СТРУКТУРА И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ ЦИРКОН–КОФФИНИТ ПО ДАННЫМ ПОЛУЭМПИРИЧЕСКОГО АТОМИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Д. А. Замятин, Ю. В. Щапова, Н. Н. Еремин, В. С. Урусов

Введение. Синтетические матрицы на основе циркона (ZrSiO₄) рассматриваются как перспективный материал вейст-форм для утилизации радиоактивных элементов (в частности, плутония [12, 14]); природный циркон является минераломгеохронометром, концентратором изоморфных примесных элементов, в том числе радиоактивных U и Th, с ортосиликатами последних он образует твердые растворы [17].

Структура и термодинамические свойства твердых растворов в системе циркон-коффинит (Zr_{1-x}U_x)SiO₄ исследованы мало, однако они являются критически важными для прогнозирования стабильности смешанного кристалла, в частности, его поверхностной реакционной способности и химической устойчивости по отношению к воде. Обзор немногочисленных экспериментальных исследований [12, 13, 15, 22, 23, 25, 29] свойств этих твердых растворов дан в работе [21]; во всех работах указывается на существование широкой области несмешиваемости циркона и коффинита даже при высоких температурах (область растворимости USiO₄ в цирконе <10 мол. % при 900°С [29]) и делается вывод о неидеальном характере этих твердых растворов. Термодинамические свойства подобных неидеальных систем определяются существованием локальных (микроскопических) напряжений, возникающих при замещениях катионов [6, 19, 26]. Большое различие (19%) ионных радиусов катионов Zr^{4+} и U^{4+} (соответственно, 0.84 и 1.00 Å по Шеннону) должно приводить к локальным напряжениям в структуре и определять энергию смешивания и другие термодинамические характеристики твердого раствора [10, 11].

Теоретическое моделирование структуры и термодинамических свойств твердых растворов циркон-коффинит – актуальная материаловедческая задача; ранее структурные особенности твердых растворов в данной системе детально не исследовались. Результаты важны как для прогнозирования устойчивости вейст-форм, так и для анализа замкнутости U–Pb-системы в природном минерале цирконе при геохронометрических построениях. Детальная информация о структуре и свойствах твердых растворов может быть получена с помощью полуэмпирического структурного моделирования методом атомных парных потенциалов [18]; как показано авторами из МГУ на примере бинарных и тройных систем с ионно-ковалентным типом связи (см., например, [2, 3]), подобные расчеты дают удовлетворительное согласие расчета и эксперимента для оксидных и силикатных твердых растворов.

Цель работы – моделирование структуры и термодинамических свойств твердых растворов циркон-коффинит методом атомных парных потенциалов.

Методика расчета. Равновесные структуры минералов и твердых растворов получены моделированием в рамках программы GULP [18]; последняя основана на представлении кристалла совокупностью точечных ионов, участвующих в дальнодействующих электростатических (кулоновских) и короткодействующих взаимодействиях. При записи суммарной энергии межатомных взаимодействий кулоновские потенциалы притяжения–отталкива-

ния ионов $V_{ij}^{2\pi}(r_{ij}) = \frac{e^2 Z_i Z_j}{r_{ij}}$ суммируются по всему

кристаллу с использованием метода Эвальда [8]. Короткодействующие взаимодействия моделируются потенциалом Букингема

$$V_{ij}^{KOP}(r_{ij}) = A_{ij} \exp(-\frac{r_{ij}}{\rho_{ii}}) - C_{ij}r_{ij}^{-6}$$
 и ограничиваются

радиусом R_{max} = 6÷12 Å. Для имитации эффектов ковалентности связей Si–O (в частности, для учета их направленности) применен трехчастичный угловой деформационный потенциал

$$V_{ijk}^{mpex}(r) = \frac{1}{2}k_B(\theta - \theta_0)^2$$
, а также потенциал Мор-

зе V = D{ $[1 - \exp(-a(r - r_0))]^2 - 1$ }. Численные параметры, входящие в выражения для потенциалов (табл. 1), определены подгонкой значений расчетных структурных и физических характеристик крайних компонентов твердых растворов – циркона и коффинита – к соответствующим экспериментальным данным (табл. 2). Заметим, что расчеты проводились в приближении одинаковых численных параметров потенциалов кремнекислородной подрешетки (Букингемовского для пар атомов Si–O и O–O и трехчастичного O–Si–O) для всех составов твердых растворов, что вызывало определенные трудности их корректного выбора. Заряды ионов циркония, урана, кремния и кислорода были взяты из наших неэмпирических квантовохимиче-

ЗАМЯТИН и др.

