ПЕТРОЛОГИЯ, ГЕОХИМИЯ

ХРОМСОДЕРЖАЩИЙ ЭПИДОТ ИЗ МЕЛАНОДИОРИТОВ ШАБРОВСКОГО МАССИВА, СРЕДНИЙ УРАЛ

С. В. Прибавкин, Д. А. Замятин

Минералы группы эпидота являются обычными для метаморфических, метасоматических и изверженных пород. Обычно они представлены клиноцоизитом - Ca₂Al₃Si₃O₁₂(OH), эпидотом - Ca₂Al₂Fe³⁺Si₃O₁₂(OH) и пьемонтитом - $Ca_2Al_2Mn^{3+}Si_3O_{12}(OH)$. Возможность существования минерала с идеализированным составом Ca₂Al₂Cr³⁺Si₃O₁₂(OH), названным Бликом (1907) "тавмавит", показали электронно-микрозондовые исследования включений в известковом плагиоклазе из кианитовых амфиболитов Южных Альп, Новая Зеландия [12] и кварцитов Оутукумпу, Финляндия [18]. Хотя содержание Cr₂O₃ в образцах достигало 15.37%, что соответствовало 0.98 ф. е. Сг, вопрос о правомерности выделения тавмавита остался открытым. Это произошло вследствие того, что Cr³⁺ не занимает определенной структурной позиции, как требуют того критерии выделения новых минеральных видов IMA, а беспорядочно распределяется в цепи октаэдров M3, M1 с преимущественным вхождением в МЗ [7].

Примеров нахождения в природе эпидотов, богатых хромом, немного. Кроме упомянутых, высокие содержания хрома в минералах группы эпидота (до 11.9 и 10.08% Cr₂O₃, соответственно), установлены в месторождении барита кратона Карнатак, Индия [10] и Кордильере Бетике, Испания [15]. Эшли и Мартин (1987) описали эпидот с 6.31% Cr₂O₃ из кварц-алюмосиликатных пород в пределах архейского зеленокаменного пояса Норсиман-Вилуна Западной Австралии. Хромсодержащий эпидот (до 5.7% Cr₂O₃) установлен в омфацитовой гальке из округа Бесши, центрального Сикоку, Япония [13] и на северо-западе района Нельсон в Новой Зеландии (1.5-2% Cr₂O₃) [9]. V-Cr-клиноцоизит (1.5-11% Сг₂О₃) встречен в Западных Карпатах, Словакия [19]. На Урале хромсодержащий клиноцоизит отмечен в родингитах Баженовского месторождения хризотил-асбеста [5]. Этот минерал содержал 2.29% Cr₂O₃.

В этой работе мы описываем хромсодержащий эпидот, найденный в меланодиоритах Шабровского гранитного массива на Среднем Урале в окрестностях Екатеринбурга. В описании мы приводим данные о составе, минеральной ассоциации и возможных механизмах образования этого достаточно редкого минерала.

Шабровский массив (рис. 1) имеет размеры 6 × 8 км и залегает среди островодужных вулкано-

генно-осадочных пород раннего девона. Возраст массива – 300–310 млн. лет [3 и новые данные]. Он считается аналогом поздних фаз Верхисетского массива – петротипа тоналит-гранодиоритовой формации на Среднем Урале [2]. Массив сложен однородными, часто порфировидными амфиболбиотитовыми и биотитовыми гранодиоритами, гранитами и породами жильной серии, представленной дайками гранитов и аплитов. Кроме того, в контурах массива имеются крупные блоки чужеродных пород, метабазитов и клинопироксенитов.

Меланодиориты образуют небольшое тело 250×300 м, залегающее среди гранитов в центральной части массива. Оно сложено несколькими интрузивными фазами, отличающимися по петрографическому и химическому составу. Наиболее основные разности (53% SiO₂) имеют амфиболбиотитовый состав (Pl – 50–55%, Bt – 20–30%, Hbl – 15–25%, Qtz – 0–5%, Ttn – 0–2%), а кислые (63% SiO₂) – пироксен-биотит-амфиболовый (Pl-40–50%, Hbl–25–35%, Bt–0–15%, Fsp–5–10%, Qtz – 5–10%, Срх – 0–2%). Структура пород лампрофировая: идиоморфные кристаллы роговой обманки, погружены в базис из салических минера-

Рис. 1. Схема геологического строения Шабровского гранитного массива.

