——— МЕТОДЫ И МЕТОДОЛОГИЯ ИССЛЕДОВАНИЙ ——

ОПРЕДЕЛЕНИЕ РЗЭ В УЛЬТРАМАФИТАХ С ИСПОЛЬЗОВАНИЕМ ICP-MS MACC-СПЕКТРОМЕТРОВ ELAN 6100 DRC И ELAN 9000 И РАЗЛИЧНЫХ СПОСОБОВ РАЗЛОЖЕНИЯ ОБРАЗЦОВ

И.С.Чащухин

В связи с изучением вещественного состава ультрамафитов Урала методом ICP-MS были выполнены анализы 16 образцов пород на редкоземельные элементы в Лаборатории физико-химических методов ИГГ УрО РАН с использованием разных ICP-MS масс-спектрометров – Elan 6100 DRC и Elan 9000 – и различных способов разложения. Ниже приведены результаты сопоставления полученных данных.

Лаборатория ФХМИ аккредитована в системе СААЛ на техническую компетентность при проведении количественного химического анализа горных пород и минералов различного состава (аттестат аккредитации № РОСС RU.0001.516761). Для определения содержаний редких и рассеянных элементов в горных породах используется аттестованная методика масс-спектрального анализа с различными способами пробоподготовки.

Выборка образцов включала максимально полный диапазон петрографических составов ультрамафитов. Были проанализированы дунит-гарцбургит-лерцолитовые серии Урала в шпинелевой и плагиоклазовой фациях, гарцбургиты и апогарцбургитовые дуниты, продукты постсерпентинового прогрессивного метаморфизма – магнетитхризотил-лизардитовые серпентиниты, Сг-магнетит-клинохлор-тальк-тремолит-оливиновые породы, Сг-магнетит-клинохлор-тремолит-антигоритоливиновые породы и Сг-магнетит-пеннин-диопсид-антигорит-оливиновые породы (войкариты), а также дуниты Платиноносного пояса Урала.

Таблица 1. Сопоставление результатов определения La, Ce, Pr, Nd, Sm, Eu, Gd в ультрамафитах Урала, выполненных в ИГГ УрО РАН

N⁰	N₂	Пополо	La		Ce		Pr		Nd		Sm		Eu		Gd	
п.п.	обр.	Порода	1	2	1	2	1	2	1	2	1	2	1	2	1	2
1	747	дунит	0.238	0.195	0.589	0.502	0.079	0.065	0.348	0.308	0.090	0.083	0.007	0.015	0.106	0.097
2	827	дунит	0.018	0.016	0.041	0.042	0.006	0.006	0.025	0.025	0.007	0.007	0.002	0.002	0.008	0.005
3	6012	гарцбургит	0.320	0.173	0.679	0.439	0.092	0.058	0.369	0.262	0.104	0.076	0.038	0.015	0.145	0.097
4	6013	дунит	0.158	0.157	0.342	0.398	0.037	0.051	0.151	0.234	0.038	0.059	0.014	0.011	0.052	0.070
5	6043	гарцбургит	0.045	0.023	0.098	0.069	0.016	0.010	0.083	0.040	0.029	0.014	0.012	0.004	0.044	0.019
6	6444	антигорит-хлорит-	0.069	0.024	0.142	0.061	0.021	0.009	0.082	0.038	0.022	0.009	0.017	0.004	0.029	0.012
		тремолит-оливи-														1
		новая порода														
7	6447	антигорит-хлорит-	0.031	0.035	0.046	0.073	0.006	0.009	0.025	0.042	0.007	0.010	0.002	0.003	0.009	0.010
		диопсид-оливи-														1
		новая порода														
8	7075	гарцбургит	0.019	0.033	0.044	0.078	0.006	0.012	0.029	0.051	0.007	0.010	0.001	0.003	0.009	0.010
9	7089	гарцбургит	0.177	0.088	0.472	0.217	0.070	0.030	0.339	0.147	0.097	0.039	0.011	0.008	0.111	0.050
10	7185	шпинелевый	0.019	0.092	0.067	0.216	0.009	0.026	0.040	0.123	0.020	0.051	0.009	0.019	0.042	0.105
		лерцолит														
11	7187	плагиоклазовый	0.025	0.039	0.072	0.097	0.009	0.015	0.051	0.081	0.030	0.054	0.015	0.025	0.065	0.141
		лерцолит														
12	7203	дунит	0.010	0.032	0.027	0.089	0.004	0.011	0.017	0.064	0.005	0.015	0.002	0.003	0.007	0.016
13	7409	тальк-хлорит-тре-	0.022	0.026	0.048	0.064	0.011	0.011	0.093	0.066	0.062	0.049	0.030	0.021	0.133	0.116
		молит-оливино-														1
		вая порода														1
14	8796	серпентинит	0.049	0.216	0.105	0.060	0.015	0.059	0.064	0.247	0.015	0.052	0.003	0.015	0.013	0.044
15	7516	шпинелевый лер-	0.137	0.260	0.545	0.829	0.092	0.133	0.522	0.764	0.167	0.279	0.064	0.100	0.267	0.423
		цолит														
16	8642	тальк-хлорит-тре-	0.013	0.027	0.026	0.040	0.004	0.009	0.018	0.040	0.005	0.009	0.001	0.002	0.010	0.010
		молит-оливино-														1
		вая порода														1

