
Sm-Nd ИЗОТОПНЫЙ ВОЗРАСТ ДУНИТ-КЛИНОПИРОКСЕНИТ-ТЫЛАИТОВОГО КОМПЛЕКСА (ГОРЯЧЕГО МЕЛАНЖА) МАССИВА ДЕНЕЖКИН КАМЕНЬ В ПЛАТИНОНОСНОМ ПОЯСЕ УРАЛА

А. А. Ефимов, В. С. Попов¹, А. А. Кременецкий², Б. В. Беляцкий³

При геологическом картировании Кытлымского массива на Северном Урале был выделен названный "Западной ассоциацией" комплекс пород. в структуре которого платиноносные дуниты тесно связаны с клинопироксенитами и своеобразными габбро-тылаитами [4]. Аналоги "Западной ассоциации" слагают в пределах Платиноносного пояса Урала четыре крупных, резко очерченных блока (Денежкинский, Конжаковский, Косьвинский и Качканарский), сложенных горячими тектонитами [1, 6]. Такие комплексы представляют собой единственный для Пояса случай тесного сонахождения дунитов, клинопироксенитов и габбро. В целом их можно рассматривать как горячую гетерогенную тектоническую смесь ("горячий меланж"), состоящую из первично дискретных элементов (дунит, пироксенит, оливин-анортитовое габбро). Тектонометаморфическая эволюция превратила эту гетерогенную смесь в расслоенную, химически непрерывную серию пород в рамках минеральной ассоциации оливин-клинопироксен-плагиоклаз-магнетит, уравновешенную в условиях гранулитовой фации низкого давления и при общем уровне летучести кислорода [7; 3]. Вопрос о времени формирования горячего меланжа - один из наиболее важных для понимания природы Платиноносного пояса [2].

Имеющиеся изотопные геохронологические данные уверенно указывают на силурийский (415-430 млн. лет) возраст габбро-норитового комплекса, продуктов водного метаморфизма и гранитоидов, развитых в Платиноносном поясе [8, 15]. Для автономных, не связанных с габбро, дунитовых тел типа Нижнетагильского изотопные данные отсутствуют. Однако для Косьвинского дунитового тела, интегрированного в горячий меланж Кытлымского массива, получены U-Pb данные от очень древних до очень молодых, не поддающиеся однозначной интерпретации [14]. Раннекаменноугольный (340 ± 22 млн. лет) Rb-Sr возраст "псевдолейцитовых" тылаитов, входящих в состав того же комплекса [13], не получил подтверждения U-Pb (SHRIMP II) методом: верхний предел возраста этих пород оценивается в 425 ± 9.6 млн. лет [9].

В недавно опубликованной статье [12] впервые обоснован Sm-Nd возраст пород горячего меланжа

Кытлымского массива. Породы комплекса имеют Sm-Nd возраст 551 ± 32 млн. лет и, следовательно, были сформированы раньше силурийских габброноритов. Для "псевдолейцитовых" тылаитов получена цифра 441 ± 27 млн. лет. На древний (от 493 до 560 млн. лет) возраст указывают также Sm-Nd данные, полученные для оливин-анортитовых габбро Денежкина Камня и Кумбы [11]. Дунитовые тела, фрагменты которых интегрированы в горя-

1 – дуниты; 2 – клинопироксениты; 3 – тылаиты и оливиновые габбро горячего меланжа; 4 – габбро-нориты и роговообманковые габбро; 5 – слоистые толщи, окружающие массив с запада (роговики, амфиболиты, зеленые сланцы и зеленокаменные вулканиты); 6 – точки отбора изученных образцов. Штриховая линия – положение изученного разреза. І – дунит-пироксенитовый блок Желтой Сопки, II – дунит-пироксенит-тылаитовый блок горячего меланжа.

¹ Российский государственный геологоразведочный университет, Москва.

² Институт минералогии, геохимии и кристаллохимии редких элементов, Москва.

