюминесценции "КЛАВИ-Р" (накопление - 40 импульсов с частотой 1 Гц, время экспозиции 150 мс). Можно предполагать, что желтовато-зеленое свечение апатита обусловлено присутствием пиков Eu²⁺ (+ O*[6]) и TR³⁺ с существенным преобладанием последних. Основными трехвалентными РЗЭ являются Sm³⁺, Dy³⁺, Eu³⁺ и др. Слабо проявлены линии Ce²⁺, характерные для апатитов из ультраосновных и щелочных пород. Концентрация Mn в апатитах не превышает 0.02%. При таких концентрациях Mn²⁺ не является основным люминофором [9] и вероятно осуществляет сенсибилизационную роль в присутствии TR³⁺. Преобладание Eu²⁺ над Eu³⁺ указывает на восстановительный характер среды при образовании апатита [16]. Спектры, подобные изученным, характерны для апатитов из щелочного пегматита (г. Лепхэ Нельм, Ловозеро), некоторых архейских гранитоидных пород балтийского щита [6], и миаскитов Вишневых гор [2]. От апатитов из габброамфиболитов Кусинской интрузии [2, 9] спектры

Эле-	Образец			Эле-	Образец			Эле-	Образец		
мент	4	29	25	мент	4	29	25	мент	4	29	25
Li	0.32	0.23	0.24	As	7.21	8.71	6.50	Pr	82.71	77.86	83.52
Be	0.01	0.01	0.00	Se	1.13	1.31	1.24	Nd	383.94	373.11	400.71
В	4.58	7.67	13.78	Rb	1.00	0.43	0.67	Sm	74.12	78.07	78.17
Na	562.57	762.91	708.35	Sr	5378.6	6253.9	5402.7	Eu	18.58	21.43	19.39
Mg	3957.9	1742.9	3601.6	Y	71.88	75.80	77.91	Gd	53.44	57.54	57.67
Al	1877.5	1024.2	1890.9	Zr	2.65	3.19	2.46	Tb	4.58	5.17	5.02
Si	3098.6	2652.9	2672.3	Nb	0.03	0.03	0.01	Dy	20.33	22.32	21.75
K	399.25	247.81	378.67	Мо	0.41	0.11	0.26	Но	3.09	3.37	3.31
Sc	1.85	1.33	0.83	Ru	0.01	0.01	0.00	Er	6.40	6.91	6.83
Ti	38.35	31.19	23.20	Rh	0.25	0.33	0.22	Tm	0.69	0.77	0.71
V	139.00	118.88	131.60	Pd	0.42	0.54	0.42	Yb	3.48	3.86	3.45
Cr	0.36	0.14	0.00	Ag	0.41	3.99	1.67	Lu	0.44	0.48	0.45
Fe	3205.6	2052.5	2967.3	Cd	0.07	0.05	0.10	Hf	0.17	0.17	0.62
Mn	197.91	113.76	208.33	Sn	0.13	0.10	0.09	Та	0.11	0.06	0.03
Co	3.96	3.52	4.18	Sb	0.02	0.04	0.00	W	0.20	0.16	0.02
Ni	8.71	7.34	9.06	Те	0.01	0.02	0.00	Tl	0.07	0.02	0.15
Cu	7.39	6.84	7.83	Cs	0.02	0.01	0.00	Pb	11.01	2.81	3.98
Zn	11.06	9.19	13.74	Ва	17.77	9.93	16.75	Bi	0.04	0.08	0.01
Ga	4.02	3.02	4.10	La	243.56	230.15	250.13	Th	12.00	8.70	10.54
Ge	0.52	0.47	0 4 9	Ce	581 76	570 93	562.29	U	2 37	2.82	2 36

Таблица 1. Микроэлементный состав апатитов из рудных пироксенитов Суроямского массива

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

Энергия, эВ Рис. 3. Спектр импульсной катодолюминесценции апатита из пироксенитов Суроямского массива.

2.3

0*

2.5

Eu

2.7

2.9

3.1

Mn²⁺

2.1

 $\mathrm{Ce}^{^{2+}}$

3.3

3.5

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

1.7

1.5

Sm

1.9

Eu³Eu

отличаются отсутствием ярко выраженной полосы Ce^{2+} и полосы Mn^{2+} .

