— МЕТОДЫ И МЕТОДОЛОГИЯ ИССЛЕДОВАНИЙ —

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ МОНАЦИТОВ НА ЭЛЕКТРОННО-ЗОНДОВОМ МИКРОАНАЛИЗАТОРЕ САМЕСА SX 100

В. В. Хиллер

В последние годы в связи с развитием техники микрозондового анализа и созданием программ численного обсчета аналитических данных получил новый импульс в своем развитии метод химического датирования U-Th-Pb содержащих минералов - монацита, уранинита, ксенотима, титанита и др., известный в литературе как метод СНІМЕ (chemical Th-U-total Pb isochron method). Bospacraющая популярность метода, на что указывает рост числа соответствующих публикаций, обусловлена, в первую очередь, его простотой, доступностью, возможностью реализации подхода на широкораспространенных в настоящее время электроннозондовых микроанализаторах и сканирующих электронных микроскопах с волновой (энергодисперсионной) приставкой, низкой стоимостью единичного анализа, несоизмеримой со стоимостью прецизионного изотопного датирования, основанного на использовании либо ионных микрозондов (типа SHRIMP I и II), либо термо-ионизационных масс-спектрометров высокого разрешения (Triton, Neptune, Sector 54 и др.) со сложной технологией подготовки проб к анализу.

Рис. 1. Зёрна монацитов в апатите (изображение в отражённых электронах), полированный шлиф.

Теоретическое обоснование методики СНІМЕ приведено в работах [7, 8, 11–13]; при этом в публикациях отмечалась удовлетворительная сходимость результатов химического датирования с изотопными данными [5, 6, 12]. Заметим, что авторами цитированных работ метод СНІМЕ не противопоставляется методам изотопной геохронологии, а рассматривается как дополняющий или первичный, предварительный способ оценки возраста. В основе метода лежат три основных положения: первое, весь свинец в минерале имеет радиогенную природу; второе, за 100 млн. лет концентрация свинца достигает уровня, при котором его можно определять на электронно-зондовом микроанализаторе; третье, U-Th-Pb-система в минерале "закрыта", т.е. можно пренебречь диффузионными процессами (потерями). Химическое датирование основано на уравнении распада материнских изотопов и радиационного накопления радиогенного свинца:

$$Pb_{o6iii} = Pb_0 + {}^{208}Pb + {}^{207}Pb + {}^{206}Pb =$$

= Pb_0 + {}^{232}Th {exp(\lambda_{232} \times t) -1} + {}^{235}U {exp(\lambda_{235} \times t) -1} + {}^{238}U {exp(\lambda_{232} \times t) -1}.

где Pb, U, Th содержание элементов в ppm; Pb₀ – начальное содержание свинца при образовании монацита всегда низкое, оно часто [8, 10] приравнивается к нулю; $\lambda_{222, 235, 238}$ – константы радиоактивного распада ²³²Th, ²³⁵U, ²³⁸U, соответственно. Учитывая, что ²³⁸U/²³⁵U = 137.88, уравнение преобразуется в Pb_{общ} = Th {exp($\lambda_{232} \times t$) – 1} + U[{exp($\lambda_{235} \times t$) +

+ 137.88 × $\exp(\lambda_{238} \times t)$ /138.88 - 1];

решение последнего относительно t с использованием специализированных программных продуктов – возраст минерала, определенный для некоторой точки зерна. В последующем, если это необходимо, проводится возрастное картирование минерала – выполняется анализ распределения значений возрастов по площади зерна, рассматривается форма распределения. Из числа U-Th-Pb-содержащих минералов наиболее часто для химического изохронного датирования используется монацит, безводный фосфат редкоземельных элементов [REE] PO_4 , где REE = Ce, La, Nd, Sm и др. В качестве акцессорного минерала он встречается практически во всех кислых и щелочных магматических породах; отмечается в метаморфических, метасоматических и осадочных породах как переотложенный минерал. Монацит характеризуется высокой изоморфной емкостью, как в позиции лантаноидов, так и в позиции фосфора: для него типичны разнообразные примеси – до 20-25 элементов (REE, Th,

