ПЕТРОЛОГИЯ, ГЕОХИМИЯ

ПЕТРОЛОГИЯ И ВОЗРАСТ АМФИБОЛ-КЛИНОПИРОКСЕНОВЫХ МЕЛАНОГАББРО ИЗ МОЛОДОЙ КЛИНОПИРОКСЕНИТ-ГАББРО-ГОРНБЛЕНДИТОВОЙ СЕРИИ КЫТЛЫМСКОГО МАССИВА (СЕВЕРНЫЙ УРАЛ)

И. А. Готтман, Е. В. Пушкарев

При проведении исследований в северо-западном эндоконтакте Тылай-Конжаковского дунитклинопироксенит-тылаитового блока Кытлымского массива Платиноносного пояса Урала, нами была выделена и описана молодая клинопироксенитгаббро-горнблендитовая серия, секущая более древнюю, сильно деформированную и полосчатую серию аналогичного состава и экзоконтактовые роговики и кытлымиты [2, 8]. До этого разные авторы отмечали, что в этой зоне наблюдаются многочисленные примеры инъекционных взаимоотношений между дунитами, клинопироксенитами и габброидами [3, 11]. Наиболее представительные обнажения, демонстрирующие весь набор геологических взаимоотношений, вскрываются скальным каньоном реки Крутобереговая на протяжении более 200 м. От аналогичных по минеральному составу, но более древних пород, молодые клинопироксениты и габброилы отличаются отсутствием высокотемпературных деформаций и полосчатости. Они образуют субвертикальные дайки и интрузивные тела различной мощности. Формирование этой серии завершается внедрением большого числа горнблендитовых даек, которые, нередко, формируют тела эруптивных брекчий, насыщенных ксенолитами пород древней серии и фрагментами более ранних пород (клинопироксенитов и габброидов) молодой серии. Кроме этого, было отмечено [8], что самыми молодыми породами в этой зоне являются мелкозернистые и меланократовые плагиоклаз-амфиболклинопироксеновые породы, образующие жилы и дайки мощностью 10-15 см, секущие все породы каньона. По геологической позиции и составу они аналогичны так называемым жильным гусевитам, впервые описанным Л. Дюпарком в Качканарском габбро-клинопироксенитовом массиве [16], а в последствие охарактеризованным В.Г. Фоминых с соавторами [13]. По химическому составу они сходны с амфибол-клинопироксеновыми меланократовыми габброидами молодой серии и могли бы быть их жильными комагматами, но они явно внедряются с нарушением гомодромности, поскольку секут амфиболовые меланогаббро и горнблендиты – породы более высокого уровня петрологической эволюции, имеющие более высокую железистость темноцветных минералов. Поэтому формирование гусевитов мы связываем с проявлением другого, еще более

молодого импульса магматической активности. Таким образом, в состав молодой серии были включены амфибол-оливиновые клинопироксениты, меланократовые амфибол-клинопироксеновые габбро, меланократовые амфиболовые габбро-пегматиты первоуральского типа и жильные горнблендиты. Структура, минералого-геохимические особенности горнблендитов и перидотит-горнблендитовых брекчий были рассмотрены нами ранее [1].

Своеобразный, легко узнаваемый облик молодой клинопироксенит-габбро-горнблендитовой серии придают амфибол-клинопироксеновые меланогаббро необычного внешнего вида. Это мелко-, среднезернистые породы светло-зеленовато-серого цвета, с крупными идиоморфными пойкилокристами черного амфибола (рис. 1). Размер кристаллов достигает 3–4 см, при средних значения 1–2 см. Количество вкрапленников в среднем составляет 35-40%. Вкрапленники амфибола содержат многочисленные включения идиоморфного и частично резорбированного клинопироксена, размером от 1-2 мм до долей миллиметра, что определяет пойкилитовый характер минерала-хозяина. Пойкилитовые включения клинопироксена часто обладают зональностью, хорошо видимой под микроскопом. Мелкозернистая основная масса пород сложена агрегатом светло-серого идиоморфного клинопироксена, амфибола и интерстициального плагиоклаза. Иногда отмечается интерстициальный ортопироксен. Клинопироксен и амфибол являются двумя главными породообразующими минералами габброидов, а количество каждого минерала составляет, в среднем, около 40%, определяя меланократовый облик породы. Количество модального плагиоклаза составляет 15-20%. Составы минералов приведены в табл. 1.