Работа выполнена при финансовой поддержке РФФИ грант 07-05-96006-р-Урал-а, грант 08-05-00018-а, а также программы ОНЗ РАН № 10.

СПИСОК ЛИТЕРАТУРЫ

- Аникина Е.В., Пушкарев Е.В., Алексеев А.В., Берсенев С.Я. Особенности химического состава рудоносных и пострудных габброидов Баронского золотопалладиевого рудопроявления (Волковский массив) // Ежегодник-2005. Екатеринбург: УрО РАН, 2006. С. 127–132.
- Горобец Б.С., Рогожин А.А. Спектры люминесценции минералов: справочник. М.: Изд-во ВИМС. 2001. 312 с.
- Гуляева Т.Я., Шагалов Е.С. Экспрессный рентгенографический метод определения F и Cl во фторапатитах // Ежегодник-2001. Екатеринбург: УрО РАН, 2002. С. 309–311.
- 4. *Ефимова Л.П.* Геологическая позиция и возраст Суроямского гипербазитового массива на западном склоне Урала // Докл. АН СССР. 1973. Т. 210. № 5. С. 1160–1162.
- 5. Жилин И.В., Пучков В.Н. Геология и рудоносность Нязепетровской зоны (Средний Урал). Уфа: Дизайн-ПолиграфСервис, 2009. 184 с.
- 6. Жиличева О.М. Люминесцентные свойства апатита из пород Балтийского щита // Вестник Отделения наук о Земле РАН. № 1(26). 2008.URL: http://www. scgis.ru/russian/cp1251/h_dgggms/1-2008/informbul-1_2008/mineral-10.pdf.
- Кнубовец Р.Г., Смирнов А.И. Некоторые результаты изучения синтетических апатитов // Кристаллография. Т. 15. Вып. 3. 1970.

- 8. Попов В.С. История формирования Уральского подвижного пояса в свете новых геохронологических данных // Геодинамика подвижных поясов Земли. Екатеринбург: ИГГ УрО РАН, 2007. С. 238–242.
- Портнов А.М., Горобец Б.С. Люминесценция апатита из различных типов горных пород // Докл. АН СССР. 1969. Т. 104. № 1. С. 199–202.
 Пучков В.Н., Жилин И.В., Ронкин Ю.Л., Волчен-
- Пучков В.Н., Жилин И.В., Ронкин Ю.Л., Волченко Ю.А., Лепихина О.П. Геологическая природа и возраст Суроямского клинопироксенитового массива (Средний Урал) // Ультрабазит-базитовые комплексы складчатых областей и связанные с ними месторождения: мат-лы III междунар. конф. Т. 2. Екатеринбург: ИГГ УрО РАН, 2009. С. 115–119.
- 11. Селиверстов Г.Ф., Жилин И.В., Петров В.И., Гогулан А.М. Суроямское месторождение ванадийапатит-титаномагнетитовых руд // Разведка и охрана недр. № 8. 1969. С. 8–11.
- Формации титаномагнетитовых руд и железистых кварцитов (железорудные месторождения Урала)
 / Под ред. А.М. Дымкина. Свердловск: УНЦ АН СССР, 1984. 264 с.
- Холоднов В.В. Акцессорный апатит гранитоидов, щелочных и метаморфических пород Урала // Дис. ... канд. геол.-мин. наук. Свердловск. 1974. 165 с.
- 14. Холоднов В.В., Коновалова Е.В. Галогены в эволюции интрузивного магматизма и эндогенного оруденения Тагильского мегасинклинория // Уральская минералогическая школа-2006. Екатеринбург: УГГУ, 2006.С. 121–132.
- YFTY, 2006.C. 121–132.
 15. Fershtater G.B., Montero P., Borodina N.S., Pushkarev E.V., Smirnov V.N., Bea F. Uralian magmatism: an overview // Tectonophysics. V. 276. 1997. P. 87–102.
- 16. Roeder P.L., MacArthur D., Ma X.-P., Palmer G.R., Mariano A.N. Cathodoluminescence and microprobe study of rare-earth elements in apatite // American Mineralogist. V. 72. № 7-8. 1987. P. 801–811.