³ ВНИИ геологии и минеральных ресурсов Мирового Океана, Санкт-Петербург.

ЕФИМОВ и др.

			-			-	-							
Проба	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Порода	3	3	3	3	3	2	2	1	1	1	2	1	2	2
D, м	550	800	1050	1700	2100	2850	3300	3550	4740	5640	5905	6050	7500	7820
SiO ₂	44.1	46.58	43.6	46.98	46.04	45.92	43.23	50.76	47.07	48.68	42.35	49.97	42.44	40.83
TiO ₂	0.98	0.38	0.41	0.4	0.51	0.27	0.50	0.18	0.13	0.3	0.5	0.33	0.32	0.56
Al_2O_3	5.69	10.19	13.01	13.77	7.39	9.94	18.20	1.56	2.7	3.7	21.4	4.73	24.23	12.96
Fe ₂ O ₃	7.37	2.50	3.28	4.05	4.29	0.91	3.37	0.70	1.23	2.06	3.88	3.6	3.75	6.04
FeO	10.53	9.60	8.79	6.75	9.63	7.9	9.95	5.94	6.6	6.67	7.7	4.21	4.62	10.53
MnO	0.27	0.22	0.08	0.2	0.26	0.06	0.13	0.03	0.14	0.12	0.14	0.11	0.07	0.14
MgO	15.12	17.65	12.91	10.75	16.65	14.01	8.22	17.02	23.47	17.96	6.41	15.22	5.42	12.46
CaO	14.66	10.46	16.52	14.22	14.35	19.22	14.13	22.21	16.25	18.68	14.79	21.22	16.46	14.3
Na ₂ O	0.67	1.68	0.52	1.48	0.6	0.1	1.13	0.10	0.11	0.22	1.07	0.24	0.44	0.33
K ₂ O	0.03	0.2	0.1	0.12	0.04	0.1	0.10	0.10	0.1	0.1	0.1	0.1	0.1	0.1
П.п.п	0.68	0.67	0.95	0.91	0.68	1.46	0.35	1.15	1.36	1.44	1.74	0.74	1.48	1.36
Cr ₂ O ₃	0.05	0.17	0.048	0.04	0.07	0.065	0.01	0.29	0.24	0.26	0.009	0.12	0.004	0.007
P_2O_5	0.016	0.027	0.05	0.016	0.016	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Сумма	100.17	100.33	100.27	99.69	100.53	100.01	99.37	100.09	99.45	100.24	100.14	100.64	99.38	99.67
F	0.39	0.28	0.34	0.36	0.32	0.26	0.47	0.18	0.16	0.21	0.50	0.22	0.45	0.42
Fsp	18.41	35.25	38.16	44.42	22.75	28.26	54.89	5	8.27	11.42	63.92	14.23	69.69	37.64
Срх	48.91	24.63	30.09	32.6	43.49	46.75	20.71	80.35	54.91	65.31	16	70.23	14.41	29.1
Ol	21.82	37.79	26.73	13.9	25.56	24.07	12.32	13.84	36.17	22.26	11.32	14.67	7	23.15
Tmt	10.05	2.07	4.87	4.96	4.64	0.75	9.37	0.35	0.25	0.58	8.67	0.63	5.62	10.03

Таблица 1. Химический и нормативный состав изученных проб, мас. %

Примечание. D – расстояние от западного конца разреза (рис. 1); породы: 1 – клинопироксениты, 2 – оливин-анортитовые габбро, 3 – тылаиты; F – валовая железистость породы, ат. доля; нормативные минералы, мас. %: Fsp – сумма полевых шпатов, Cpx – клинопироксен, Ol – оливин, Tmt – магнетит + ильменит.

чий меланж, образовались, безусловно, до этих событий.

Авторы определили Sm-Nd изотопный возраст блока горячего меланжа в массиве Денежкин Камень, впервые описанном Ф.Ю. Левинсон-Лессингом [10]. Блок размерами около 15 × 15 км

Рис. 2. Зависимость ¹⁴⁷Sm/¹⁴⁴Nd – ¹⁴³Nd/¹⁴⁴Nd в изученных породах.