Потенциал Букингема	Атом 1	Атом 2	А, эВ	ρ, Å	C, eV*Å ⁶	R min, Å	R max, Å
	Si	0	301	0.318	0	0	8
$V^{\kappa op}(r) = A \exp(-\frac{r_{ij}}{r_{ij}}) - C r^{-6}$	Zr	0	1139.9	0.315	0	0	8
ρ_{ii}	U	0	1638.3	0.319	0	0	8
	0	0	4048.394	0.27047	0	0	8
Потенциал Морзе	Атом 1	Атом 2	D, эВ	a, A ⁻²	r ₀ , A	R min, Å	R max, Å
$V=D\{[1-exp(-a(r-r_0))]^2-1\}$	Zr	Si	1.45	1.85	2.5	0	8
	U	Si	0.83	1.85	2.3	0	8
Трехчастичный потенциал	Атом 1	Атом 2	Атом 2	k _в , эВ•рад ⁻²	Θ°	R min, Å	R max, Å
1	Si (P)	01	02	1.09724	109.47	0	1.9
$V_{m}^{mpex}(r) = \frac{1}{k_p}(\theta - \theta_0)^2$						0	(Si–O)
$2^{nB(0,0)}$							3.5
							(0-0)

Таблица 1. Рассчитанные параметры межатомных потенциалов

Таблица 2. Расчетные и экспериментальные характеристики циркона и коффинита

Пополотри		Циркон		Коффинит			
Параметры	Эксп.**	Расчет	Разн.***, %	Эксп.	Расчет	Разн., %	
a, À	6.607	6.6132	0.09	6.995	7.0706	1.08	
<i>c</i> , Å	5.982	6.0109	0.48	6.263	6.329	1.05	
Объем V, Å ³	261.12	262.89	0.68	306.45	316.41	3.25	
Плотность г/см ³	4.6-4.7	4.63	_	5.1-7.2	6.93	_	
Расстояние Ме*–Si, Å	2.991	3.0055	0.48	3.132	3.1645	1.04	
Расстояние Ме-О ^с , Å	2.1304	2.1331	0.13	2.3194	2.3543	1.50	
Расстояние Ме-О ^е , Å	2.2698	2.371	4.46	2.5127	2.4897	-0.92	
Расстояние Si–O, Å	1.6223	1.5808	-2.56	1.5823	1.6091	1.69	
Расстояние О–О _і , Å	2.4301(1)	2.4755 (1)	-1.87(1)	2.5182(1)	2.5022(1)	-0.64 (1)	
(кол-во различных атомов O _i)	2.4945 (1)	2.6742	7.20	2.9482	2.9122	-1.22	
	2.752 (2)	2.6327	-4.34	2.616	2.6883	2.76	
	2.8426 (4)	2.8408	-0.06	3.308	3.0474	-7.88	
	3.071 (2)	3.1048	1.10	3.391	3.4258	1.03	
Энергия решетки, эВ	- ``	-192.39		_	-182.45		
Упругие свойства, гПа				_		_	
C ₁₁	4.230	4.898	0.16		3.777		
C ₃₃	4.900	5.891	0.20		4.460		
C ₄₄	1.130	1.197	0.06		0.975		
C ₆₆	0.485	0.722	0.49		0.286		
C_{12}	0.703	0.690	0.02		0.238		
C_{13}	1.490	1.491	0.00		1.046		
Диэлектр. постоянная	8.3-9.0	10.51		—	7.10	_	

Примечания: * – Ме = Zr,U; ** – параметры структуры по данным [24]; физические свойства по данным [27]; *** – относительная разность экспериментальных и расчетных параметров.

ских расчетов циркона и изоморфной примеси урана в нем [5].

В отсутствие каких-либо экспериментальных данных о наличии/отсутствии эффектов упорядочения в распределении катионов твердых растворов циркон-коффинит в первом приближении моделировали полностью композиционнонеупорядоченные растворы. Для создания неупорядоченного размещения катионов урана по циркониевым позициям использовали специальную программу BINAR [2]; расчеты проводились для расширенной ячейки ("сверхячейки") циркона (Zr,U)₆₄Si₆₄O₂₅₆ размером 2 × 2 × 4. В основе алгоритма программы BINAR лежит анализ степени неупорядоченности множества случайных конфигураций, полученных "вбрасыванием" атомов урана в катионную подрешетку циркона с использованием генератора случайных чисел, и отбраковка конфигураций, несоответствующих критерию неупорядоченности. В качестве такого критерия используется величина квадратов отклонений числа разнородных пар атомов во второй координационной сфере для случайной конфигурации от статистической теоретической гистограммы (критерий согласия Пирсона χ^2). В результате определяется конфигурация твердого раствора, в наибольшей степени соответствующая неупорядоченному размещению катионов по позициям. Минимизация энергии решетки с использованием программы GULP производилась далее путем варьирования координат всех ионов генерированной как описано выше сверхячейки.

