ПЕТРОЛОГИЯ, ГЕОХИМИЯ

ПОЗДНЕОРДОВИКСКИЕ ВУЛКАНИТЫ ИЗ ОФИОЛИТОВОЙ АССОЦИАЦИИ ФУНДАМЕНТА ШАИМСКОГО РАЙОНА (ЗАПАДНАЯ СИБИРЬ)

К. С. Иванов, Ю. В. Ерохин

Офиолиты, представляющие собой фрагменты земной коры океанического типа, достаточно широко развиты в фундаменте западной части Западно-Сибирского нефтегазоносного мегабассейна, чаще всего, располагаясь вдоль крупных разломов, разделяющих структурно-формационные зоны разного типа [1–3, 5 и др.]. Изучены они были недостаточно, почти не было данных о вещественном составе и возрасте. В последнее время базальты офиолитового комплекса Шаимского района были датированы нами как позднеордовикские по находкам радиолярий и конодонтов в тонких прослоях яшм [4].

Офиолиты в доюрском фундаменте Приуральской части Западно-Сибирского мегабассейна представлены, главным образом, фрагментами, тектонически скученными с другими толщами. Наиболее представительный палеозойский офиолитовый комплекс, сложенный меланжированными серпентинитами, габброидами, плагиогранитами, базальтами с прослоями яшм изучен между поселками Шаим и Супра (рис. 1). Вулканиты офиолитового

Рис. 1. Схематическая геологическая карта доюрского основания центральной части Шаимского нефтеносного района (Иванов К.С., Федоров Ю.Н., Кормильцев В.В., 2006 г.).

1 – эффузивы с преобладанием туфов смешанного состава, триас; 2 – риолиты, триас; 3 – базальты триаса, нерасчлененные; 4 – базальты нижнего триаса; 5 – палеозойские терригенно-сланцевые формации; 6 – гранитоиды, ранняя пермь; 7 – метаморфическое сланцевое обрамление гранитоидов; 8 – габбро; 9 – основные эффузивы ордовика; 10 – плагиограниты; 11 – серпентиниты; 12 – стратиграфические и интрузивные контакты; 13 – тектонические контакты; 14 – разломы, сопровождаемые зонами дробления и рассланцевания; 15 – направления сдвигов; 16 – контуры гранитных массивов, не выходящих на предъюрский срез; 17 – местоположение скважины № 9040.

комплекса нами изучались на Ловинской, Филлиповской и Яхлинской площадях. Они сильно изменены, зачастую замещены карбонат-глинистым материалом, как например, в верхней части доюрского основания Яхлинской площади. Здесь наблюдаются базальтоиды, где вулканическое стекло преобразовано в глинистую массу, лейсты плагиоклаза нацело карбонатизированы, а индивиды клинопироксена замещены агрегатом хлорита. В редких случаях в вулканитах можно наблюдать реликты первичных минералов – плагиоклаза и клинопироксена, в то время как вулканическое стекло никогда не сохраняется. Это четко отличает палеозойские базальты от близлежащих почти неизмененных триасовых базальтов Даниловского грабена.

В пределах Филлиповской площади, несколькими скважинами вскрыты слабоизмененные основные эффузивы, среди которых преобладают плагиоклазовые порфириты базальтового состава. В некоторых разностях отмечаются небольшие миндалины, размером в первые миллиметры, выполненные халцедон-карбонатным агрегатом. Из вторичных изменений устанавливается хлоритизация вулканического стекла и частично клинопироксена, а также развитие прожилков и скоплений карбоната. Сохранение реликтов авгита и основной части микролитов плагиоклаза позволяет считать данные базальты слабоизмененными особенно в сравнении с другими палеозойскими вулканитами фундамента Шаимского района. Это обстоятельство и побудило изучить геохимические особенности данных базальтов.