Цифры при точках соответствуют номерам проб (см. рис. 1, табл. 1, 2). Прямыми линиями изображены двухточечные изохроны 4, 14, 7 и 10 (валовая проба + клинопироксен), а также изохрона по валовым пробам 2 и 5 (см. табл. 2). представляет собой незамкнутую концентрическую структуру с закономерным изменением углов падения полосчатости (рис. 1), возникшую как результат пластической деформации. Широтный разреза блока протяженностью около 8 км, от контакта с дунитовым телом Желтой Сопки до восточного подножия Денежкина Камня, был систематически опробован и достаточно детально изучен [1, 5, 7, 3]. В разрезе преобладают оливин-клинопироксеновые габбро, в том числе их порфировидные (порфирокластические) разности – тылаиты, состоящие из плагиоклаза от An₉₅ до An₅₀, клинопироксена, оливина и магнетита в разных пропорциях. В меньшем количестве присутствуют клинопироксениты и оливиновые породы (железистые дуниты, оливиниты), слагающие согласные с полосчатостью пласты и линзы разной мощности. Микроструктура пород постепенно изменяется от резко выраженной порфирокластической в нижней до гранобластовой в верхней части разреза. Для датирования Sm-Nd методом были отобраны 14 валовых проб тылаитов, оливиновых габбро и клинопироксенитов, характеризующих все сечение блока (рис. 1, табл. 1). Для четырех из этих проб были выделены мономинеральные фракции клинопироксена.

Результаты измерений представлены в табл. 2. В координатах ¹⁴⁷Sm/¹⁴⁴Nd – ¹⁴³Nd/¹⁴⁴Nd измеренные изотопные составы не образуют единой линейной

		1						
Группа	Проба	Порода	Sm, ppm	Nd, ppm	¹⁴⁷ Sm/ ¹⁴⁴ Nd	±2σ	¹⁴³ Nd/ ¹⁴⁴ Nd	±2σ
А	1 wr	Тылаит	2.363	5.896	0.24223	0.00072669	0.513117	0.000003
A	3 wr	Тылаит	0.893	2.313	0.23339	0.00070017	0.513091	0.000003
A	4 wr	Тылаит	1.191	3.3524	0.21473	0.00064419	0.513031	0.000003
A	4 cpx	Тылаит	2.2337	6.0895	0.22171	0.00066513	0.513058	0.000005
A	7 wr	Олив. габбро	0.4664	1.2451	0.22639	0.00067917	0.513065	0.000006
A	7 cpx	Олив. габбро	1.157	2.7261	0.25654	0.00076962	0.513174	0.000005
A(?)	8 wr	Клинопироксенит	0.427	1.141	0.22600	0.000678	0.513078	0.000004
A	13 wr	Олив. габбро	0.273	0.649	0.25367	0.00076101	0.513165	0.000012
A	14 wr	Олив. габбро	0.4868	1.3161	0.22357	0.00067071	0.51306	0.000005
A	14 cpx	Олив. габбро	0.9074	2.3443	0.23397	0.00070191	0.513097	0.000002
Б	6 wr	Олив. габбро	0.715	1.750	0.24706	0.00074118	0.513120	0.000005
Б	9 wr	Клинопироксенит	0.300	0.771	0.23540	0.0007062	0.513074	0.000010
Б	10 wr	Клинопироксенит	1.035	2.906	0.21525	0.00064575	0.513005	0.000007
Б	10 cpx	Клинопироксенит	1.143	3.108	0.22237	0.00066711	0.513028	0.000005
Б	11 wr	Олив. габбро	0.481	1.447	0.20081	0.00060243	0.512964	0.000005
Б	12 wr	Клинопироксенит	0.936	2.441	0.23179	0.00069537	0.513068	0.000005
В	2 wr	Тылаит	1.788	5.417	0.19945	0.00059835	0.513003	0.000003
В	5 wr	Тылаит	1.301	3.391	0.23185	0.00069555	0.513109	0.000003