Результаты. Локальная структура и свойства крайних членов твердого раствора – циркона и коффинита. Известно, что конечные члены твердого раствора – минералы циркон и коффинит – изоструктурны, кристаллизуются в тетрагональной сингонии, пространственная группа I4₁/amd; катионы занимают позиции $\overline{4}$ 2*m*, кислород – позиции *m* [16]. Изолированные тетраэдры SiO₄ (несколько вытянутые вдоль оси с) имеют общие ребра (вдоль оси с) и общие вершины (вдоль направлений а,b) с додекаэдрами MeO₈; в последних имеется 4 укороченных ("compressed") связи Me–O_c и 4 удлиненных ("elongated") связи Me–O_e; атомы кислорода имеют тройную координацию (Me,Me,Si).

Использование потенциалов взаимодействия с приведенными в табл. 1 численными значениями параметров позволило достичь удовлетворительного согласия экспериментальных и расчетных структурных и других физических характеристик циркона и коффинита (табл. 2). Для обоих крайних компонентов экспериментальные значения параметров решетки а, b, с воспроизводятся с точностью порядка 1%. Рассчитанные значения расстояний катион-кислород отклоняются от экспериментальных данных [24]: в коффините – не более, чем на 1.7% (расстояния О-О – на 7-8%); в цирконе – расстояния Zr–O^c, Zr–Si, Si–O – не более, чем на 2.6%, расстояние Zr-O^e – на 4.5% (т.е. циркониевый додекаэдр оказывается вытянутым вдоль оси с). Таким образом, при хорошем предсказании значений постоянных решетки, величин большинства длин связей катион-кислород, а также объема катион-кислородных полиэдров, в расчетах наблюдается некоторое искажение формы полиэдров, связанное с подвижностью кислородной подрешетки и высокой чувствительностью позиций кислородных атомов к параметрам межатомных взаимодействий [4, 7]. Рассчитанные макроскопические свойства удовлетворительно согласуются с экспериментальными данными (см. табл. 2). В целом следует считать использованную модель удовлетворительной для предсказания структуры и свойств циркона и коффитнита, что позволяет перейти к моделированию их твердых растворов.

Структура неупорядоченных твердых растворов состава $(Zr_{1-x}, U_x)SiO_4$. Концентрационные зависимости отклонений $\Delta f = f_{pacyem} - f_{add}$ рассчитанных значений параметров f_{pacyem} (f_{pacyem} – постоянные решетки *a*, *b*, *c*, мольный объем V, плотность d) от аддитивной зависимости от состава твердого раствора $f_{add} = f_1 \cdot (1-x) + f_2 \cdot x$ (x – мольная доля USiO₄, f_1 и f_2 – значения параметров для циркона и коффинита) приведены на рис. 1. Отметим, что расчеты были выполнены для всех составов, в том числе для области несмешиваемости, так что часть данных соответствует не реальным, а гипотетическим твердым растворам. Расчеты предсказывают неаддитивную зависимость всех рассчитанных параме-

Рис. 1. Концентрационные зависимости отклонений $\Delta f = f_{pacuem} - f_{add}$ рассчитанных значений параметров f_{pacuem} от аддитивной зависимости от состава твердого раствора $f_{add} = f_1 \cdot (1 - x) + f_2 \cdot x (x - моль$ $ная доля USiO_4, <math>f_1$ и f_2 – значения параметров для циркона и коффинита): а – постоянные решетки a (1), b (2), c (3); б – мольный объем V; **в** – плотность ρ .

тров от состава. Из рис. 1, а видно, что для постоянных **а(b) наблюдаются положительные, для посто**янной с – отрицательные отклонения от аддитивной функции (правило Вегарда). Этот результат указывает на наличие анизотропии структурных деформаций в смешанном кристалле: в направлениях **a**(b) увеличение размеров элементарной ячейки оказывается выше, а в направлении **с** – **ниже, чем мож**-

Рис. 2. Рассчитанные гистограммы количества атомов кислорода, расположенных на определенных расстояниях от катионов Zr (a-д) и U (e- κ) в сверхячейках состава (Zr_{1-x} , U_x)SiO₄. x= 0.14 (a, e), 0.28 (b, π), 0.50 (b, 3), 0.72 (r, u) и 0.86 (d, κ); пунктир – длины связей катион-кислород в коффините и цирконе.