 вулканогенно-осадочные породы кунгурковской свиты (D₂); 2 – гранодиориты, граниты;
меланодиориты; 4 – ксенолиты Уктусского массива; 5 – габбро и метабазиты; 6 –клинопироксениты и горнблендиты.

Рис. 2. Фотография образца лейкократовых включений в меланодиорите.

лов, который имеет средне-крупнозернистую, гипидиоморфнозернистую, часто пойкилитовую структуру, обусловленную присутствием ойкокристаллов плагиоклаза.

Особенностью меланодиоритов является наличие включений (или обособлений) гранитоидного состава (рис. 2), описанных в работе [4]. Включения имеют размер 1–10 см, реже крупнее. Распределены в объеме пород неравномерно: от нескольких включений на 1 м² до полного отсутствия. Форма включений округлая, эллипсовидная либо неправильная, состоящая из нескольких соединенных сфер. Внутреннее строение крупных включений, как правило, неоднородное и ассиметричное. Часть объема в них сложена амфиболовыми, амфибол-биотитовыми или амфибол-клинопироксеновыми гранодиоритами, а часть - лейкократовым микропегматитовым гранитом. При этом, четко видно, что в близко расположенных друг к другу включениях, зоны развития лейкогранитов всегда ориентированы в одну сторону, отражая вектор гравитационного расслоения включений. Небольшие включения, до 1-4 см, часто сложены только лейкогранитами, внутренняя структура микропегматитовых агрегатов которых имеет признаки сферолитового роста от центра. При внимательном рассмотрении можно заметить, что в непосредственном обрамлении крупных включений находятся маленькие, 2-5 мм, округлые кварц-полевошпатовые агрегаты, окруженные каймами из зерен амфибола. Состав включений определяется количественными соотношениями фемических и салических минералов, состав которых практически одинаков как во включениях, так и во вмещающих меланодиоритах.

Хромсодержащий эпидот образует мелкие зерна и агрегаты внутри кристаллов амфибола, которые

приурочены к контактовой зоне меланодиоритов и гранитоидных включений, либо находится внутри этих включений. В тесную минеральную ассоциацию с хромистым эпидотом входят также хромшпинелид, хромистый мусковит и титанит. Биотит и клинопироксен мы не рассматриваем, поскольку взаимоотношений этих минералов с хромсодержащим эпидотом не наблюдается.

Эпидот образует мелкие ксеноморфные, реже субидиоморфные кристаллы. Часто в эпидоте наблюдаются октаэдрические кристаллики хромшпинелида (рис. 3а). Размер выделений эпидота не превышает 0.5 мм. Макроскопически он имеет бурую окраску, а в шлифах плеохроирует от светло желтого по Ng и Np до апельсиново-желтого по Nm. Интеренференционные окраски высокие. Зональность наблюдается крайне редко и только в тех кристаллах, где наиболее сильно выражен идиоморфизм. Оптически зональность проявлена слабо. Толщина отдельных зон менее 5 мкм. Иногда наблюдаются простые двойники [100].

Кроме описанного выше, встречаются кварцэпидотовые мирмекитообразные прорастания размером не более 0.5 мм, располагающиеся в лейкократовом базисе и на контактах амфибол-плагиоклаз, при этом наблюдается небольшая коррозия амфибола эпидотом. Такой эпидот бесцветен или обладает очень слабыми желтовато-зеленоватыми оттенками плеохроизма. В одном случае наблюдались желтые окраски плеохроизма участков эпидота контактирующих с амфиболом, свидетельствующие об обогащении эпидота хромом.

Хромшпинелид в виде идиоморфных кристаллов размером менее 50 мкм, заключен в центре или по зонам роста кристаллов амфибола. Зерна хромшпинелида имеют октаэдрическую форму, с гладкими поверхностями. Иногда в окружении мусковита они имеют зазубренные границы (рис. 5) являющиеся либо поверхностями совместного роста, либо структурами замещения мусковитом хромшпинели. В редких случаях наблюдаются коррозионные структуры на хромшпинелиде. Минерал непрозрачен, в редких случаях просвечивает бурым. Распределение хромшпинелида внутри лейкократовых включений неравномерное. Максимальные количества хромшпинелида приурочены к границе меланодиорит – гранитоидное включение. В меньшей степени хромшпинелид встречается внутри кислых включений. Совсем редко хромшпинелид наблюдается во вмещающих меланодиоритах. Здесь и его количество, и размер кристаллов гораздо меньше чем во включениях.

Мусковит в виде чешуйчатых агрегатов тесно срастается с хромшпинелидом. Размер отдельных листочков слюды достигает 0.4 мм. Окраска яркая изумрудно-зеленая. В шлифе плеохроирует от желтовато-зеленого по Ng до голубого по Np.