Элемент	Стандартные	Аналитическая	Кристалл-	Время	Предел	Стандартное
	образцы	линия	анализатор	анализа, с	обнаружения, ррт	отклонение,%
Р	LaPO ₄	K _a	PET	20	118	0.17
S	$SrSO_4$	K _a	PET	20	130	0.01-0.02
Ca	$Ca_2P_2O_7$	K _a	PET	20	106	0.01-0.02
Fe	Пироп О-145	K _a	LIF	20	382	0.03
Y	YPO ₄	L_a	PET	200	118	0.02
La	$LaPO_4$	L_a	LIF	10	1340	0.40-0.42
Ce	$CePO_4$	L_a	LIF	20	863	0.44-0.48
Pr	$PrPO_4$	L _ő	LIF	20	1467	0.18
Nd	$NdPO_4$	L_a	LIF	20	808	0.22-0.24
Sm	$SmPO_4$	L _õ	LIF	20	1740	0.16
Eu	$EuPO_4$	L_a	LIF	20	750	0.08
Gd	$GdPO_4$	L_{δ}	LIF	20	3950	0.34-0.36
Tb	$TbPO_4$	L_a	LIF	20	840	0.07
Dy	$DyPO_4$	L_a	LIF	20	960	0.08
Ho	HoPO ₄	L _ő	LIF	20	1856	0.15-0.16
Er	$ErPO_4$	L_a	LIF	20	920	0.08
Tm	$TmPO_4$	L_a	LIF	20	948	0.08
Yb	$YbPO_4$	L_a	LIF	20	1026	0.08
Pb	$Pb_2P_2O_7$	M_a	LPET	100	162	0.01
Th	Th (металл)	M_a	PET	300	508	0.07-0.46
U	UO ₂	$M_{\tilde{o}}$	LPET	300	235	0.02

Таблица 1. Условия выполнения микрозондового анализа монацита

U, Y, Zr, Ca, Si, S и др.); иногда в монацитах отмечается высокое содержание ThO₂ (до 32%) и UO₂ (до 7%), и вследствие этого – повышенное содержание радиогенного свинца. Ранее нами установлено [3]. что данные по химическому датированию монацита имеют достоверный характер только при полном элементном анализе минерала. Однако эта аналитическая процедура в микрозондовой методике является достаточно сложной, поскольку необходимо определять содержание большого числа элементов, проводить учет эффектов селективного поглощения и возбуждения рентгеновского излучения, межэлементного влияния, анализировать сложные зависимости интенсивностей линий от содержания элементов, определяемых в зерне. Из-за большого числа анализируемых элементов время проведения анализа увеличивается до 10 минут на точку, что может приводить к интенсивному выгоранию минерала под электронным пучком. Задача разработки методики количественного химического анализа монацитов остается актуальной и сегодня.

Цель работы – разработка прописи аналитической методики количественного химического анализа монацитов на электронно-зондовом микроанализаторе SX 100 как основы для корректного химического изохронного датирования минерала.

Объекты исследования. Методика отрабатывалась на образцах монацитов из апогранитных метасоматитов Шабровского месторождения талькмагнезитового камня, в которых этот минерал распространен достаточно широко; изучены пробы из карбонатной породы (обр. Ш-1006, ан. 1–3) и слюдита (обр. Ш-51/1, ан. 4–7). На рис. 1 представлены зёрна монацитов в апатите (изображение в отражённых электронах, микроанализатор SX 100) в полированном шлифе. В качестве стандартных образцов использовался металлический Th, а также синтетические фосфаты редкоземельных элементов, SrSO₄, Ca₂P₂O₇, Pb₂P₂O₇, UO₂ и пироп O-145 (последние предоставлены Романенко И.М., Мухановой А.А., Институт экспериментальной минералогии PAH).