но было бы ожидать с учетом роста среднего размера катионов в додекаэдрических позициях при замещениях U → Zr. Данный результат может быть объяснен анизотропией сочленения полиэдров SiO₄ и ZrO₈ в структуре циркона (общими вершинами в направлениях a(b) и общими ребрами в направлении с), приводящей к повышенной деформируемости, облегченной перестраиваемости структуры в направлениях a(b) по сравнению с направлением с. Аналогичный вывод об анизотропии локальных деформаций сделан в работе [21] на основании анализа величин экспериментальных уширений полос рамановских спектров, соответствующих модам колебаний различной симметрии (в частности, в данной работе показано, что решеточные моды E_g, соответствующие движению SiO₄ тетраэдров и катионов в плоскости (ab), уширяются при образовании из циркона твердых растворов $(Zr_{1-x}, U_x)SiO_4$ сильнее, чем решеточные моды \hat{B}_{lg} , соответствующие решеточным колебаниям вдоль оси с). Полученный результат согласуется и с известным фактом анизотропного (преимущественного в направлениях а,b) уменьшения постоянных решетки циркона при отжиге радиационных повреждений его структуры [20, 28].

Из рис. 16, в видно, что для системы цирконкоффинит характерно отрицательное отклонение мольного объема ΔV и положительное отклонение плотности Др от аддитивной зависимости от состава (правило Ретгерса); в классической теории твердых растворов такое поведение связывается с наличием значительных взаимодействий замещающих друг друга катионов и возможным образованием сверхструктур [1]. Весьма вероятно, что взаимодействия U и Zr соседних додекаэдров действительно характерны для твердого раствора (Zr_{1-x},U_x) SiO₄; это предположение может быть сделано на основании результатов нашего расчета электронного строения примеси урана в цирконе [5], свидетельствующего о заметных отличиях электронного строения атомов кислорода O(Zr,U,Si), присутствующих в твердом растворе, по сравнению с атомами кислорода O(Zr,Zr,Si) в цирконе. В то же время необходимо подчеркнуть, что в данной работе факт взаимодействия катионов в явном виде не учитывался (т.е. не вводилась какая-либо зависимость параметров потенциалов от состава твердого раствора); кроме того, в использованном приближении сознательно игнорировались возможные эффекты

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

Рис. 3. Концентрационные зависимости наиболее вероятных межатомных расстояний катион-кислород в твердых растворах (Zr_{1-x},U_x)SiO₄.

упорядочения (образования сверхструктур). В связи с этим следует считать полученную закономерность для ΔV и $\Delta \rho$ следствием геометрических особенностей структуры циркона, приводящих к его анизотропному деформированию при замещениях $Zr \rightarrow U$.

Локальная структура кислородной подрешетки твердых растворов проиллюстрирована на рис. 2, где представлены рассчитанные гистограммы количества атомов кислорода, расположенных на определенных расстояниях от катионов Zr и U; гистограммы представляют собой функции распределения (ФР) расстояний катион-кислород Zr(U)-О в сверхячейках состава $(Zr_{1-x}, U_x)SiO_4$, x = 0.14; 0.28; 0.50; 0.72 и 0.86. Видно, что формирование твердого раствора коффинита в цирконе приводит к существенному искажению структуры кислородных додекаэдров как катиона-хозяина (Zr), так и катиона замещения (U). В кристалле циркона с небольшим содержанием коффинита (х = 0.14, рис. 1а) положения основных максимумов ФР катиона-хозяина Zr-O^c (2.15 Å) и Zr-O^e (2.37 Å) близки к рассчитанным значениям расстояний (2.13 и 2.37 Å) в бездефектном кристаллическом цирконе. Кроме основных пиков (они обозначены далее (Zr-O^c)₁ и $(Zr-O^{e})_{1}$), на ΦP твердого раствора присутствуют дополнительные максимумы, соответствующие связям (Zr-O^c)₂ уменьшенной длины 2.09 Å и связям Zr–O^e уменьшенной (Zr–O^e)₂ = 2.31 Å и увеличенной (Zr–O^e)₃ = 2.45 Å длины (значения длин связей указаны для состава x = 0.14). Максимумы ФР катиона замещения также "расщеплены" на несколько пиков и наблюдаются при 2.21 и 2.27 Å для U–O^e и 2.40, 2.43 и 2.45 Å – для U–O^e (при x = 0.14). С ростом параметра x пики на ФР, соответствующие межатомным расстояниям Zr–O, смещаются в область больших расстояний, а пики, соответствующие U–O, – в область меньших расстояний.

Концентрационные зависимости межатомных расстояний катион-кислород в системе цирконкоффинит приведены на рис. 3. Из рис. За видно, что концентрационное поведение длин связей Zr-O^c и Zr-O^e различно. При x < 0.5 длины связей (Zr-O^c)₁ и (Zr-O^c)₂ увеличиваются, в то время как длины связей (Zr-O^e)_{1,2,3} практически не изменяются; длина связи (Zr-O^e)₁ остается равной своему значению в цирконе. Этот результат указывает на анизотропную деформацию цирконий-кислородных додекаэдров в данной области составов и соответствует факту анизотропного расширения решетки с ростом параметра х. Для гипотетических составов с x > 0.5 изменения Zr–O^c практически не фиксируются, в то время как среднее значение Zr-O^e увеличивается; при этом наблюдается значительный разброс длин связей Zr-O^c, указывающий на сильное структурное разупорядочение.