Титанит образует ксеноморфные выделения или субидиоморфные кристаллы, заключенные в хром-

Рис. 3. Микрофотографии хромсодержащего эпидота. а – вид в проходящем свете; b – обратно-рассеянные электроны (BSE); c–f – элементное картирование, показывающее распределение по Ca (c), Al (d), Cr (e), Fe (f).

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

N₂	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	37.39	37.21	38.11	37.89	37.84	37.94	38.00	37.78	37.84	37.67	37.97
TiO ₂	0.17	0.17	0.07	0.14	0.10	0.07	0.05	0.07	0.06	0.02	0.11
Al_2O_3	24.35	23.51	23.57	22.90	23.07	22.52	22.47	22.45	22.23	21.73	21.90
Cr_2O_3	0.02	1.54	1.65	2.97	3.33	4.03	4.11	4.32	4.67	4.69	5.43
Fe ₂ O ₃	12.17	11.53	11.63	11.15	10.76	10.55	11.05	10.85	10.78	10.91	10.15
MgO	0.03	0.02	0.04	0.04	0.04	0.05	0.03	0.04	0.03	0.04	0.03
CaO	23.40	22.82	23.11	23.32	23.01	23.02	22.91	22.63	22.65	22.96	22.94
Сумма	96.43	95.68	98.06	98.29	98.04	98.07	98.50	98.03	98.15	97.91	98.42
Si	2.977	2.990	3.017	3.004	3.004	3.016	3.011	3.007	3.011	3.012	3.016
Ti	0.010	0.010	0.004	0.008	0.006	0.004	0.003	0.004	0.004	0.001	0.007
Al	2.286	2.227	2.200	2.141	2.159	2.111	2.099	2.107	2.085	2.048	2.051
Cr	0.001	0.098	0.103	0.186	0.209	0.253	0.257	0.272	0.294	0.296	0.341
Fe ³⁺	0.729	0.697	0.693	0.665	0.643	0.631	0.659	0.650	0.645	0.657	0.607
Mg	0.004	0.002	0.005	0.005	0.005	0.006	0.004	0.005	0.004	0.005	0.004
Ca	1.997	1.965	1.960	1.981	1.958	1.961	1.945	1.930	1.931	1.967	1.953
Ps. %	0.24	0.24	0.24	0.24	0.23	0.23	0.24	0.24	0.24	0.24	0.23

Таблица 1. Химический состав (мас. %) и кристаллохимические коэффициенты (ф. е.) эпидота из лейкократового включения в меланодиорите Шабровского массива

Примечание. 1–2 мирмекитоподобный эпидот на контакте с плагиоклазом (1) и амфиболом (2), 3–11 – хромсодержащий эпидот в ассоциации с хромитом. Содержания MnO, Ce₂O₃ составляют 0–0.06 мас. %. Расчет произведен на O = 12.5 атомов.

содержащем эпидоте, мусковите, а также самостоятельные выделения корродирующие амфибол. Размер зерен варьирует от 10–25 мкм до 0.5 мм. Макроскопически титанит имеет соломенную окраску. В шлифах обладает плеохроизмом, меняя окраску от бесцветной до светло-желтой. Титанит в удалении от хромшпинелида или хромсодержащего эпидота теряет хром, а его цвет становится светло-коричневым. Кристаллы амфибола заключают в себе все перечисленные выше минералы, а также реликтовые хромсодержащие биотит и клинопироксен. Амфибол образует идиоморфные кристаллы величиной до 5 мм. Имеет светло-зеленую или светло-бурую окраску, подчеркивающую внутреннюю зональность, которая зачастую стирается развитием поздней светлозеленоватой, бесцветной генерацией (магнезиаль-

Таблица 2. Химический состав (мас. %) и кристаллохимические коэффициенты (ф. е.) амфибола, биотита и мусковита