Таблица 2. Результаты измерений

Примечание. wr – валовые пробы, срх – клинопироксен. Анализ изотопного состава Sm и Nd выполнен на многоколлекторном масс-спектрометре TRITON (Thermo) в ЦИИ ВСЕГЕИ, Санкт-Петербург по стандартной методике, аналитик Б.В. Беляцкий. Изотопный состав Nd стандарта JNdi-1: 143Nd/144Nd = 0.512108 ± 0.000003 (валовые пробы) и 0.512110 ± 0.000005 (клинопироксен).

зависимости. Их можно разделить на группы А, Б и В, которым соответствуют три почти параллельных линейных тренда с разными начальными отношениями ¹⁴³Nd/¹⁴⁴Nd (рис. 2). К группе А относятся тылаиты и оливиновые габбро с относительно высокой железистостью, образцы которых отобраны из разных частей изученного разреза (рис. 1). Группа Б объединяет низкожелезистые клинопироксениты из восточной части разреза, один образец оливинового габбро, отобранный поблизости, и один образец тылаита из центральной части разреза. Группа В охарактеризована двумя образцами тылаитов, отобранных западнее.

Изотопные составы валовых проб 4, 7, 10, 14 и выделенных из этих проб клинопироксенов соединены на рис. 2 прямыми линиями, которые можно рассматривать как двухточечные изохроны. Валовые составы проб 2 и 5, выделяемых в группу В, также соединены прямой линией. Изохроны 4, 7, 14 (6 точек) и еще 4 валовые пробы соответствуют группе А.

Изохроны 7 и 14 практически параллельны и отвечают возрасту, равному 552 и 543 млн. лет (табл. 3). Изохрона 4 не обнаруживает значимого отличия от этого возрастного интервала. Таким образом, можно полагать, что пробы 4, 7 и 14, охватывающие всю мощность разреза, одновозрастны, но несколько отличаются начальными отношениями ¹⁴³Nd/¹⁴⁴Nd. Аппроксимирующая прямая линия (рис. 2), которую можно построить по шести точкам (три валовых пробы 4, 7, 14 и три выделенных из них клинопироксена), имеет меньший наклон, чем каждая из линий валовая проба–клинопироксен, и должна рассматриваться как эррохрона, наклон которой соответствует возрасту 522 ± 23 млн. лет (табл. 2). Эррохроны, учитывающие 9 проб, относящихся к группе А, и 6 валовых проб этой группы (кроме пробы 8), оказываются еще более "молодыми" (табл. 3).

Пробы группы Б имеют более молодой изохронный Sm-Nd возраст, равный 517–520 млн. лет (рис. 2; табл. 2). Двухточечная изохрона пробы 10 (валовой состав + клинопироксен) лежит практически на этой же прямой и не обнаруживает значимого отклонения от общей изохроны. Линия, соединяющая изотопные составы валовых проб 2 и 5, которые представляют группу В, отвечает возрасту 500 ± 24 млн. лет. Эти пробы отличаются наиболее вы-

Рис. 3. Зависимость ¹⁴⁷Sm/¹⁴⁴Nd – ¹⁴³Nd/¹⁴⁴Nd в породах горячего меланжа.

1 –Кытлымский массив [12]; 2, 3, 4 – группы А, Б, и В Денежкина Камня (см. табл. 2, рис. 2).

