ПЕТРОЛОГИЯ, ГЕОХИМИЯ

О МОБИЛИЗАЦИИ КОМПОНЕНТОВ МЕДЕПЛАВИЛЬНОГО ШЛАКА МОДЕЛЬНЫМИ ПОЧВЕННЫМИ РАСТВОРАМИ

А. Л. Котельникова

В условиях интенсивного земледелия восстановление плодородия почв является актуальной задачей. Стабильность и продуктивность почв во многом зависят от их минерального состава. Наиболее эффективно плодородие почв восстанавливается при внесении аморфизованных и диспергированных минеральных композитов, способствующих нейтрализации почвенных растворов и обогащению их легкорастворимыми элементами [1]. Отход вторичной переработки медеплавильных шлаков, так называемый "песок", накопленный в значительных объемах к настоящему времени Среднеуральским медеплавильным заводом (СУМЗ, г. Ревда), удовлетворяет этим требованиям и может быть использован в качестве

микроэлементной добавки для повышения урожайности почв [9]. В связи с этим, необходимо проведение исследований состава продуктов выветривания и миграционной способности компонентов шлака в условиях, имитирующих почвообразовательный процесс, с целью исключения экологического риска.

В данной экспериментальной работе моделируется система "почвенный раствор" — "песок". В качестве имитационного почвенного раствора использовали 1 М ацетатно-аммонийный буферный раствор (ААР). Эксперименты проводили при температуре +20°С и атмосферном давлении в течение 20 суток при соотношении шлак/вода = 2.5/1 (50 г шлака и 20 мл воды). Элементный состав фильтра-

Таблица 1. Концентрации компонентов "песка" в ацетатно-аммонийном водном растворе в зависимости от времени, в $M\Gamma/\Pi$

	Содержание в шлаке (не-	Время, сутки					
Элементы	опубликованные данные В.Ф. Рябинина), %	1	5	10	15	20	
Na	0.4	4.296 нет данных	3.041 76.953	6.373 48.440	6.01 34.063	2.524 21.101	
Mg	1.02	45.927 47.113	21.819 58.500	33.073 36.418	26.191 32.165	17.315 24.246	
Al	2.4	2.093 0.094	<u>н/о</u> 0.157	<u>н/о</u> 0.242	<u>н/о</u> 0.220	<u>н/о</u> 0.215	
Si	16.7	546.562 1.353	1.332	<u>н/о</u> 1.399	<u>н/о</u> 1.657	<u>н/о</u> 1.515	
P	0.12	3.393 0.065	$\frac{1.626}{0.033}$	1.996 0.013	$\frac{0.749}{0.014}$	<u>0.224</u> н/о	
S	1.3	360.026	<u>0.663</u> 395.71	0.546 106.635	<u>0.09</u> 139.658	106.780	
K	0.5	3.938 21.209	3.229 15.804	6.390 11.875	<u>4.562</u> 9.876	2.613 7.017	
Ca	3.1	33.37 125.793	8.880 313.957	1.299 108.123	<u>24.578</u> 128.241	12.872 99.154	
Mn	0.07	2.539 0.877	1.395 0.585	2.895 0.679	$\frac{1.887}{0.807}$	1.371 0.718	
Fe	35.5	882.143 0.718	592.694 0.328	1145.520 0.492	741.564 0.641	497.095 0.130	
Cu	0.44	<u>н/о</u> 0.233	<u>н/о</u> 0.233	<u>н/о</u> 0.153	<u>н/о</u> 0.142	<u>н/о</u> 0.158	
Zn	3.3	101.553 5.419	68.779 2.44	110.547 1.865	63.807 2.231	49.471 1.935	
As	0.1	0.618 0.004	<u>0.499</u> 0.003	<u>0.749</u> 0.003	<u>0.266</u> 0.005	0.178 0.003	
Cd	нет данных	0.032 0.009	0.005 0.004	0.008 0.003	0.003 0.003	0.001 0.003	
Pb	0.44	19.142 0.023	4.665 0.015	5.140 0.028	3.238 0.020	2.123 0.020	

Примечание. В знаменателе для сравнения приведены данные экспериментов с водой, проведенных ранее при тех же условиях.

тов устанавливали методом АЭС с ИП. Результаты представлены в табл. 1.

Эксперименты показали повышенную миграционную активность железа, марганца, цинка, свинца и мышьяка. Концентрации меди на протяжении всего эксперимента, а кремния и алюминия на вторые сутки после начала эксперимента, в растворе ниже фоновых значений.