Примечания: 1 – анализы лаборатории радиогеологии, 2 – анализы лаборатории ФХМИ. Массивы по порядковым номерам образцов: 1–2 – Нижнетагильский, 3–7 – Войкаро-Сыньинский, 8–9 – Кемпирсайский, 10–12 – Нуралинский, 13–14 – Узянский Крака, 15 – Северный Крака, 16 – Катарышский Крака.

Elan 6100 DRC

Рис. 1. Сопоставление результатов определения концентраций La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm. Прямая – линия равных концентраций элементов, серая полоса – поле относительных 10% отклонений от линии равных концентраций.

Исходный материал представлял собой тщательно истертую пудру. Начиная с взятия раздельных навесок, пробоподготовка и анализы выполнены полностью автономно.

ЕЖЕГОДНИК-2008, Тр. ИГГ УрО РАН, вып. 156, 2009

Рис. 2. Сопоставление результатов определения концентраций Yb и Lu. Условные обозначения те же, что на рис. 1.

При подготовке проб к анализу на массспектрометре Elan 6100 DRC исходный материал весом 50–100 мг помещался в тефлоновые стаканы и разлагался в автоклавах смесью плавиковой и азотной кислот в соотношении 5:1 при температуре 180°C в течение 24 часов. После медленного упаривания исследуемое вещество переводилось в раствор 3% азотной кислотой с коэффициентом разбавления исходной пробы 10³ и затем анализировалось с помощью ICP-MS анализатора Elan 6100 DRC. В качестве внутреннего стандарта использовался индий. Параллельно с анализом ультрамафитов с периодичностью 1:5–1:10 проводилось измерение стандартных образцов горных пород (*CO*), аттестованных с точностью 2–10%. Использовались стандартные образцы СГ-1А, СГД-1А, ВСR-1, ВСR-2. Параллель-

Таблица 2. Сопоставление результатов определения Tb, Dy, Ho, Er, Tm, Yd, Lu в ультрамафитах Урала, выполненных в ИГГ УрО РАН