				-		-	-		-		-
N⁰	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	47.11	48.49	48.73	52.83	52.26	51.92	52.27	56.62	38.95	47.60	46.65
TiO ₂	1.26	1.31	1.28	0.50	0.44	0.45	0.63	0.00	2.04	0.32	0.60
Al_2O_3	9.18	8.69	8.11	4.88	4.85	4.73	4.68	0.87	15.35	25.44	24.28
Cr ₂ O ₃	0.75	0.44	0.60	0.63	1.74	1.51	1.50	0.14	2.47	4.05	6.33
FeO	10.94	7.84	7.79	7.91	7.81	7.57	7.70	7.06	10.31	3.67	3.52
MnO	0.09	0.11	0.05	0.13	0.05	0.04	0.02	0.15	0.00	0.00	0.00
MgO	14.30	16.69	16.67	17.68	16.99	17.25	17.36	19.68	15.98	3.10	2.84
CaO	11.77	11.47	11.43	12.27	12.17	12.27	12.15	13.30	0.03	0.01	0.01
Na ₂ O	1.85	2.11	2.10	1.07	1.10	1.10	1.19	0.15	0.07	0.16	0.14
K ₂ O	0.66	0.62	0.58	0.36	0.37	0.37	0.38	0.04	9.95	10.69	10.61
Сумма	97.91	97.77	97.34	98.26	97.78	97.21	97.88	98.01	95.15	95.04	94.98
Na	0.520	0.584	0.584	0.292	0.303	0.304	0.327	0.041	0.021	0.045	0.039
K	0.122	0.113	0.106	0.065	0.067	0.067	0.069	0.007	1.947	1.959	1.961
Ca	1.829	1.755	1.755	1.852	1.851	1.876	1.845	1.990	0.005	0.002	0.002
Mg	3.091	3.551	3.560	3.712	3.594	3.668	3.667	4.095	3.653	0.664	0.613
Fe ²⁺	1.327	0.936	0.934	0.932	0.927	0.903	0.913	0.824	1.323	0.441	0.427
Mn	0.011	0.013	0.006	0.016	0.006	0.005	0.002	0.018	0.000	0.000	0.000
Cr	0.086	0.050	0.068	0.070	0.195	0.170	0.168	0.015	0.300	0.460	0.725
Ti	0.137	0.141	0.138	0.053	0.047	0.048	0.067	0.000	0.235	0.035	0.065
Al ^{VI}	0.401	0.386	0.354	0.252	0.228	0.204	0.190	0.049	0.751	3.144	2.907
Fe ³⁺	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al ^{IV}	1.168	1.077	1.017	0.558	0.583	0.592	0.592	0.094	2.025	1.164	1.241
Si	6.832	6.923	6.983	7.442	7.417	7.408	7.408	7.906	5.975	6.836	6.759
Al _{oom}	1.569	1.463	1.370	0.810	0.811	0.796	0.782	0.143	2.776	4.307	4.148

Примечание. 1–3 – эденит, 4–6 – магнезиальная роговая обманка, 7–8 – актинолит, 9 – включение биотита в амфиболе, 10–11 – хромсодержащий мусковит. Расчет произведен на O = 23 атомов.

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

ной роговой обманкой, актинолитом). Поздний амфибол развивается по краям, отдельным блокам кристалла, трещинам, разделу между фазами.

Состав хромсодержащего эпидота представлен в табл. 1. Содержание хрома в эпидоте варьирует от 0.10 до 0.34 ф. е. в пересчете на O = 12.5. При этом содержание железа не опускается ниже 0.6 ф. е., а его вариации меньше, чем по хрому в три раза (0.61-0.71 ф. е.). Суммарное содержание $Cr^{3+}+Fe^{3+}$ приближается к 1 ф. е., что определяет минеральный вид как хромсодержащий эпидот. На диаграмме 2AlCr-3Al-2AlFe (рис. 4) наши составы отличаются от ранее описанных в литературе большим содержанием Fe³⁺. Они располагаются, также как и другие хромсодержащие эпидоты, параллельно стороне Cr-Al, что говорит о более значимых вариациях хрома по сравнению с железом. С целью выяснения распределения хрома в эпидоте мы провели элементное картирование (рис. 3c-f), которое четко показывает, что концентрация хрома в эпидоте повышается вокруг зерен хромшпинелида, тогда как железо распределено относительно равномерно по всему кристаллу. Аналогичная картина была получена в работе [13].