ФР длин связей U–O в твердом растворе также "расщепляются" на два и более максимумов для связей U–O^c и U–O^e, соответственно. В отличие от концентрационного поведения Zr–O, длины связей U–O^c увеличиваются с ростом параметра х почти линейно во всей области составов. Указанной почти линейной зависимости соответствует и длина связи U–O^c = 2.198, полученная для состава х \approx 0, моделированием одиночного примесного иона урана в цирконе [9]. Изменение (рост с ростом х) длины связи U–O^e более выражен в области составов х > 0.5. Как и в случае цирконий-кислородной подрешетки, релаксация укороченной связи додекаэдра U–O^e более значительна, чем удлиненной связи U–O^e.

Для установления причин "расщепления" ФР длин связей твердого раствора проанализировны изменения ближнего порядка, сопровождающие встраивание $U \rightarrow Zr$ одиночного примесного атома урана в циркон. Как показано нами ранее [9], для додекаэдра UO_8 в цирконе U–O^c = 2.198, U–O^e = 2.401; при замещениях происходит существенное искажение структуры соседних додекаэдров ZrO₈, связанных с додекаэдром UO₈ общими ребрами в направлениях a,b: длины связей в них составляют Zr-O^c = (2.114; 2.170; 2.170; 2.138 Å) и Zr–O^e = (2.285; 2.342; 2.298; 2.310 Å). При этом происходит некоторая деформация соседних тетраэдров SiO₄, а также укорочение длин связей Zr-O^e в додекаэдрах ZrO₈, связанных с UO₈ через тетраэдры SiO₄ в направлении оси с, до 2.284 Å. Приведенные данные показывают, что "расщепление" пиков ФР длин связей катион-кислород связано с взаимным влиянием катионов: с появлением атомов U в цирконе укороченные связи (Zr-O^c)₂ и удлиненные связи (Zr-O^e)₃ возникают за счет деформации связанных с UO₈ общими ребрами додекаэдров ZrO₈; укороченные связи (Zr-O^e)₂ обусловлены взаимодействиями катионов в цепях через тетраэдры SiO₄. Можно предполагать, что "расщепление" пиков ФР длин связей U-O^c обусловлены аналогичными эффектами взаимного деформирования катион-кислородных додекаэдров. Различия в концентрационном поведении длин связей Zr-O и U-O обусловлены, вероятно, различным знаком деформации додекаэдров при образовании твердого раствора – растяжением в первом случае и сжатием во втором.

Помимо деформации катион-кислородных додекаэдров, расчеты предсказывают небольшое увеличение размеров тетраэдров SiO₄ при переходе от циркона к коффиниту. Этот результат согласуется с выводами работы [21] о росте средней длины связи Si-O с ростом содержания урана в цирконе, сделанными на основании обнаруженного красного сдвига частот валентных колебаний Si-O в твердых растворах.

Отметим, что полученные нами результаты позволяют, в принципе, решать важные для спектроскопии вопросы оценки степени структурной неупорядоченности твердых растворов - характеристики, определяющей неоднородное уширение спектральных параметров смешанного кристалла. Моделирование смешанных кристаллов мы проводили в приближении композиционной неупорядоченности, однако, вследствие различий структурной релаксации компонент раствора, степень структурной (геометрической) неупорядоченности может изменяться при варьировании состава. Расчет среднеквадратичных смещений атомов кислорода из положений равновесия в сверхъячейке твердого раствора (т.е. от их средневзвешенных положений в смешанном кристалле) и определение таким образом величины, близкой по физическому смыслу к статическому фактору Дебая-Уоллера, могут быть использованы в качестве полезного критерия степени структурной неупорядоченности твердого раствора в зависимости от его состава.

Термодинамические свойства твердых растворов (Zr_{1-x},U_x)SiO₄. Расчет термодинамических характеристик твердых растворов проводили в соответствии с представлениями [6, 7]; подобные расчеты основаны на записи уравнения равновесного состояния системы, соответствующего минимуму ее свободной энергии Гиббса (изобарноизотермического потенциала):

$$H = H - TS = U + PV - TS$$
, (1)

G

где H – энтальпия (теплота) образования, U – внутренняя энергия или энергия атомизация системы, S – энтропия, T – температура). Из уравнения (1) видно, что внутренняя энергия системы вносит в свободную энергию Гиббса положительный вклад, а энтропийное слагаемое TS – отрицательный вклад; отсюда, в частности, очевидно, что энтропийный вклад всегда способствует взаимному растворению за счет роста энтропии с увеличением беспорядка в системе; кроме того, с ростом температуры взаимная растворимость компонентов увеличивается.