Растворимость сульфатов, присутствующих в "песке" в этих условиях незначительна. В ходе эксперимента наблюдались более низкие концентрации Na, K, Ca и S в растворе по сравнению с предыдущими опытами. На основании экспериментальных данных были построены ряды миграционной активности элементов (табл. 2). Коэффициент водной иммиграции рассчитывали по формуле [7].

 $K_x = m_x \cdot 100/\sum m_x \cdot n_x$, где K_x – коэффициент водной миграции; m_x – концентрация элемента в водном растворе, моль/кг H_2O ; n_x – процентное содержание элемента в шлаке.

Основной вклад в формирование данного состава водного раствора вносит наиболее активная стекловатая фаза, входящая в состав "песка". За счет явлений несмесимости в шлаковом расплаве будут выделяться области, которые при охлаждении будут формировать композиты, состоящие из мелкокристаллических силикатных минералов и/или сульфидов, спаянных друг с другом пленками стекловатой фазы, так называемые ситаллы.

Исследования структуры стекловатой фазы нами не проводилось. На основании литературных данных [11] можно предположить, что в железистых алюмосиликатных стеклах медеплавильных шлаков будут присутствовать нейтральные кремнекислородные тетраэдры с мостиковыми атомами кислорода [SiO_{4/2}], положительно заряженные кремнекислородные группы $[SiO_{3/2}]^+$ и отрицательно заряженные кремнекислородные тетраэдры состава $[OSiO_{3/2}]$. Атомы кремния в кремнекислородных группировках могут частично замещаться алюминием, титаном, железом, фосфором и др. элементами. Возникающий избыточный заряд будет компенсироваться катионами или анионами, располагающимися в полостях кремнекислородной матрицы. Эти катионы и анионы, достаточно слабо связаны с кремнекислородным каркасом, обладают значительной подвижностью и могут участвовать в ионообменных реакциях без его разрушения. Возможно также образование более прочных связей катионов и анионов с немостиковыми и мостиковыми атомами кислорода. За счет свободных ионов О²⁻, входящих в состав кремнекислородной матрицы, возможна сорбция воды.

В воде и сернокислых водных растворах щелочные и щелочноземельные металлы и анионы, находящиеся в полостях кремнекислородной матрицы, будут легко выщелачиваться без нарушения ее структуры. Элементы, находящиеся в шестерной координации в кремнекислородной матрице, будут более устойчивыми. Мобильность их должна повышаться в присутствии сильных комплексообразователей.

В наших экспериментах образование устойчивых ацетатных комплексов двухвалентного железа будет приводить к разрушению кремнекислородного каркаса с выделением мелкокристаллических фаялита и сульфидов, что подтверждено данными рентгенофазового анализа, а также аморфных фрагментов алюмосиликатной матрицы, которые в дальнейшем образуют глинистую фазу. Вместе с тем, возможно образование аморфных гидроксидов железа, алюминия, кремния, цинка, марганца и др. металлов на фоне параллельно протекающего частичного гидролиза образующихся ацетатных комплексов. Присутствие сульфидов и магнетита в минеральной ассоциации вторичных продуктов может свидетельствовать о слабо окислительных, близких к нейтральным, условиях протекания процесса [3]. При этом возможно незначительное присутствие сульфат-иона в растворе за счет частичного окисления сульфидов.

В результате ионообменной реакции гидроксид цинка под действием сернокислой меди может переходить в брошантит за счет сорбции гидроксидом цинка сульфата меди из раствора [10]. Ионообменными свойствами обладает и гидроксид железа, который селективно извлекает медь из растворов [5]. Возможны также рекристаллизационные обменные реакции с участием сульфидов, в которых направление обмена в значительной степени будет контролироваться различиями в произведениях растворимости сульфидов обменивающихся металлов. В связи с этим возможен синтез сульфидов меди за счет сульфидов металлов, стоящих правее в ряду возрастающей растворимости сульфидов: $\hat{\text{CuS}} \to \hat{\text{PbS}} \to \hat{\text{CdS}} \to \bar{\text{CoS}} \to \text{ZnS} \to \text{FeS}$ [10]. Это может служить объяснением полного отсутствия меди и значительного увеличения содержания железа, цинка, кадмия, свинца в аммонийноацетатных растворах наших экспериментов.