Данные по составу сопутствующих хромсодержащему эпидоту минеральных фаз приведены в табл. 2-4. Состав раннего амфибола соответствует эдениту (табл. 2). Он характеризуется умеренным глиноземом $Al_2O_3 = 8-9\%$ и титаном $TiO_2 = 1.2-1.3\%$, низкой железистостью 0.2-0.3. Более поздний амфибол, слагающий края или отдельные блоки кристаллов, имеет близкую железистость Fe/(Fe + Mg) = 0.2, но обладает пониженным глиноземом (Al₂ $O_3 = 7-4\%$), титаном (TiO₂ = 0.8-0.4) и соответствует магнезиальной роговой обманке. Именно этот амфибол характеризуется максимальным содержанием хрома, достигающим 1.7% Cr₂O₃, особенно вблизи кристаллов хромшпинелида. Амфибол из меланодиоритов обладает всеми перечисленными выше характеристиками раннего и позднего амфиболов, отличаясь лишь более низкими содержаниями хрома (менее 0.78% Cr₂O₃). Кроме описанных амфиболов, встречается поздний актинолит, развивающийся по трещинам или замещающий более ранние амфибол и клинопироксен. Содержание хрома в актинолите менее 0.7%

Мусковит содержит от 4 до 7% Cr_2O_3 , являясь хромсодержащей разновидностью (табл. 2). Он схож по составу с мусковитами, описанными во всех других проявлениях хромсодержащего эпидота в мире [10, 12, 13, 15, 18]. Отличительной чертой нашего мусковита является повышенное содержание титана 0.3–0.9 мас. % ТіО₂, что характерно для мусковита, кристаллизующегося на ликвидусе гранитного расплава [1]. В тоже время другие критерии выделения магматического мусковита (повышенное содержание содержание железа и Na/(Na + K) отношение) не работают, что не позволяет однозначно

Рис. 4. Вариации состава хромсодержащего эпидота.

1 – [18], 2 – [12], 3 – [9], 4 – [15], 5 – [10], 6 – [5], 7 – хромсодержащий эпидот (наши данные), 8 – мирмекитоподобные выделения эпидота (наши данные). Серым полем выделена область составов эпидота по [13].

трактовать его генезис.

В составе титанита отмечается примесь хрома (до 1.68% Cr₂O₃) и ЛРЗЭ (La₂O₃+Ce₂O₃ до 0.67%) (табл. 3). При этом титанит с высоким хромом характеризуется низкими концентрациями РЗЭ и на-

Таблица 3. Химический состав (мас. %) и кристаллохимические коэффициенты (ф. е.) титанита

N⁰	1	2	3	4	5	6	7
SiO ₂	30.16	30.52	29.93	30.81	30.96	29.90	30.75
TiO ₂	35.91	35.78	36.26	37.57	37.75	35.77	38.22
Al_2O_3	0.98	0.87	0.91	0.81	1.00	1.03	0.68
Cr_2O_3	1.68	1.56	1.12	0.88	0.78	0.73	0.46
Fe ₂ O ₃	0.76	0.91	0.63	0.49	0.57	0.71	0.51
MnO	0.00	0.00	0.02	0.00	0.00	0.02	0.00
MgO	0.01	0.01	0.00	0.00	0.01	0.00	0.01
CaO	27.95	27.62	27.53	28.85	28.74	27.34	28.75
La_2O_3	Н. О.	0.12	н. о.	Н. О.	н. о.	0.36	н. о.
Ce_2O_3	Н. О.	0.00	Н. О.	Н. О.	Н. О.	0.31	Н. О.
Сумма	97.45	97.39	96.40	99.41	99.81	96.17	99.38
Si	1.013	1.024	1.014	1.013	1.013	1.019	1.011
Ti	0.907	0.903	0.924	0.929	0.929	0.916	0.945
Al	0.039	0.034	0.036	0.031	0.039	0.041	0.026
Cr	0.045	0.041	0.030	0.023	0.020	0.020	0.012
Fe ³⁺	0.019	0.023	0.016	0.012	0.014	0.018	0.013
Mn	0.000	0.000	0.001	0.000	0.000	0.001	0.000
Mg	0.001	0.001	0.000	0.000	0.000	0.000	0.000
Ca	1.006	0.993	0.999	1.016	1.007	0.998	1.012
La	0.000	0.001	0.000	0.000	0.000	0.005	0.000
Ce	0.000	0.000	0.000	0.000	0.000	0.004	0.000

Примечание. Расчет произведен на О = 5 атомам. н. о. – элемент не определялся.