Группа	Пробы	n	Возраст (t), Ma	$(^{143}Nd/^{144}Nd)_t$	$\epsilon_{\rm Nd}(t)$	СКВО
А	14wr, 14cpx	2	543 ± 93	0.512260 ± 140	6.4	_
А	7wr, 7cpx	2	552 ± 43	0.512246 ± 69	6.4	_
А	4wr, 4cpx	2	590 ± 150	0.512200 ± 210	6.3	_
А	14wr, 14cpx, 7wr, 7cpx, 4wr, 4cpx	6	522 ± 23	0.512296 ± 34	6.5	1.19
А	Все пробы группы А	9	512 ± 36	0.512310 ± 55	6.5	2.5
	Все валовые пробы	6	488 ± 26	0.512314 ± 39	6.6	1.1
Б	10wr, 10cpx	2	493 ± 190	0.51231 ± 28	6.0	_
Б	Все пробы группы Б	6	520 ± 53	0.512276 ± 78	6.0	2.3
Б	Все валовые пробы	5	517 ± 24	0.512281 ± 34	6.1	1.5
А+Б	Все валовые пробы	11	537 ± 83	0.51226 ± 12	6.2	15
В	2wr, 5wr	2	500 ± 24	0.512350 ± 34	7.0	_

Таблица 3. Параметры изохрон и эрохрон

Примечание. Группировка проб соответствует табл. 2; n – число проб. Проба 20447wr (клинопироксенит) не учитывалась при расчете параметров. Параметры рассчитаны с помощью программы Isoplot/Ex. Ver. 3.00 [16].

сокими начальными отношениями изотопов Nd, но двух проб недостаточно для обоснования самостоятельности данной группы и ее возраста. Близкий Sm-Nd возраст был установлен для образцов оливиновых габбро Денежкина Камня и Кумбинского массива (493 ± 38 и 561 ± 28 млн. лет соответственно) [11]. Начальные отношения ¹⁴³Nd/¹⁴⁴Nd в первом образце и в тылаитах группы В (табл. 2) очень близки (рис. 3). Для второго образца Sm-Nd возраст практически совпадает с возрастом габбро и тылаитов группы A, но более высокое начальное отношение ¹⁴³Nd/¹⁴⁴Nd соответствует породам группы B.

Все разумные комбинации измеренных изотопных составов (табл. 2) указывают на кембрийский и поздневендский возраст изученных образцов. Общая эррохрона отвечает возрасту 537 ± 83 млн. лет. Для тылаитов и оливиновых габбро группы А наиболее достоверными следует признать оценки возраста, полученные по двухточечным изохронам (пробы 14 и 7) и равные 552-543 млн. лет. Данные для пробы 4 не противоречат этим оценкам, но большая неопределенность, связанная с узким интервалом Sm/Nd отношения, делают изохрону пробы 4 мало информативной. Близкий Sm-Nd возраст (551 ± 32 млн. лет) был получен ранее по валовым пробам для пород Кытлымского массива (рис. 3, 4) [12]. Таким образом, все новые Sm-Nd геохронологические данные, полученные для трех блоков горячего меланжа – Денежкинского, Конжаковского и Косьвинского – полтверждают, что породы этих блоков одновозрастны и имеют доордовикский изотопный возраст.

Рис. 4. Начальный изотопный состав Nd, оцененный по изохронам, в зависимости от возраста пород. 1–3 – группы пород (см табл. 2, 3): (1) группа А, (2) группа Б, (3) группа В; (4) оливиновое габбро Кумбинского массива и (5) оливиновое габбро Денежкина Камня [11]; (6) породы горячего меланжа Кытлымского массива [12]; 7, 8 – линии развития мантийных источников: (7) источник океанских базальтов – Depleted MORB Mantle (DDM) и (8) преобладающая мантия под континентами – Prevalent Mantle (PREMA).

Начальные отношения изотопов Nd для всех измеренных образцов из разреза Денежкина Камня и для их аналогов нанесены на диаграмму (143 Nd/ 144 Nd)-*t* (рис. 4). Различия между выделенными группами невелики, и начальный состав Nd во всех пробах заключен и узком интервале $\varepsilon_{Nd}(t)$ – от +6 до +7 (табл. 3). Все точки располагаются ниже линий эволюции мантийных источников N-MORB (DMM) и преобладающей верхней мантии (PREMA). Можно предполагать, что источником габбрового протолита и ультрамафитов была обогащенная верхняя мантия с пониженным Sm/Nd отношением.