Другой причиной значительного увеличения содержания железа, цинка, кадмия и свинца в

Таблица 2. Ряды миграционной активности элементов по данным лабораторного эксперимента

	•			•	
Миграционная	Очень сильная	Сильная	Средняя	Слабая	Очень слабая
активность	$Lg K_x > 1$	$0 < Lg K_x < 1$	$-1 < Lg K_x < 0$	$-2 < Lg K_x < -1$	$Lg K_x << -2$
вода	S > Na > Mg	Ca	Fe > K	Zn > [Cu, P] > Si > Al	As > Mn > Pb
AAP		Mg > Mn > Na > P > Fe > Zn	Ca > Pb > As	S	Si > Al > Cu

Примечание. АРР – здесь и далее ацетат-аммонийный раствор.

Таблица 3. Доля подвижных форм тяжелых металлов (%)

	Mn	Cu	Zn	Pb	As
вода ААР	0.17	0.04	0.64	0.005	0.0008
ΔЛΙ	0.4/	U	10.23	1.59	0.11

ацетатно-аммонийных растворах по сравнению с концентрацией их в системе "песок" – вода является комплексообразование. Ацетатно-аммонийный состав растворов будет оказывать сильное влияние на характер разделения элементов между фазами из-за образования комплексных ионов металлов различной степени устойчивости. Это приведет к относительному обогащению растворов теми ионами, комплексы которых более устойчивы.

В более ранних наших исследованиях было установлено, что в присутствии сульфат- и гидроксиданионов концентрация железа в водном растворе при взаимодействии "песка" с водой и растворами серной кислоты была значительно меньше по сравнению с содержанием железа в ацетатноаммонийных растворах, что может косвенно свидетельствовать об образовании в них кроме иона Fe^{2+} устойчивых ацетатных комплексов двухвалентного железа. Известно [6] о существовании ацетатных комплексов меди, свинца и цинка. Присутствующие в растворе анионы уксусной кислоты связывают тяжелые металлы (медь, свинец, цинк) в сравнительно прочные комплексы состава МеАс+, где Me - Cu, Pb, Zn, устойчивость которых падает в ряду $CuAc^+ > PbAc^+ >> ZnAc^+$, однако доминирующими в растворе будут свободные катионы Ме²⁺. В присутствии SO₄²⁺ возможно образование сульфатных комплексов Fe, Cu, Pb, Zn. В то же время, щелочные и щелочноземельные элементы, одновременно находящиеся с этими элементами в растворе, ограничивают своим присутствием эту возможность, поскольку сами образуют прочные соединения с сульфат-ионом.

В отличие от экспериментов с водой и сернокислыми водными растворами, подвижность щелочных и щелочноземельных элементов в присутствии ацетатно-аммонийного раствора понижена. Это может быть связано с их осаждением в твердые фазы в присутствии некоторого избытка кремния и алюминия в первые сутки эксперимента, с низким содержанием SO_4^{2+} в растворе, со смещением равновесия влево в реакциях ионного обмена между этими элементами и ионами аммония, обусловленным сильным гидролизом ацетатов щелочных и щелочноземельных элементов. Низкие содержания сульфатаниона в растворе могут быть связаны с невозможностью обмена с ацетат-анионом из-за размерных эффектов. Концентрация магния в ацетатноаммонийных растворах сопоставима с его концентрацией в водных растворах в экспериментах с водой. В ацетатно-аммонийном растворе магний, находящийся в шестерной координации в кремнекислородной матрице, будет выщелачиваться из стекловатой фазы совместно с железом. Магний, располагающийся в полостях каркаса кремнекислородной матрицы стекловатой фазы и компенсирующий ее избыточный заряд, в наших экспериментах малоподвижен, как натрий, калий и кальций.

Фрагменты кремнекислородной матрицы стекловатой фазы, выделяющиеся в процессе выщелачивания стекла, с течением времени формируют глинистую фазу. Ацетатно-аммонийные растворы неустойчивы: при стоянии из них выделяется твердая фаза черного цвета, предположительно смесь оксидов железа, марганца, цинка.

На поверхности частиц формирующейся глинистой фазы, гидроксидов и оксидов железа, марганца, цинка будут сорбироваться тяжелые металы и мышьяк. Но, нужно отметить, что, несмотря на это, концентрации потенциальных полютантов в ацетатно-аммонийных растворах наших экспериментов достаточно высокие (табл. 3). Следует предполагать, что в природных условиях "песок" при взаимодействии с органическими соединениями будет выделять в почву достаточно подвижные органометаллические комплексы тяжелых металлов.