N⁰	1	2	3	4	5
TiO ₂	0.33	0.38	0.46	0.62	0.76
Al ₂ O ₃	4.19	4.19	4.01	4.52	4.57
Cr_2O_3	49.25	48.34	48.73	45.96	44.85
V_2O_3	0.20	0.15	0.23	0.26	0.27
FeO _{общ.}	41.90	42.84	42.84	45.03	45.38
FeO	29.74	29.85	30.13	30.24	30.14
Fe ₂ O ₃	13.51	14.44	14.12	16.44	16.94
MnO	1.45	1.41	1.21	1.42	1.49
MgO	0.23	0.24	0.26	0.27	0.29
NiO	0.09	0.19	0.09	Н. О.	н. о.
ZnO	0.74	0.67	0.71	0.79	0.78
Сумма	99.73	99.86	99.96	100.52	100.09
Ti	0.009	0.010	0.013	0.017	0.021
Al	0.182	0.181	0.174	0.194	0.197
Cr	1.432	1.404	1.415	1.325	1.299
Fe ³⁺	0.374	0.399	0.390	0.451	0.467
V	0.004	0.003	0.005	0.005	0.006
Fe ²⁺	0.914	0.917	0.925	0.922	0.923
Mn	0.045	0.044	0.038	0.044	0.046
Mg	0.013	0.013	0.014	0.015	0.016
Ni	0.003	0.006	0.003	0.000	0.000
Zn	0.020	0.018	0.019	0.021	0.021
$Fe^{2+}/(Mg+Fe^{2+})$	0.99	0.99	0.98	0.98	0.98
Fe ³⁺ /sumR ³⁺	0.19	0.20	0.20	0.23	0.24
Cr/(Cr+Al)	0.89	0.89	0.89	0.87	0.87

Таблица 4. Химический состав (мас. %) и кристаллохимические коэффициенты (ф. е.) хромшпинелида

оборот. Отметим, что титаниты, содержащие больше 1.7% Cr_2O_3 , крайне редки, что связано с ограниченными возможностями изоморфизма типа $Ti^{4+} + O^{2-} \ll Cr^{3+} + (OH)^-$. Близкие по составу титаниты с содержанием хрома до 0.72–1.6% известны в ассоциации с хромсодержащим эпидотом в баритовых рудах из архейского кратона Карнатака, Индия и в метакарбонатных породах Кордильеры Бетики, Испания [15].

Состав хромшпинелида (табл. 4) соответствует субалюмоферрихромиту. Он характеризует-

Рис. 5. Микрофотография кристаллов хромшпинелида в мусковит-амфиболовой матрице.

ся высокой хромистостью Cr/(Cr + Al) = 0.88, высоким содержанием Cr₂O₃, до 52%, низким содержанием магния (MgO < 0.3%), повышенным марганцем (до 1.8% MnO) и цинком (до 1% ZnO). Различий между крупными и мелкими кристаллами не наблюдается. Зональность в зернах хромита очень слабая, выражающаяся в повышении доли железа в краю шириной менее 5 мкм. На диаграммах $Fe^{3+}/\Sigma M^{3+}-Fe^{2+}/(Fe^{2+}+Mg)$ и Cr/(Cr + Al)- $Fe^{2+}/(Fe^{2+} + Mg)$ состав хромшпинелида близок хромиту из высокотемпературных метаморфических пород, а также из метаморфизованных коматиитов и, связанных с ними сульфидных руд [8]. Сходная ассоциация хромшпинелида и хромового эпидота описана в омфацитовых породах о. Сикоку, Япония [13] и в сильнометаморфизованных карбонатных породах Кордильеры Бетики [15].

ОБСУЖДЕНИЕ

Минералы подгруппы клиноцоизита имеют общую кристаллохимическую формулу $(A1A2)_2(M1M2M3)_3[Si_2O_7][SiO_4](O4)(O10)$, в которой $A1 = M^{2+}, A2 = M^{2+}, M1 = M^{3+}, M2 = M^{3+}, M3 = M^{3+}, O4 = O^{2-}, O10 = (OH)^{-}$. Все члены этой подгруппы выводятся из клиноцоизита $(Ca_2Al_3[Si_2O_7][SiO_4](OH))$ путем изовалентных замещений.

Моноклинная кристаллическая структура клиноцоизита состоит из Si₂O₇ и SiO₄ тетраэдров, связанных с двумя видами цепей (параллельных оси b). Одна цепь состоит из M2 октаэдров, в то время как другая цепь сформирована M1 октаэдрами с приложенными к ней M3 октаэдрами по бокам. MO₆ октаэдры главным образом заняты трехвалентными ионами, такими как A1, Fe³⁺, Mn³⁺, Cr³⁺, V³⁺. Двухвалентные катионы (например, Mg, Fe²⁺, Mn²⁺) могут занять M участки (предпочтительно M3) в случае гетеровалентного изоморфизма. У M2 есть сильное предпочтение A1, тогда как занятие M1 и M3 зависит от конкурирующих ионов.