Амфибол пойкилокристов имеет зональность. Центральная часть более темная, плеохроирует в оливково-зеленых тонах. Узкая краевая зона (около 0.1–0.3 мм) в светлых оливково-зеленых тонах. Центральные ядра фенокристов сложены паргаситоммагнезиогастингситом ($Ca_B \ge 1.5$, (Na+K)_A ≥ 0.50 , Ti < 0.5) с содержаниями $Al_2O_3 = 11-12\%$ и железистостью около 0.30. К краям содержание алюминия падает и внешние каймы кристаллов приближаются к низкоглиноземистой роговой обманке или актинолиту ($Ca_B \ge 1.5$, (Na+K)_A < 0.50, $Ca_A < 0.5$). Клино-

Рис. 1. Порфировидные амфибол-клинопироксеновые меланогаббро Кытлымского массива, р. Крутобереговая (А), и аналогичные им габброиды молостовского комплекса Хабарнинского массива на Южном Урале (Б).

пироксен представлен диопсидом (рис. 2). В идиоморфных зональных зернах, преимущественно развитых в виде пойкилитовых включений в крупных зернах амфибола, железистость его растет от ядер к каймам в интервале от 0.11 до 0.22. В этом же направлении, с ростом железистости в клинопироксене увеличиваются содержания глинозема, титана, натрия (рис. 3). В целом, вариационный тренд химического состава клинопироксена в кытлымских меланогабброидах соответствует тренду клинопироксенов из магматических клинопироксенитов [12] и анкарамитов [15, 18], изменения состава которых контролируется оливин-клинопироксеновым фракционированием.

Химический состав меланократовых амфиболклинопироксеновых габброидов своеобразен [8]. По соотношению кремнезема и суммы щелочей они попадают в поле пикритов и пикробазальтов (рис. 4). Они имеют высокие содержания магния

-

Рис. 2. Мg–Са–Fe диаграмма для клинопироксенов из амфибол-клинопироксеновых меланогабброидов Кытлымского массива (1) и молостовского комплекса Хабарнинского массива (2).

и кальция и низкие – глинозема. Главной петрохимической чертой их состава является высокое

Гаолица Г. Со	ставы минера.	лов из амфиоол-к	линопироксеновых	меланогаооро кытли	ымского массива

	1	2	3	4	5	6	7	8	9	10	11
	Пе-313-										
	1-6	3-4	6–3	1-4	1-5	4-1	4-2	5-1	5-2	6-1	6–2
				Ц	К	Ц	К	Ц	К	Ц	К
SiO ₂	42.53	42.53	42.97	51.69	51.11	54.45	52.78	53.93	53.10	53.46	52.84
TiO ₂	1.5	1.38	1.17	0.02	0.34	0.00	0.36	0.00	0.28	0.04	0.38
Al_2O_3	11.61	11.37	11.32	1.39	2.93	0.90	3.21	0.98	2.19	1.41	3.14
FeO	10.77	11.31	11.24	4.83	6.15	3.59	6.66	4.29	5.75	4.44	5.80
MnO	0.15	0.18	0.19	0.11	0.15	0.10	0.16	0.11	0.16	0.11	0.15
MgO	15.42	14.72	15.34	17.16	14.91	15.90	13.27	16.32	14.44	15.90	14.20
CaO	12.06	12.18	12.51	23.69	23.00	24.10	22.78	23.92	23.41	23.51	22.81
Na ₂ O	2.52	2.05	2.23	0.19	0.46	0.19	0.40	0.23	0.34	0.23	0.48
K ₂ O	0.59	0.48	0.53	0	0.01	0.00	0.01	0.01	0.01	0.01	0.01
сумма	97.15	96.2	97.5	99.08	99.06	99.23	99.63	99.79	99.68	99.11	99.81
f	0.27	0.29	0.28	0.13	0.18	0.11	0.22	0.13	0.18	0.13	0.18

Примечание. 1–3 – амфибол пойкилокристов, 4–11 – клинопироксен пайкилитовых включений; Ц – центр зерна, К – край зерна. f – Fe/(Fe+Mg).