В ходе экспериментов было также отмечено повышение подвижности фосфора и мышьяка. Эти элементы в виде примесей входят в состав сульфидов и железосодержащей стекловатой фазы. В результате ионообменных реакций фосфор и мышьяк в слабо окислительных условиях при рН около 6 переходят в водный раствор в виде оксианионов PO_4^{3-} [4], AsO_4^{3-} [2]. Присутствие фосфатных, сульфатных и ацетатных анионов в растворе будет препятствовать прочному закреплению мышьяка на поверхности гидроксидов железа, алюминия и марганца, обладающих высокой сорбционной активностью в отношении этого элемента [2]. В природных условиях под воздействием биоты в восстановительных условиях возможен переход As(V) в более токсичную и подвижную восстановленную форму As(III).

Из литературных источников [8] известно, что для снижения экологической опасности высокоминерализованных вод можно применять порошкообразный карбонат кальция или раствор гидроксида натрия. В связи с этим, можно предложить предварительную обработку "песка" раствором гидроксида натрия или внесение в почву смеси "песка" и карбоната кальция для снижения негативного влияния внесения минеральной добавки в почвы, или грунтовые воды.

Таким образом, проведенные эксперименты показали, что отход вторичной переработки медеплавильных шлаков, так называемый "песок", будет, по-видимому, легко разлагаться почвенными растворами, содержащими большое количество органических соединений, с переходом железа, марганца и тяжелых металлов в раствор в виде органометаллических комплексов и образованием тонкодисперсного фаялита, глинистой фазы. Гидролиз образующихся органических комплексов металлов приводит с течением времени к снижению концентрации их в водном растворе за счет образования тонкодисперсных гидроксидов и/или оксидов железа, марганца и цинка с сорбцией на их поверхности тяжелых металлов и мышьяка. Снижение токсического эффекта внесения этой микроэлементной добавки возможно при совместном внесении в почвы карбоната кальция или предварительной обработки "песка" раствором гидроксида натрия.

СПИСОК ЛИТЕРАТУРЫ

- Бычинский В.А. Геохимия процессов антропогенного почвообразования. Геохимия техногенных процессов. М.: Наука, 1990. С. 104–109.
- Водяницкий Ю.Н. Хром и мышьяк в загрязненных почвах (обзор литературы) // Почвоведение. 2009. № 5. С. 551–559.
- 3. *Гарелс Р.М., Крайст Ч.Л.* Растворы, минералы, равновесия. М.: Мир, 1968. 367 с.
- 4. *Котельникова А.Л.* Исследование подвижности загрязняющих веществ при кислотном выщелачи-

- вании хвостов переработки медеплавильных шлаков. // Инженерная экология. 2006. № 1. С. 54–62.
- 5. *Марков В.Ф., Фомазюк Н.И., Маскаева Л.Н. и др.* Извлечение меди (II) из промывных вод композиционным сорбентом Dowex marathon С гидроксид железа // Конденсированные среды и межфазные границы. 2006. Т. 8, № 1. С. 29—35.
- 6. *Минкина Т.М., Пинский Д.Л., Самохин А.П. и др.* Влияние сопутствующего аниона на поглощение цинка, меди и свинца черноземом // Почвоведение. 2009. № 5. С. 560–566.
- 7. Основы гидрогеологии. Гидрогеохимия / Под ред. С.Л. Шварцева М.: Наука, 1982. 286 с.
- 8. Пестриков С.В., Набиев А.Т., Зельдова А.И. идр. Геоэкологические технологии: реагентная очистка металлсодержащих подотвальных вод отработанного карьера Куль-Юрт-Тау // Инженерная экология. 2009. № 3. С. 44–52.
- Рябинин В.Ф. Компромисс как способ решения проблемы утилизации отходов // Минералогия техногенеза-2004. Миасс: ИМин УрО РАН, 2004. С. 74–80.
- 10. *Челищев Н.Ф.* Ионнообменные свойства минералов. М.: Наука, 1973. 203 с.
- Shultz M.M. Termodynamics of glass-forming melts and glass // Сборник обзорных лекций на XV Международном конгрессе по стеклу (на англ. яз.). Ленинград: Наука, 1989. С. 129–163.