Как показали последние исследования кристаллохимии минералов группы эпидота [7, 11], Fe³⁺ Mn³⁺, Cr³⁺, V³⁺ занимают в первую очередь позицию M3, тогда как M1 остается свободной для замещения атомов алюминия. Позиция M2, либо полностью занята алюминием, либо предоставляет возможность замещению в последнюю очередь, когда позиция M3 полностью занята, а M1 занята частично. В тоже время, закономерности в распределении Fe, Mn, Cr, V по позиция M1, M3 отсутствуют.

В представленной выборке эпидота (табл. 1) отмечается хорошая достоверность аппроксимации между Al^{3+} и суммой $Fe^{3+}+Cr^{3+}$, равная 0.94, что соответствует кристаллохимии минерала. Хорошая аппроксимация наблюдается также между Al^{3+} и Cr^{3+} , равная 0.77. В тоже время, железо ведет себя как константа по отношению к глинозему (рис. 6). Анализ литературных данных по эпидоту из Финляндии и Испании [15, 18] подтверждает данную закономерность. Схожее поведение железа и хрома отмечено в работе [13]. В этой же работе был сделан важный вывод о том, что чем больше в эпидоте содержится железа, тем меньше места остается для изоморфного вхождения хрома. Такой вывод хорошо подтверждается рис. 2, на котором видно, что максимальные содержания хрома свойственны эпидоту, в котором доля железа очень низка.

В нашем случае эпидот богат железом (до 0.71 ф. е.), что делает возможность замены остальной части Al в позиции M3 на хром ограниченным. Хотя хром и железо способны входить в позицию M1, а вхождение хрома является еще и более предпочтительным [14], но такое вхождение, в целом, более энергоемко. Таким образом, содержание Fe^{3+} действительно является ограничителем для вхождения Cr^{3+} не только в позицию M3, но и вообще в структуру эпидота.

Таким образом, можно предположить, что в процессе кристаллизации в эпидот входит максимально возможное количество железа при существующих P,T, fO2 параметрах минералообразующей среды. Это видно и по величине пистацитового компонента одинакового как в хромсодержащем, так и обычном эпидоте гранитоидных включений (табл. 1). Хрому предоставляется возможность вхождения в структуру только при его очень высокой активности во флюиде или расплаве, что в нейтральной среде возможно только вблизи кристаллов хромшпинелида, так как хром обладает выраженными амфотерными свойствами. Способствовать вхождению хрома может и его более близкий к алюминию ионный радиус (Cr³⁺ – 0.62 Å), по сравнению с железом ($Fe^{3+} - 0.645$ Å).

Наличие мирмекитоподобных выделений эпидота является следствием реакции ранее кристаллизовавшегося магматического эпидота с остаточным расплавом. Это происходит вследствие того, что поле стабильности эпидота в кислых расплавах по экспериментальным данным находится выше 3 кбар и летучести кислорода около буфера Hem-Mt или 4.5 кбар вблизи буфера Ni-NiO [17]. В нашем случае расчет РТ-параметров кристаллизации ранних эденитовых вкрапленников, поздних амфиболовых кайм и микропегматитового базиса [4, 6, 16] показывает тренд резкого снижения давления при кристаллизации, что соответствует переходу из области устойчивости магматического эпидота в область нестабильности, с образованием эпидот-кварцевых мирмекитоподобных структур на контакте с плагиоклазом или кварцем. Формирование клинопироксена на заключительных стадиях может свидетельствовать и о значительной потере расплавом водной фазы, что также не способствует устойчивости эпидота. Мы предполагаем, что богатый хромом эпидот в ассоциации с хромшпинелидом, мусковитом и титанитом, являются продуктами реакции раннего ам-

Рис. 6. Диаграмма М³⁺-Аl.

фибола (эденита) и хромшпинелида с кислым расплавом. Подобные реакции предлагаются для объяснения происхождения магматического эпидота в породах гранитоидного состава [17, 20].