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

Рис. 3. Диаграмма Al₂O₃-Fe/(Fe + Mg) для клинопироксенов.

1–2 – молодая клинопироксенит-габбро-горнблендитовая серия Кытлымского массива, река Крутобереговая: 1 – клинопироксениты и верлиты, 2 – амфиболклинопироксеновые меланогаббро; 3 – амфибол-клинопироксеновые меланогаббро молостовского комплекса Хабарнинского массива.

CaO/Al₂O₃ отношение, обычно превышающее 2, что характерно для пород, принадлежащих к группе высокоизвестковистых ультрамафитов и анкарамитов [14, 15, 17]. Магнезиальность пород высокая, составляющая в среднем 0.7–0.78. На большинстве петрохимических диаграмм меланократовые габброиды занимают промежуточное положение между оливиновыми клинопироксенитами и горнблендитами, что, по-видимому, отражает и их геологическое положение в выделенной серии. По содержанию редкоземельных элементов меланогаббро соответствуют 10–15 хондритовым стандартам и характеризуются преобладанием легких и средних РЗЭ над тяжелыми ($La_N/Yb_N = 2.5-3.7$). Европиевая аномалия отсутствует (рис. 5а). Более ранние оливиновые клинопироксениты из этой же серии содержат на порядок меньше РЗЭ, а более поздние горнблендиты имеют меньший коэффициент фракционированности, то есть при близком к меланогаббро уровне содержаний легких РЗЭ, они содержат больше тяжелых. В целом, и клинопироксениты, и габброиды соответствуют распределению РЗЭ, типичному для пород из массивов Урало-Аляскинского типа, образование которых связано с фракционированием клинопироксена, оливина и амфибола. На спайдер-диаграммах меланогаббро обладают отчетливыми отрицательными аномалиями высокозарядных элементов (Th, Nb, Zr и др.) и положительными аномалиями элементов с большим ионным радиусом (Sr, Rb и др.), что считается характерным для магматитов островодужного типа (рис. 5б).

Установленный по геологическим наблюдениям более молодой возраст пород клинопироксенитгаббро-горнблендитовой серии по отношению к древней, сильно деформированной серии пород сходного состава [8], заставил поставить задачу определения абсолютного возраста молодой серии. Для решения этого вопроса из меланократовых амфибол-клинопироксеновых габбро были выделены цирконы, с использованием магнитных и электромагнитных методов сепарации и разделения минералов по плотностям в тяжелых жидкостях. Выделенные цирконы представлены призматическими кристаллами и фрагментами кристаллов с коэффициентом удлинения 2–3 и размером 200– 350 мкм. В катодных лучах цирконы проявляют ро-

Рис. 4. Диаграмма $(Na_2O + K_2O)$ -SiO₂.

1–3–породы молодой клинопироксенит-габбро-горнблендитовой серии Кытлымского массива: 1–клинопироксеновые сениты, 2 – амфибол-клинопироксеновые меланогаббро, 3 – горнблендиты, 4 – амфибол-клинопироксеновые меланогаббро молостовского комплекса Хабарнинского массива.

Рис. 5. Нормированные на хондрит (С1) содержания редких (а) и редкоземельных (б) элементов. 1–3 – породы молодой клинопироксенит-габбро-горнблендитовой серии Кытлымского массива: 1 – клинопироксениты, 2 – амфибол-клинопироксеновые меланогаббро, 3 – горнблендиты; 4 – амфибол-клинопироксеновые меланогаббро молостовского комплекса Хабарнинского массива.