Микроэлементный состав базальтоидов Филлиповской площади получен методом ICP-MS и приведен в табл. 1. Породы характеризуются повышенным содержанием титана (до 12000 г/т), марганца (до 2000 г/т), фосфора (до 1000 г/т), бария (до 830 г/т), ванадия (до 370 г/т), хрома (до 500 г/т), никеля (до 180 г/т), циркония (до 110 г/т) и стронция (до 250 г/т). Остальные элементы отличаются более низкими содержаниями. На дискриминационной диаграмме Nb-Zr-Y [6] базальтоиды данной площади попадают в поле N-MORB, а на графике Zr–Zr/Y [7] они оказались в области базальтов COX (см. рис. 2). При этом все вулканиты из Даниловского грабена (развитого непосредственно западнее Филлиповской площади) на обеих диаграммах ложатся в область внутриплитных толеитов. На графике Rb-Sr основная часть базальтов Филлиповской площади попадает в область СОХ с условной мощностью коры менее 15 км, а вулканиты триасового грабена ложатся в область 20-30 км.

По составу РЗЭ слабо измененные базальтоиды Филлиповской площади характеризуются обеднением легких лантаноидов и напоминают примитивные океанические базальты N-MORB типа (на рис. 3 приведены пунктирной линией). Для вулканитов с сильными вторичными изменения-

Таблица 1. Микроэлементный состав (г/т) базальтоидов Филлиповской площади

Эл-ты	9040/1962	7p/2077	2525/1976
Li	96.11	19 77	18.48
Be	0.97	0.33	0.35
Sc	20.71	77 59	45.07
Ti	8260.83	10343 39	11889.63
V	230.34	351 37	365.25
, Cr	502 57	56.64	179.24
Mn	1046.97	1852 58	1977 12
Rh	3.63	3 59	21 49
Sr Sr	248.86	67.90	144.07
V	240.00	28.88	38.42
T a	5.66	8 16	2 72
Ce	14 54	20.51	8 75
Dr	2 10	20.31	1.45
Nd	10.10	13 50	7.67
Sm	2 03	3 76	2.76
Fu	1 20	1.53	1 10
Gd	3.72	1.55	3.80
Th	0.68	0.87	0.76
Dy	4.26	5.56	5 403
Dy Цо	4.20	5.50	1 201
TIO Er	2 30	1.17	3.54
Tm	2.39	0.48	0.56
Vh	0.33	3.03	3.78
IU Lu	0.32	0.45	0.60
Lu Цf	2.01	2.63	2.68
To	2.01	2.03	0.32
Ia W	0.37	0.84	0.32
vv D	0.27	618 53	703.26
1 T1	0.04	0.01	/03.20
11 Dh	2.02	0.01	0.03
D;	2.02	2.32	0.42
DI Th	0.02	0.02	0.01
111 TT	0.40	0.45	0.20
U Zr	0.30	106.76	108.13
Nh	7 15	7 22	2.09
Mo	2.05	0.10	2.90
Δα	2.03	0.10	0.33
Ag Cd	0.23	0.20	0.24
Cu In	0.08	0.10	0.20
III Co	0.04	0.08	1.28
CS Ro	826.21	132.07	1.20
Ба	15 12	132.97	440.77
Ni	175.00	65 59	60.02
	85.00	28 22	67.20
Cu Zn	05.00	30.23	107.66
ZII Ga	40.10	131.12	107.00
Ga	0.20	0.47	0.34
Δ.	47.45	1 20	2.54
110		1.47	2.20

Примечание. Масс-спектрометр Element2, аналитическая группа Ю.Л. Ронкина.

ми (Ф9040/1962, Ф7р/2077) наблюдается обогащение легкими РЗЭ, хотя уровень концентрации лантаноидов близок тренду N-MORB. Для сравнения на график (см. рис. 3) нанесено поле кайнотипных рифтогенных базальтоидов из Даниловского триасового грабена. Видно, что триасовые вулкани-

Рис. 2. Дискриминационная диаграмма Zr–Zr/Y для базальтов [7].

Полем показаны вулканиты из Даниловского триасового грабена, квадратами – базальты Филлиповской площади.

ты характеризуются повышенными концентрациями РЗЭ и сильным обогащением по легким лантаноидам.