N⁰	N⁰	Пополо	Tb		Dy		Но		Er		Tm		Yb		Lu	
п.п.	обр.	порода	1	2	1	2	1	2	1	2	1	2	1	2	1	2
1	747	дунит	0.021	0.018	0.140	0.121	0.032	0.029	0.100	0.086	0.015	0.014	0.109	0.100	0.018	0.016
2	827	дунит	н.д.	0.001	0.012	0.011	0.003	0.003	0.009	0.009	0.002	0.002	0.012	0.015	0.002	0.003
3	6012	гарцбургит	0.030	0.021	0.231	0.150	0.054	0.037	0.173	0.120	0.027	0.020	0.200	0.153	0.035	0.027
4	6013	дунит	0.010	0.012	0.067	0.090	0.014	0.020	0.048	0.061	0.008	0.009	0.045	0.068	0.007	0.012
5	6043	гарцбургит	0.009	0.004	0.062	0.038	0.016	0.011	0.055	0.037	0.011	0.007	0.068	0.051	0.011	0.009
6	6444	антигорит-хлорит-	0.006	0.002	0.048	0.020	0.012	0.005	0.045	0.020	0.009	0.004	0.076	0.035	0.015	0.007
		тремолит-оливи-														
		новая порода														
7	6447	антигорит-хлорит-	0.002	0.002	0.014	0.017	0.003	0.005	0.013	0.017	0.002	0.003	0.019	0.025	0.004	0.005
		диопсид-оливи-														
		новая порода														
8	7075	гарцбургит	0.002	0.002	0.013	0.015	0.004	0.004	0.014	0.015	0.003	0.003	0.025	0.026	0.006	0.005
9	7089	гарцбургит	0.018	0.007	0.120	0.054	0.028	0.012	0.089	0.034	0.015	0.007	0.102	0.045	0.016	0.008
10	7185	шпинелевый лер-	0.009	0.023	0.089	0.191	0.022	0.048	0.070	0.148	0.011	0.025	0.069	0.178	0.011	0.029
		цолит														
11	7187	плагиоклазовый	0.016	0.029	0.145	0.243	0.034	0.060	0.106	0.182	0.017	0.030	0.114	0.218	0.017	0.037
		лерцолит														
12	7203	дунит	0.001	0.004	0.009	0.027	0.002	0.006	0.007	0.021	0.001	0.004	0.009	0.024	0.001	0.005
13	7409	тальк-хлорит-тре-	0.032	0.025	0.254	0.204	0.066	0.049	0.209	0.189	0.034	0.024	0.216	0.167	0.034	0.025
		молит-оливи-														
1.4	0706	новая порода	0.000	0.000	0.016	0.055	0.004	0.014	0.015	0.044	0.000	0.007	0.001	0.000	0.001	0.011
14	8/96	серпентинит	0.002	0.008	0.016	0.055	0.004	0.014	0.015	0.044	0.003	0.007	0.021	0.060	0.004	0.011
15	/516	шпинелевый лер-	0.054	0.078	0.421	0.579	0.090	0.133	0.282	0.399	0.041	0.060	0.253	0.412	0.039	0.065
10	0(10	цолит	0.002	0.002	0.000	0.022	0 000	0.010	0.000	0.026	0.005	0.000	0.011	0.0(1	0.000	0.011
16	8642	тальк-хлорит-тре-	0.003	0.003	0.029	0.033	0.008	0.010	0.029	0.036	0.005	0.006	0.044	0.061	0.008	0.011
		молит-оливи-														
		новая порода														

Примечания: 1 – анализы лаборатории радиогеологии, 2 – анализы лаборатории ФХМИ; н.д. – нет данных. Массивы по порядковым номерам образцов: 1–2 – Нижнетагильский, 3–7 – Войкаро-Сыньинский, 8–9 – Кемпирсайский, 10–12 – Нуралинский, 13–14 – Узянский Крака, 15 – Северный Крака, 16 – Катарышский Крака. ные измерения *CO* позволили оперативно оценить качество анализов всей серии исследуемых образцов ультрамафитов и обеспечили учет дрейфа чувствительности прибора во всем диапазоне измеряемых масс. Вариации результатов параллельных анализов *CO* в зависимости от конкретного элемента и его концентрации были в пределах 3–12 отн. %.