стовую зональность, свидетельствующую о магматической природе цирконов. U-Pb-датирование осуществлялось с использованием ионного микроанализатора SHRIMP-II в Центре изотопных исследований ВСЕГЕИ под руководством С.А. Сергеева. Было проанализировано 10 зерен в одиннадцати точках. Все точки легли на конкордию, что позволило вычислить значение возраста, равное 415 ± 3 млн. лет (MSWD = 1.5) (рис. 6). Наши новые данные подтверждают выводы, сделанные ранее на основе геологических наблюдений [8], что в Тылай-Конжаковском блоке Кытлымского платиноносного массива существуют две разновозрастные серии однотипных ультраосновных пород с участием клинопироксенитов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В структуре Тылай-Конжаковского блока Кытлымского платиноносного массива на Северном Урале ранее нами была выделена молодая интрузивная клинопироксенит-габбро-горнблендитовая серия, которая прорывает сходные по составу, но более древние породы с хорошо проявленными полосчатыми и деформационными структурами. Типичными породами молодой серии являются порфировидные амфибол-клинопироксеновые меланогаббро с обильными (до 40%) и крупными пойкилокристами паргасита, размером до 4 см. Амфибол содержит многочисленные включения идиоморфного клинопироксена, обладающего магматической зональностью, которая проявляется в росте железо-магниевого отношения от ядра к кайме, с параллельным увеличением в этом же направлении содержаний глинозема, титана и натрия и падением хрома. Подобный тренд кристаллизации клинопироксена является типичным для пород с оливин-клинопироксеновым типом фракци-

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

онирования и характерен для ультраосновных и основных пород с высоким CaO/Al_2O_3 отношением. К этому семейству пород относятся анкарамиты и клинопироксениты. Описанные меланогаббро также принадлежат к анкарамитовой группе (CaO/Al_2O_3 > 2). Возраст меланократовых габброидов, определенный U-Pb-методом по цирконам на приборе SHRIMP-II, соответствует границе силура и девона и равен 415 ± 3 млн. лет, что, примерно, на 120 млн. лет меньше, чем возраст вмещающей дунит-клинопироксенит-тылаитовой серии по данным [6]. Близкий возраст, соответствующий позднему силуру, определен для горнблендитов и иситов массива Светлый Бор К-Аг-методом [4].

Описанные меланократовые габброиды обладают необычным внешним обликом, структурой и со-

Рис. 6. Диаграмма с конкордией для цирконов из амфибол-клинопироксеновых меланогаббро Кытлымского массива.

ставом. В Платиноносном поясе Урала они встречены, пока, только в единственном месте, в северозападном эндоконтакте Тылай-Конжаковского блока Кытлымского массива. Однако на Южном Урале у них есть аналоги – это сходные по структуре и составу амфибол-клинопироксеновые меланогаббро молостовского комплекса (рис. 1) [5]. Они входят в состав дифференцированной серии, наиболее ранними породами в которой являются порфировидные оливиновые клинопироксениты, а завершающими породами - горнблендиты и амфиболовые меланогаббро. То есть, геологическое положение меланогаббро в составе серии такое же, как и в Кытлымском массиве. Сходство этих пород усиливается при рассмотрении химического и редкоэлементного состава пород, состава породообразующих минералов, характера зональности клинопироксенов и так далее (рис. 2-5). В молостовских меланогаббро фиксируется лишь более высокие концентрации Cs, K, Ba и Rb, что связано с присутствием в породах большого количества биотита. Возраст формирования пород молостовского комплекса, определенный разными методами, также близок к возрасту меланократовых габброидов Кытлымского массива и составляет 415-400 млн. лет [7, 9, 10]. Следовательно, можно утверждать, что в Кытлымском дунит-клинопироксенит-габбровом массиве на Северном Урале на рубеже силура и девона произошло внедрение высокоизвестковистого ультраосновного расплава анкарамитового типа, дифференциация которого привела к формированию интрузивной клинопироксенит-габброгорнблендитовой серии, аналогичной по возрасту и составу молостовскому комплексу Хабарнинского массива на Южном Урале.

Авторы выражают признательность сотрудникам ЦКП "Минеральное вещество" ИГГ УрО РАН (Руководитель член-корр. РАН С.Л. Вотяков) за выполненные аналитические работы по определению состава горных пород и минералов.