С учетом аддитивного характера термодинамических функций (ТФ) уравнение (1) может быть переписано для *функций смешения* твердых растворов (разностей ТФ твердого раствора и ТФ механической смеси компонент):

 $\Delta G_{\rm cm} = \Delta H_{\rm cm} - T\Delta S_{\rm cm} = \Delta U_{\rm cm} + P\Delta V - T\Delta S_{\rm cm}$ (2) где $\Delta H_{\rm cm}, \Delta U_{\rm cm}$ и $\Delta S_{\rm cm}$ – энтальпия, энергия и энтропия смешения;

$$\Delta G_{cM} = G(x) - x_1 G_1 - x_2 G_2, (3), \Delta H_{cM} = H(x) - x_1 H_1 - x_2 H_2, (4), \Delta U_{cM} = U(x) - x_1 U_1 - x_2 U_2 (5),$$

где x_l , x_2 – мольные доли компонентов раствора, H_1 , H_2 , U_1 , U_2 , – энтальпии и энергии образования чистых компонентов раствора, H(x) и U(x) – энергия и энтальпия образования твердого раствора. Отметим, что энтальпия смешения $\Delta H_{\rm cM}$ отлична от нуля только для неидеальных (реальных) растворов, к которым относится и рассматриваемая система $(Zr_{1-x}, U_x)SiO_4$ (для идеальных растворов, по определению, $\Delta H_{cm} = 0$, изменение объёма при смешении $\Delta V = 0$, энтропия смешения выражается той же формулой, что и для идеальных газов). С учетом того факта, что при обычных давлениях величиной работы против давления $P\Delta V$ при изменении объема можно пренебречь, энтальпия смешения может быть рассчитана по приближенной формуле:

 $\Delta H_{\rm cm} \approx \Delta U_{\rm cm} = U(x) - U_1 x_1 - U_2 x_2.$ (6) Энтропия твердого раствора может быть рассчитана по формуле

$$\Delta S_{cM} = S_{\kappa o \mu d} + \Delta S_{\kappa o \pi}, (7)$$

где $\Delta S_{\kappa o \pi} = S_{\kappa o \pi}(x) - S_1 x_1 - S_2 x_2$ – колебательная энтропия смешения, $S_{\kappa o n \phi} = R(x_1 \ln x_1 + x_2 \ln x_2)$ – конфигурационная энтропия раствора.

Уравнения (2), (6), (7) позволяют определить термодинамические функции смешения ΔH_{cm} и ΔG_{cm} во всем диапазоне составов и температур с использованием рассчитанных по программе GULP величин U(x), $S_{kon}(x)$ для твердых растворов и U_1 , U_2 , S_1 , S_2 для чистых компонентов (циркона и коффинита). Кроме того, на основе рассчитанной энтальпии смешения может быть рассчитан параметр взаимодействия компонентов раствора:

 $Q = \Delta H_{cM} / (x_1 x_2); (8)$

чем больше величина параметра взаимодействия, тем меньше взаимная растворимость компонентов; если параметр взаимодействия не зависит от состава твердого раствора, то раствор называют регулярным, и критическая температура распада такого раствора может быть оценена как T = Q/4(Q - кал/моль); если Q зависит от состава, то раствор является субрегулярным, и величина Q определяется локальными деформациями структуры, в свою очередь зависящими от относительных размеров катионов.

Концентрационные зависимости ТФ приведены на рис. 4. Видно, что внутренняя энергия системы растет с ростом концентрации коффинита (рис. 4а). Энтальпия образования твердого раствора в области промежуточных составов имеет высокие значения (рис. 4б), превышающие экспериментальные значения $\Delta H_{cм}$ для большинства силикатов; этот факт указывает на низкую взаимную растворимость циркона и коффинита. Параметр взаимодействия зависит от состава (рис. 4в); таким образом, твердые растворы (Zr_{1-x},U_x)SiO₄ являются субрегулярными. Вычисленные с учетом энтропий-

Рис. 4. Концентрационные зависимости рассчитанных (на формульную единицу) термодинамических характеристик твердых растворов $(Zr_{1-x}, U_x)SiO_4$.

а – энергия образования решетки *U*; б – энтальпия смешения ΔH_{cu} ; в – параметр взаимодействия *Q*; г – энтропия (конфигурационная $S_{kon\phi}$ (1), смешения ΔS_{cu} (2), колебательная ΔS_{ROR} (3)); д – энергия смешения Гиббса при T = 0 K (1), 273 K (2), 500 K (3), 1000 K (4), 2000 K (5), 3000 K (6).