СПИСОК ЛИТЕРАТУРЫ

- Ефимов А.А. "Горячая тектоника" в гипербазитах и габброидах Урала // Геотектоника. 1977. № 1. С. 24–44.
- 2. Ефимов А.А. Платиноносный пояс Урала: тектонометаморфическая история древней глубинной зоны, записанная в ее фрагментах // Отечеств. геология. 1999. № 3. С. 31–39.
- Ефимов А.А., Вотяков С.Л., Чащухин И.С. Эволюция дунитов Платиноносного пояса Урала: роль химического, температурного и кислородного факторов // Докл. АН. 2005. Т. 405. № 1. С. 93–98.
- 4. *Ефимов А.А., Ефимова Л.П.* Кытлымский платиноносный массив. М.: Недра, 1967. 336 с.
- Ефимов А.А., Ефимова Л.П., Маегов В.И. Стронций в плагиоклазе уральских габбро: петрогенетический и прикладной аспекты // Геохимия. 1989. № 11. С. 1541–1553.
- 6. Ефимов А.А., Ефимова Л.П., Маегов В.И. Тектоника Платиноносного пояса Урала: соотношение вещественных комплексов и механизм формирования структуры // Геотектоника. 1993. № 3. С. 34–46.
- Ефимов А.А., Маегов В.И. О природе "скрытой расслоенности" в разрезе полосатой габбро-гипер-

базитовой серии Денежкина Камня (Северный Урал) // Докл. АН СССР. 1981. Т. 256. № 3. С. 658–662.

- Ефимов А.А., Ронкин Ю.Л., Зиндерн С., Крамм У., Лепихина О.П., Попова О.Ю. Новые U-Pb данные по цирконам плагиогранитов Кытлымского массива: изотопный возраст поздних событий в истории Платиноносного пояса Урала // Докл. АН. 2005. Т. 403. № 4. С. 512–516.
- Ефимов А.А., Ронкин Ю.Л., Матуков Д.И. Новые U-Pb (SHRIMP II) данные по циркону из щелочных тылаитов Косьвинского Камня: изотопный возраст горячего меланжа Платиноносного пояса Урала // Докл. АН. 2008. Т. 423. № 2. С. 243–247.
- Левинсон-Лессинг Ф.Ю. Геологический очерк Южно-Заозерской дачи и Денежкина Камня на Северном Урале // Тр. СПб общ. естествоисп. 1900. Т. 30. № 5. 257 с. (Юрьев, 1900)
- Маегов В.И., Петров Г.А., Ронкин Ю.Л., Лепихина О.П. Первые результаты Sm-Nd изотопного датирования оливин-анортитовых габбро Платиноносного пояса Урала // Офиолиты: геология, петрология, металлогения и геодинамика. Екатеринбург: ИГГ УрО РАН, 2006. С. 110–113.
- 12. Попов В.С., Беляцкий Б.В. Sm-Nd возраст дунитклинопироксенит-тылаитовой ассоциации Кытлымского массива, Платиноносный пояс Урала // Докл. АН. 2006. Т. 409. № 1. С. 104–109.
- Пушкарев Е.В., Феритатер Г.Б., Беа Ф., Монтеро П., Скэрроу Дж. // Докл. АН. 2003. Т. 388. № 3. С. 1–5.
- 14. Bea F., Fershtater G.B., Montero P., Whitehouse M., Levin V.Ya., Scarrow J.H., Austrheim H., Pushkarev E.V. // Terra Nova. 2001. V. 13. P. 1–7.
- Bosch D., Bruguier O., Efimov A.A., Krasnobayev A.A. U-Pb Silurian age for a gabbro of the Platinumbearing Belt of the Middle Urals (Russia): evidence for beginning of closure of the Uralian Ocean // Memoirs Geol. Soc. London. 2006. V. 32. P. 443–448.
- Ludwig K.R. Isoplot/Ex. Ver. 3.00: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronological Center, 2003), No. 4.