Среди этих же базальтоидов Филлиповской площади было установлено несколько согласных небольших прослоев красных слоистых яшм (радиоляритов) и слоисто-брекчированных яшмовидных кремнистых гидротермолитов, мощностью до 30 см (в скважине № 9040 на глубине 1966 м и др.). Остатки радиолярий, среди которых преобладают формы плохой и средней сохранности, образуют до 20–25% породы. Проведенный О.Э. Амоном анализ видового состава позволил определить стратиграфическую позицию и геологический возраст изучаемого комплекса радиолярий в пределах позднего ордовика (ашгилл). Определение возраста по радиоляриям было подтверждено находкой конодонтов Регіоdon **sp. среднего-позднего ордовика (заключе-**

Рис. 3. Распределение РЗЭ в базальтоидах Филлиповской площади Шаимского района, нормированное по хондриту.

ние Г.Н. Бороздиной и В.А. Наседкиной), выделенных из этого же прослоя яшм при помощи 10% плавиковой кислоты [4].

Таким образом, микроэлементный состав базальтоидов Филлиповской площади (и их ассоциация с яшмами) указывает на развитие в Шаимском районе вулканитов океанического типа (задуговых толеитов?), входящих в состав офиолитового комплекса. Проведенные палеонтологические исследования позволили установить позднеордовикский возраст базальтов, входящих в данную офиолитовую ассоциацию фундамента Западной Сибири в Шаимском районе. По всей видимости, возраст и других комплексов пород офиолитовой ассоциации района (серпентинитов, габбро и др.), составлявших единый блок земной коры океанического типа, также является позднеордовикским. В пределах Урала наиболее близкими по возрасту и составу аналогами офиолитов Шаимского района являются позднеордовикский шемурский комплекс Тагильской зоны Среднего и Северного Урала и верхняя (также позднеордовикская) часть сугралинского базальтового комплекса Сакмарской зоны Южного Урала.

Работа выполнена в рамках Программы ОНЗ РАН № 10 при частичной поддержке интеграционной Программы СО-УрО РАН (проект "Геологическое строение, геодинамика и нефтегазоносность комплекса основания Западно-Сибирского мезозойско-кайнозойского осадочного бассейна и его складчатого обрамления").

СПИСОК ЛИТЕРАТУРЫ

- 1. Добрецов Н.Л. Эволюция структур Урала, Казахстана, Тянь-Шаня и Алтае-Саянской области в Урало-Монгольском складчатом поясе // Геология и геофизика. 2003. Т. 44, № 1-2. С. 5–27.
- Ерохин Ю.В., Иванов К.С., Федоров Ю.Н. Офиолиты доюрского основания Южно-Октябрьской площади Приуральской части Западно-Сибирского мегабассейна // Фундамент, структуры обрамления Западно-Сибирского мезозойско-кайнозойского осадочного бассейна, их геодинамическая эволюция и проблемы нефтегазоносности: мат-лы Всеросс. науч. конф. Тюмень-Новосибирск: СибНАЦ, 2008. С. 80–82.
- Иванов К.С., Кормильцев В.В., Федоров Ю.Н. и др. Основные черты строения доюрского фундамента Шаимского нефтегазоносного района // Пути реализации нефтегазового потенциала ХМАО. Т. 1. Ханты-Мансийск. 2003. С. 102–113.
- 4. Иванов К.С., Федоров Ю.Н., Амон Э.О. и др. О возрасте и составе офиолитов фундамента Западно-Сибирского нефтегазоносного мегабассейна // Докл. АН. 2007. Т. 413, № 4. С. 535–540.
- Симонов В.А., Клец А.Г., Иванов К.С., Ступаков С.И. Особенности эволюции мантийных палеоокеанических комплексов из фундамента Западно-Сибирского осадочного бассейна // Фундамент, структуры обрамления Западно-Сибирского мезо-

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

зойско-кайнозойского осадочного бассейна, их геодинамическая эволюция и проблемы нефтегазоносности: мат-лы Всеросс. науч. конф. Тюмень-Новосибирск: СибНАЦ, 2008. С. 194–197.

Meschede M. A method of discriminating between dif-6. ferent types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram // Chemical Geolo-

gy. 1986. V. 56. P. 207–218. *Pearce J.A., Norry M.J.* Petrogenetic Implications of Ti, Zr, Y and Nb variations in volcanic rocks // Contributions to Mineralogy and Petrology. 1979. V. 69. 7. P. 33–47.