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

ного вклада (рис. 4г) значения ΔG_{cM} при различных температурах (рис. 4д), в принципе, позволяют определить критические условия смесимости (по равенству нулю второй и третьей производных свободной энергии смешения по составу); видно, что в области составов x > 0.14 перегибы на кривых ΔG_{cm} (соответствующие равенству нулю второй производной) фиксируются только при температурах ~2000°С, что практически соответствует отсутствию смесимости в системе. Для более детального анализа смесимости в системе при x < 0.14 необходимы специальные расчеты структуры и свойств твердых растворов с малым содержанием урана. Таким образом, в рамках использованного приближения о композиционной неупорядоченности твердых растворов расчеты предсказывают отсутствие смесимости в системе (Zr_{1-x},U_x)SiO₄ в области составов x > 0.14.

Выводы. Предложен и обоснован согласованный набор параметров межатомных потенциалов взаимодействия атомов Zr, U, Si и О для расчетов структуры и свойств твердых растворов системы циркон-коффинит, промоделирована структура чистых компонентов и гипотетических твердых растворов (Zr_{1-x},U_x)SiO₄ во всей области составов в предположении их композиционной неупорядоченности, выполнен анализ локальной структуры и термодинамических характеристик. Композиционнонеупорядоченные твердые растворы циркон-коффинит не подчиняются правилам Вегарда и Ретгерса. Обнаружено анизотропное (преимущественно в направлениях а,с) расширение структуры смешанного кристалла $(Zr_{1-x}, U_x)SiO_4$ с ростом параметра x, которое обусловлено повышенной деформируемостью додекаэдрических связей Zr(U)-О^с по сравнению с Zr(U)-O^e. Установлено наличие дублетного распределения связей Zr(U)-Ос и широкого (три и более неявно выраженных максимумов) распределения связей Zr(U)-О^е по длинам в твердом растворе; разброс длин связей Zr-O^e выше, чем связей U-O^e. Наличие нескольких пиков на функциях распределения катион-кислородных связей по длине связаны с эффектами взаимного деформирования додекаэдров ZrO₈ иUO₈. Средняя локальная структура додекаэдров зависит от параметра х; с ростом х при x < 0.5 длина связей Zr-O^c увеличивается, а длина связей Zr–O^e практически не изменяется; при x > 0.5 средняя длина связи Zr-Oe начинает расти. Расчеты предсказывают также небольшое увеличение размеров тетраэдров SiO₄ при переходе от циркона к коффиниту. Полученные результаты дают принципиальную возможность количественной оценки степени структурной (геометрической) неупорядоченности композиционно неупорядоченого твердого раствора в зависимости от его состава. Расчеты термодинамических характеристик твердых растворов предсказывают отсутствие смесимости в системе $(Zr_{1-x}, U_x)SiO_4$ в области составов x > 0.14.

Работа выполнена в рамках программ Президиума РАН № 14 "Научные основы рационального природопользования" и № 20 "Создание и совершенствование методов химического анализа", а также в рамках междисциплинарной интеграционной программе УрО РАН "Состав, структура и физика радиационно-термических эффектов в фосфатных и силикатных минералах и стеклах как основа для геохронологических построений и создания материалов для утилизации высокоактивных долгоживущих радионуклидов" при поддержке грантов РФФИ № 07-05-00097а и 09-05-00513-а.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Вест А.* Химия твердого тела. Ч. 1. М.: Мир, 1988. 558 с.
- Еремин Н.Н., Деянов Р.З., Урусов В.С. Выбор сверхячейки с оптимальной атомной конфигурацией при моделировании неупорядоченных твердых растворов // Физика и химия стекла. 2008. Т. 34. № 1. С. 9–18.
- 3. *Еремин Н.Н., Талис Р.А., Урусов В.С.* Компьютерное моделирование локальной структуры, свойств смещения и стабильности бинарных оксидных твердых растворов замещения системы корунд-эсколаит-гематит // Кристаллография. 2008. Т. 53. № 5. С. 802–810.
- Замятин Д.А., Щапова Ю.В., Вотяков С.Л. Структурное моделирование кислородно-вакансионных дефектов в цирконе // Спектроскопия и кристаллохимия минералов: Мат-лы междунар. конф. Екатеринбург: ИГГ УрО РАН, 2007. С. 122–126.
- Рыжков М.В., Ивановский А.Л., Поротников А.В., Щапова Ю.В., Вотяков С.Л. Электронное строение примесного центра урана в цирконе // ЖСХ. 2008. Т. 49. № 2. С. 215–220.
- Урусов В.С. Теоретическая кристаллохимия. М.: МГУ, 1987. 275 с.
- 7. *Урусов В.С., Таусон В.Л., Акимов В.В.* Геохимия твердого тела. М.: ГЕОС, 1997. 500 с.
- 8. Хеерман Д.В. Методы компьютерного эксперимента в теоретической физике. М.: Наука, 1990. 176 с.
- Щапова Ю.В., Вотяков С.Л. Спектроскопические исследования и компьютерное моделирование радиационного разупорядочения и рекристаллизации циркона // Геология Урала и сопредельных территорий: сб. научн. тр. Екатеринбург: ИГГ УрО РАН, 2007. С. 285–309.
- Ballaran B.T., Carpenter M.A. Line broadening and enthalpy: Some empirical calibrations of solid solution behaviour from IR spectra // Phase Trans. 2003. V. 6. P.137–154.
- Ballaran B.T., Carpenter M.A., Geiger C.A., Koziol A.M. Local structural heterogeneity in garnet solid solutions // Phys. Chem. Minerals. 1999. V. 26. P. 554–569.
- Burakov B.E., Anderson E.B., Rovsha V.S., Ushakov S.V., Ewing R.C., Lutze W., Weber W.J. Synthesis of zircon for immobilization of actinides // Mat. Res. Soc. Symp. Proc. 1996. V. 412. P. 33–39.
- Burakov B.E., Hanchar J.M., Zamoryanskaya M.V., Garbuzov V.M., Zirlin V.A. Synthesis and investigation of Pu-doped single crystal zircon, (Zr,Pu)SiO₄ // Radio-