Работа выполнена при финансовой поддержке гранта РФФИ № 09–05–00911-а, Программ ОНЗ РАН № 2 (09-Т-5–1011) и № 10 (09-Т-5–1019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Готтман И.А., Пушкарев Е.В. Геологические данные о магматической природе горнблендитов в габброультрамафитовых комплексах Урало-Аляскинского типа // Литосфера. 2009. № 2. С. 78–86.
- Ефимов А.А., Ефимова Л.П. Кытлымский платиноносный массив // Матер. по геологии и полезн. ископ. Урала. Вып. 13. М.: Недра, 1967. 336 с.
- Иванов О.К. Концентрически-зональные пироксенит-дунитовые массивы Урала. Екатеринбург: УрГУ, 1997. 327 с.
- 4. Иванов О.К., Калеганов Б.А. Новые данные о воз-

расте концентрически-зональных дунит-клинопироксенитовых массивов Платиноносного пояса Урала // Докл. АН. 1993. Т. 328, № 6. С. 720–724.

- Петрология постгарцбургитовых интрузивов Кемпирсайско-хабарнинской офиолитовой ассоциации (Южный Урал) / П.А. Балыкин, Э.Г. Конников, А.П. Кривенко и др. Свердловск: УрО АН СССР, 1991. 160 с.
- 6. Попов В.С., Беляцкий Б.В. Sm-Nd возраст дунитклинопироксенит-тылаитовой ассоциации Кытлымского массива, Платиноносный пояс Урала // Докл. АН. 2006. Т. 409, № 1. С. 104–109.
- 7. Пушкарев Е.В., Калеганов Б.А. К-Аг датирование магматических комплексов Хабарнинского габброгипербазитового массива (Южный Урал) // Докл. АН. 1993. Т. 328, № 2. С. 241–245.
- Пушкарев Е.В., Прибавкин С.В., Богатов В.И., и др. Геологические свидетельства трех стадий формирования клинопироксенитов и связанных с ними основных пород в Платиноносном поясе Урала // Ежегодник-2000. Екатеринбург: ИГГ УрО РАН, 2001. С. 85–89.
- 9. Пушкарев Е.В., Травин А.В., Кудряшов Н.М., и др. Изотопная геохронология магматических и метаморфических комплексов Хабарнинского мафитультрамафитового аллохтона на Южном Урале и история его становления // Ультрабазит-базитовые комплексы складчатых областей и связанные с ними месторождения: мат-лы 3-й междунар. конф. Т. 2. Екатеринбург: ИГГ УрО РАН, 2009. С. 125–132.
- Ронкин Ю.Л. Изотопы стронция индикаторы эволюции магматизма Урала // Ежегодник-1988. Свердловск: ИГГ УрО АН СССР, 1989. С. 107–110.
- Савельева Г.Н, Перцев А.Н., Астраханцев О.В., и др. Структура и динамика становления плутона Кытлым на Северном Урале // Геотектоника. 1999. № 2. С. 36–60.
- 12. Ферштатер Г.Б., Пушкарев Е.В. Магматические клинопироксениты Урала и их эволюция // Изв. АН СССР. Сер. геол. 1987. № 3. С. 13–23.
- 13. Фоминых В.Г., Краева Ю.П., Ларина Н.В. Петрология и рудогенезис Качканарского массива. Свердловск: УрО АН СССР, 1987. 180 с.
- 14. Barsdell M., Berry R.F. Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu // Journal of Petrology. 1990. V. 31, № 3. P. 747–777.
- 15. Della-Pasqua F. N., Varne R. Primitive ankaramitic magmas in volcanic arcs: a melt-inclusion approach // The Canadian Mineralogist. 1997. V. 35. P. 291–312.
- Duparc L., Tihonowich M.N. Le platine et les gites platiniferes de l'Oural et du Monde. Geneve: Editions Sonor, 1920. 547 p.
- Mossman D.J. High-Mg Arc-ankaramitic dikes, Greenhills complex, Southland, New Zeland // The Canadian Mineralogist. 2000. V. 38. P. 191–216
- 18. Schiano P., Eiler J.M., Hutcheon I.D., Stopler E.M. Primitive Ca-rich, silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas // Geochemistry, Geophysics, Geosystems. 2000. V. 1. Paper namber 1999GC000032.

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010