Для анализа на масс-спектрометре Elan 9000 при разложении проб помимо автоклавного использовалось микроволновое вскрытие. Для автоклавного разложения навеску пробы массой 50 мг помещали в тефлоновые стаканы, заливали смесью 1.5 мл HCl + 1 мл HNO₃ + 1 мл HF и выдерживали на холоде. Разложение проводилось в аналитическом автоклавом модуле "Анкон-АТ" (Россия) при температуре 200°С в течение 18 часов. Если оставались нерастворенные частицы, добавляли 0.1 мл HClO₄ и продолжали разложение в течение 4-6 часов до полного растворения осадка. Для микроволнового вскрытия навеску пробы массой 50-100 мг заливали смесью 3 мл HCl + 1 мл HNO₃, выдерживали сначала на холоде, а затем на водяной бане в течение 10 минут. После охлаждения добавляли 1 мл HF и проводили вскрытие в СВЧ-печи "Урал-Гефест" (Россия) по программе последовательного набора давления и выдержке при 450 кПа в течение 10 минут. После окончания как автоклавного, так и микроволнового разложения содержимое сосудов охлаждали, переводили во фторопластовые бюксы, выпаривали до влажных солей, отгоняли кремний в виде SiF₄ трехкратной обработкой концентрированной HNO₃. Полученные препараты солей растворяли в 1% HNO₃ с добавлением 0.1 мл H₂O₂ и переводили в полипропиленовые контейнеры для масс-спектрального анализа. В качестве внутреннего стандарта использовался индий. Для контроля качества полученных результатов использовались стандартные образцы (например, ОРҮ-1 – ультрамафитовая порода).

Результаты сопоставления полученных данных приведены в табл. 1, 2 и на рис. 1, 2. Коэффициент корреляции между аналитическими данными всегда положителен и в большинстве случаев варьирует от 0.8 до 0.9, редко снижаясь до 0.65–0.75 (La, Lu). Статистически концентрации РЗЭ по анализам на спектрометре Elan 9000 несколько более высокие по сравнению с таковыми на спектрометре Elan 6100 DRC. В среднем 60–70% результатов анализов концентрируется в поле 10% (отн.) отклонений от линии равных содержаний. Эта величина в большинстве современных публикаций принята в качестве относительной погрешности при анализах ультрамафитов на РЗЭ методом ICP-MS в апробированных лабораториях (см. [1–8]).

Учитывая низкие (до 0.00n) концентрации РЗЭ в изученных ультрамафитах, приведенные данные свидетельствуют о хорошей воспроизводимости и точности выполненных в лаборатории ФХМИ ИГГ УрО РАН анализов на редкоземельные элементы методом ICP-MS, что может служить основой для получения корректных научных результатов при исследовании различных горных пород.

Автор выражает признательность Ю.Л. Ронкину, Д.В. Киселевой и О.П. Лепихиной за тщательное выполнение анализов и детальное описание их методик.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ackerman L., Mahlen N., Jelinek E., Medaris G. et al. Geochemistry and Evolution of Subcontinental Lithospheric Mantle in Central Europe: Evidence from Peridotite Xenoliths of the Kozakov Volcano, Czech Republic // J. Petrol. 2007. V. 48. № 12. P. 2235–2260.
- 2. *Bau M*. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect // Contrib Mineral Petrol. 1996. V. 123. P. 323–333.
- 3. *Chalot-Prat F., Boullier A.-M.* Metasomatism in the subcontinental mantle beneath the Eastern Carpathians (Romania): new evidence from trace element geochemistry // Contrib Mineral Petrol. 1997. V. 129. P. 284–307.
- Ishimaru S., Arai S., Ishida Y. et al. Melting and Multistage Metasomatism in the Mantle Wedge beneath a Frontal Arc Inferred from Highly Depleted Peridotite Xenoliths from the Avacha Volcano, Southern Kamchatka // J. Petrol. 2007. V. 48. № 2. P. 395–433.
 Niu Y. Bulk-rock Major and Trace Element Compo-
- 5. *Niu Y.* Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges // J. Petrol. 2004. V. 45. № 12. P. 2423–2458.
- Pearce J.A., Barker P.F., Edwards S.J., Parkinson I.J., Leat P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic // Contrib Mineral Petrol. 2000. V. 139. P. 36–53.
- Sano S., Kimura J.-I. Clinopyroxene REE Geochemistry of the Red Hills Peridotite, New Zealand: Interpretation of Magmatic Processes in the Upper Mantle and in the Moho Transition Zone // J. Petrol. 2007. V. 48. № 1. P. 113–139.
- Zanetti A., D'Antonio M., Spadea P., Raffone N. et al. Petrigenesis of mantle peridototes from Izu-Bonin-Mariana (IBM) forearc // Ofioliti. 2006. V. 31. № 2. P. 189–206.