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

chim. Ada. 2002. V. 89. P. 1-3.

- Ewing R.C., Lutze W., Weber W.J. Zircon: A host phase for the disposal of weapons plutonium // J. Mater. Res. 1995. V. 10. P. 243–246.
- Ewing R.C., Meldrum A., Wang L., Weber W.J., Corrales L.R. Radiation effects in zircon // In: Zircon. Reviews in Mineralogy and Geochemistry. Eds. J.M. Hanchar, P.W.O. Hoskin. 2003. V. 53. P.387–425.
- Finch R.J., Hanchar J.M. Structure and chemistry of zircon and zircon-group minerals // Zircon. Reviews in Mineralogy and Geochemistry. Eds. J.M. Hanchar, P.W.O. Hoskin. 2003. V. 53. P. 1–25.
- Forster H.J. Composition and origin of intermediate solid solutions in the system thorite-xenotime-zirconcoffinite // Lithos. 2006. V. 88, I. 1–4, P. 35–55.
- Gale J.D. GULP: a computer program for the symmetry-adapted simulation of solids // J. Chem. Soc. Faraday Trans. 1997. V. 93(4) P. 629–637.
- Ganguly J., Cheng W., O'Neill H.S.C. Syntheses, volume, and structural changes of garnets in the pyropegrossular join: Implications for stability and mixing properties // Am. Mineral. 1993. V. 78. P. 841–893.
- Geisler T. Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process // Phys. Chem. Minerals. 2002. V. 29. P. 420–429.
- Geisler T., Burakov B.E., Zirlin V., Nikolaeva L., Pöml P. A Raman spectroscopic study of high-uranium zircon from the Chernobyl "lava" // European Journal of Mineralogy. 2005. V. 17 P. 883–894.
- 22. Hanchar J.M., Burakov B.E., Anderson E.B., Zamo-

ryanskaya M.V. Investigation of single crystal zircon, (Zr,Pu)SiO₄, doped with ²³⁸Pu and ²³⁹Pu // In RJ. Finch and D.B. Bullen (Eds.): Scientific Basis for Nuclear Waste Management XXVI. Mat. Res. Soc. Symp. Proc. 2003. V. 757. P. 215–225.

- Hanchar J.M., Burakov B.E., Zamoryanskaya M.V., Garbuzov V.M., Kitsay A.A., Zirlin V.A. Investigation of Pu incorporated into zircon single crystal. In J.M. Hanchar, S. Stroes-Gascoyne and L. Browning (Eds.): Scientific Basis for Nuclear Waste Management XXVIII // Mat. Res. Soc. Symp. Proc. 2004. V. 824. P. 225–229.
- 24. http://database.iem.ac.ru/mincryst/
- Mumpton F.A., Roy R. Hydrothermal stability studies of the zircon-thorite group // Geochim. Cosmochim. Acta. 1961.V. 21. P. 217–238.
- Newton R.C., Wood B.J. Volume behavior of silicate solid solutions // Am. Mineral. 1980 V. 65. P. 733–745.
- 27. Ozkan H. Effect of nuclear radiation on the elastic moduli of zircon // J. Appl. Phys. 1976. V. 47. P. 4772–4779.
- Rios S., Malcherek T., Salje E.K.H., Domeneghetti C. Localized defects in radiation-damaged zircon // Acta Cryst. 2000. V. 56. P. 947–952.
- 29. Ushakov S.V., Gong W., Yagovkina M.M., Helean K.B., Lutze W., Ewing R.C. Solid solutions of Ce, U, and Th in zircon // Ceram. Trans. 1999. V. 93. P. 357–363.
- Weber W.J. Models and mechanisms of irradiation-induced amorphization in ceramics // Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2000. V. 166-167, P. 98–106.