МЕТОДИКА АНАЛИЗА

Условия измерения. Анализ выполнялся на электронно-зондовом микроанализаторе SX 100 фирмы Cameca с энергодисперсионным XFlash Detector 4010 (фирма Bruker) и пятью волновыми спектрометрами (Sp1-5). Давление в камере образцов составляло 6 × 10⁻⁴ Па, в области электронной пуш- $\kappa u - 2.3 \times 10^{-6}$ Па, в волновых спектрометрах – 9 Па. С целью достижения высокого пространственного разрешения анализа в монаците, распределение элементов в котором достаточно неоднородное, использовалось ускоряющее напряжение 15 кВ. Заметим, что с увеличением энергии падающих электронов объём генерации рентгеновских лучей в образце быстро увеличивается [12], а локальность анализа снижается, хотя при этом интенсивность рентгеновского излучения и соответственно отношение сигнал/фон увеличиваются. Ток поглощённых электронов на цилиндре Фарадея – 200 нА. Угол отбора рентгеновского излучения волновыми спектрометрами – 40°; диаметр пучка электронов, сфокусированных на образце, - 2 мкм. При определении значения положения фона (sin Θ) с двух сторон от аналитического пика использовались данные с сайта

Рис. 2. Рентгеновские спектры стандартных образцов синтетических фосфатов редкоземельных элементов GdPO₄, TbPO₄, ErPO₄ и двух монацитов, измеренные на кристалл-анализаторе LIF.

фирмы Cameca [14]. Для анализа Th, U, Pb в монаците М-линии являлись предпочтительнее L-линий, т.к. энергия возбуждения для L-оболочек тория и урана превышает 15 кэВ. Для постановки методики химического датирования монацитов необходимо определять содержание урана, тория, свинца, а также иттрия (для учёта перекрывания линий Pb *М*а и Y L_{γ2,3}) и других редкоземельных элементов (для учёта многочисленных наложений линий и матричных коррекций). Для ускорения проведения анализа определение перечисленных элементов проводилось на разных спектрометрах: иттрий - на спектрометре Sp1 с кристалл-анализатором PET, уран – на Sp2 с увеличенным кристаллом LPET, свинец на Sp3 с LPET, торий – на Sp4 с PET и лантаноиды – на Sp5 с кристалл-анализатором LIF. Однако из-за низких концентраций урана, тория и свинца измерения интенсивностей соответствующих пиков проводились за времена до 300 с, а интенсивностей фона с каждой стороны от пика – до 150 с. В табл. 1 приведены условия проведения анализа: использованные стандартные образцы, аналитические линии, кристалл-анализаторы, время измерения интенсивности на пике каждого элемента, пределы обнаружения и стандартное среднеквадратичное отклонение результатов анализа.

Рентгеновские спектры. На рис. 2 представлен общий вид рентгеновских спектров стандартных образцов синтетических фосфатов GdPO₄, TbPO₄ и ErPO₄, измеренных на кристалл-анализаторе LIF; хорошо видны многочисленные наложения аналитических линий в спектрах, что при формальном подходе к обработке данных приводит к существенному (!) завышению содержания Eu (до 9.55 вместо 0 мас. %), Gd (до 17.01 вместо 0%), Tm (до 6.72 вместо 0%) в эталонных образцах PrPO₄, TbPO₄ и SmPO₄, соответственно. Стоит задача внесение поправки в расчет содержания вышеуказанных лантаноидов (оценка положения фона, учет межэлементных влияний), что позволит корректно выполнять анализы.

На рис. 3 и 4 представлены участки рентгеновских спектров двух стандартных образцов YPO_4 и металлического Th в области L_{α} -линии иттрия и M_{α} линии тория, полученные при использовании однотипных кристалл-анализаторов PET, но установленных на двух разных спектрометрах – Sp1 и Sp4. Видно, что наблюдается расхождение между измеренными и табличными (запрограммированными в микроанализаторе) значениями максимумов как L_{α} -линии иттрия, так и M_{α} -линии тория, т.е. однотипные кристалл-анализаторы в каждом спектро-

Рис. 3. Участок рентгеновских спектров стандартного образца YPO_4 в области L_{α} -линии иттрия, измеренные на кристалл-анализаторах PET, установленных на двух спектрометрах Sp1 и Sp4.

метре обладают достаточно индивидуальными характеристиками, реализованными при их монтаже. Последнее необходимо учитывать при выполнении аналитических исследований и отработке методики анализа минералов. Представляется, что чисто формально использовать условия измерений максимумов линий, предлагаемые фирмой-изготовителем, некорректно; необходимо провести дополнительную калибровку кристалл-анализаторов, включающую запись спектров для каждого из определяемых элементов на разных спектрометрах, тщательный анализ положения аналитических линий и фона, выбор оптимального кристалл-анализатора (и соответствующего спектрометра), исходя из его индивидуальных характеристик – смещения определяемой линии от табличного значения, ее интенсивности, зарегистрированной детектором на данном кристалл-анализаторе и др.

РЕЗУЛЬТАТЫ АНАЛИЗА МОНАЦИТА ШАБРОВСКОГО МЕСТОРОЖДЕНИЯ.

Первая попытка изучить химизм шабровских монацитов с использованием энергодисперсионной приставки Inca200 (Oxford Instruments) на микрозонде JXA-733 предпринята в работе [2]; заме-

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

тим, что предел обнаружения элементов на энергодисперсионной приставке составляет 0.15–0.30 мас. %, вследствие чего полученные авторами данные по составу минерала требовали корректировки. На рис. 2 представлен общий вид рентгеновских спектров двух монацитов из апогранитных метасоматитов, измеренные на кристалланализаторе LIF. В табл. 2 представлены данные микрозондового анализа, выполненного на волновых спектрометрах, по химическому составу монацитов из карбонатной породы и из слюдита Шабровского месторождения.

Видно, что содержание церия резко преобладает над другими лантаноидами (Ce₂O₃ = 27–31 мас. %): образцы можно отнести к цериевой разновидности. Установлено, что составы шабровских монацитов из разных пород сходны, но при этом отмечаются значимые вариации содержания тория: в монаците из карбонатных пород содержание ThO₂ не превышает 1.6 мас. %, а в фосфате из слюдитов оно существенно выше (3.4–8.2 мас. %), что типично для монацитов гранитоидов и карбонатитов [1, 4, 9]. Установленные вариации составов шабровских монацитов, по-видимому, отражают вариации составов субстрата пород, по которым развивались метасоматические процессы. ХИЛЛЕР

Рис. 4. Участок рентгеновских спектров стандартного образца металлического тория в области М_а-линии тория, измеренные на кристалл-анализаторах РЕТ, установленных на двух спектрометрах Sp1 и Sp4.

Оксид	1	2	3	4	5	6	7
P_2O_5	29.74	29.74	30.25	28.32	29.42	29.15	29.23
SO ₃	0.73	0.70	0.21	0.06	0.14	0.20	0.19
CaO	0.98	1.20	0.59	0.93	0.72	0.74	0.85
FeO	_	_	-	0.04	_	0.05	_
Y_2O_3	1.15	1.12	0.96	0.83	0.89	0.56	0.86
La_2O_3	14.14	14.38	14.35	14.93	14.55	15.57	14.12
Ce_2O_3	30.36	30.69	30.57	27.53	29.35	30.66	29.64
Pr_2O_3	3.53	3.41	3.51	3.21	3.30	3.37	3.30
Nd_2O_3	14.85	14.20	14.66	12.82	13.27	12.84	13.13
Sm_2O_3	0.86	0.75	0.89	0.86	0.92	0.77	0.85
Eu ₂ O ₃	1.17	1.10	1.20	1.00	1.03	0.95	1.00
Gd_2O_3	1.25	1.13	1.60	0.91	1.27	1.07	1.14
Tb ₂ O ₃	0.02	_	-	-	0.05	_	0.05
Dy_2O_3	0.20	0.10	0.18	-	-	_	_
Ho ₂ O ₃	0.12	-	0.03	-	0.03	0.02	0.09
Er ₂ O ₃	-	0.01	0.11	-	0.01	_	0.03
Tm_2O_3	0.27	0.19	0.22	0.22	0.20	0.15	0.18
Yb_2O_3	0.01	0.01	0.02	0.02	-	0.03	-
PbO	-	-	0.02	0.08	0.04	_	0.07
ThO ₂	0.90	1.07	1.02	8.20	4.51	3.35	5.30
UO_2	0.05	0.14	0.06	0.10	0.07	—	-
Сумма	100.33	99.94	100.45	100.05	99.77	99.48	100.13

Таблица 2. Химический состав (в ма	с. %) монацитов из
Шабровского месторождения	

Примечание: 1–3 – монацит из карбонатной породы, 4–7 – из слюдита.

Разработанная методика анализа монацитов позволяет снизить погрешность в определении их химического состава, а также создает основу для проведения работ по корректному химическому датированию минерала.

Авторы искренне признательны Романенко И.М. и Мухановой А.А. (Институт экспериментальной минералогии РАН) за предоставленную шашку со стандартными образцами фосфатов редкоземельных элементов.

Работа выполнена в рамках программы РАН № 14 "Научные основы рационального природопользования" и при финансовой поддержке РФФИ (проект № 09-05-00513).

СПИСОК ЛИТЕРАТУРЫ

- Вахрушева Н.В., Шагалов Е.С., Ерохин Ю.В., Суставов С.Г. Монацит-(Се) из гранитных пегматитов жилы Южная (Адуйское пегматитовое поле) // Вестник Уральского отделения Минералогического Общества РАН. Екатеринбург: УГГГА, 2003. № 3. С. 5–9.
- Ерохин Ю.В., Прибавкин С.В., Шагалов Е.С. Монацит-(Се) из Шабровского месторождения тальк-магнезитового камня (Средний Урал) // Уральская минералогическая школа-2004: мат-лы Всеросс. науч. конф. Екатеринбург: УГГУ, 2004. С. 80–81.

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

- Хиллер В.В., Ерохин Ю.В. Разработка методики анализа монацитов на электронно-зондовом микроанализаторе SX 100 (Cameca) // Минералы: строение, свойства, методы исследования. Мат-лы Всеросс. молодёжной науч. конф. Миасс: ИМин УрО РАН, 2009. С. 288–290.
- Bea F. Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts // Journal of Petrology. 1996. V. 37. № 3. P. 521–552.
- Dahl P.S., Hamilton M.A., Jercinovic M.J., Terry M.P., Williams M.L., Frey R. Comparative isotopic and chemical geochronometry of monazite, with implications for U-Th-Pb dating by electron microprobe: An example from metamorphic rocks of the eastern Wyoming Craton (U.S.A.) // American Mineralogist. 2005. V. 90. P. 619–638.
- Goncalves P., Williams M.L., Jercinovic M.J. Electron microprobe age mapping // American Mineralogist. 2005. V. 90. P. 578–585.
- Jercinovic M.J., Williams M.L. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects // American Mineralogist. 2005. V. 90. P. 526–546.
- 8. Montel J.-M., Foret S., Veschambre M., Nicollet Ch.,

Provost A. Electron microprobe dating of monazite // Chemical Geology. 1996. V. 131. P. 37–53.

- Nage G., Draganits E., Demeny A., Panto G., Arkai P. Genesis and transformation of monazite and rhabdophanite during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps // Chemical Geology. 2002. № 191. P. 25–46.
- Parrish R.R. U-Pb dating of monazite and its application to geological problems // Canadian Journal of Earth Sciences. 1990. V. 27. P. 1431–1450.
- Suzuki K., Adachi M., Tanaka T. Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th–U–total Pb evidence from an electron microprobe monazite study // Sedimentary Geology. 1991. V. 75. P. 141–147.
 Suzuki K., Kato T. CHIME dating of monazite, xeno-
- Suzuki K., Kato T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data // Gondwana Research. 2008. V. 14. P. 569–586.
- Williams M.L., Jercinovic M.J., Terry M.P. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories // Geology. V. 27. 1999. P. 1023–1026.
- 14. http://www.geo.umass.edu/probe/Monazite%20techniques-analysis%20frames.html.