выводы

Установлено, что эпидот с необычными апельсиновыми цветами плеохроизма, обнаруженный в виде включений в амфиболе на границе меланодиоритов и гранитоидных включений в Шабровском массиве, содержит значительные количества хрома. Хромовый эпидот ассоциирует с хромшпинелидом, хромовым мусковитом и титанитом. Содержание Cr_2O_3 в эпидоте варьирует от 0.1 до 0.34 ф. е. при этом содержание Fe₂O₃ выдержано в районе 0.6-0.7 ф. е. и не зависит от количества хрома. Содержание железа в эпидоте обусловлено общими термодинамическими параметрами минералообразующей среды, а хрома – высокой активностью ионов этого элемента вблизи кристаллов хромшпинелида. Кроме того, наши данные подтверждают вывод о том, что высокое содержание железа является ограничителем для вхождения хрома в структуру минерала [13]. На основании анализа составов и взаимоотношений минералов мы предполагаем, что формирование хромового эпидота происходит на магматической стадии в результате реакции между ранним амфиболом, хромшпинелидом и кислым расплавом. Ранее хромсодержащий эпидот и клиноцоизит встречались исключительно в высокометаморфизованных породах. Условия образования хромсодержащего эпидота соответствовали умеренным давлениям Робщ = 3-4 кбар, располагаясь выше гранитного минимума при $P_{oбщ} = P_{H_{2}O} = 1-2$ кбар и T >700°C.

Работа выполнена при финансовой поддержке грантов РФФИ: 08–05–00018-а, 09–05–00911-а и программ ОНЗ РАН-2 2 (09-Т-5–1011); ОНЗ РАН-10 (09-Т-5–1019).

СПИСОК ЛИТЕРАТУРЫ

- Бородина Н.С., Ферштатер Г.Б. Состав и природа мусковита из гранитов // ЗВМО. 1988. Ч. СХVІІ. Вып. 2. С. 137–144.
- Орогенный гранитоидный магматизм Урала / Г.Б. Ферштатер, Н.С. Бородина, М.С. Рапопорт, Т.А. Осипова, В.Н. Смирнов, В.Я. Левин. Екатеринбург: ИГГ УрО РАН, 1994. 247 с.
- Прибавкин С.В., Пушкарев Е.В., Холоднов В.В. К вопросу о возрасте Шабровского и Шарташского гранитоидных массивов // Ежегодник-2007. Екатеринбург: ИГГ УрО РАН, 2008. С. 271–276.
- 4. Пушкарев Е.В., Осипова Т.А. Гранитоидные включения в базитах Шабровского массива // Ежегодник-1992. Екатеринбург: ИГГ УрО РАН, 1993. С. 44–47.
- Спиридонов Э.М., Барсукова Н.С., Перелыгина Е.В., Плетнев П.А. Минералогия хрома в уральских родингитах умеренного давления (гранаты, хлориты, клинопироксен, клиноцоизит, гидроталькит) // Уральская летняя минералогическая школа-97. Екатеринбург: УГГГА, 1997. С. 57–60.
- Ферштатер Г.Б. Эмпирический плагиоклазроговообманковый барометр // Геохимия, 1990. № 3. С. 328–335.
- Armbruster T, Bonazzi C.P., Akasaka V.M., et al. Recommended nomenclature of epidote-group minerals // European Journal of Mineralogy, 2006. V. 18, № 5. P. 551–567.
- 8. *Barnes S.J., Roeder P.L.* The Range of spinel compositions in terrestrial mafic and ultramafic rocks // Journal Petrology, 2001. V. 42, № 12. P. 2279–2302.
- 9. *Challis A., Grapes R., Palmer K.* Chromian muscovite, uvarovite, and zinzian chromite: products of regional metasomatism in Northwest Nelson, New Zealand // Canadian Minerelogyst. 1995. V. 33. P. 1263–1284.
- 10. Devaraju T.S., Raith M.M., Spiering B. Mineralogy

of the archean barite deposit of Ghattihosahalli, Karnataka, India // Canadian Minerelogyst. 1999. V. 37. P. 603–617.

- 11. *Giuli G., Bonazzi P., Menchetti S.* Al-Fe disorder in synthetic epidotes; a single-crystal X-ray diffraction study // American Mineralogist. 1999. V. 84, № 5–6. P. 933–936.
- 12. *Grapes R.H.* Chromian epidoteand zoisite in kyanite amphibolite, Southern Alps, New Zealand // American Mineralogist. 1981. V. 66. P. 974–975.
- Nagashima M., Akasaka M., Sakurai T. Chromian epidote in omphacite rocks from the Sambagawa metamorphic belt, central Shikoku, Japan // Journal of Mineralogical and Petrological Sciences. 2006. V. 101, № 4. P. 157–169.
- Nagashima M, Geiger C.A., Akasaka M. A crystalchemical investigation of clinozoisite synthesized along the join Ca₂Al₃Si₃O₁₂(OH)-Ca₂Al₂CrSi₃O₁₂(OH) // American Mineralogist. 2009. V. 94, № 10. P. 1351– 1360.
- 15. *Sanchez-Vizcaino V.L.* The behavior of Cr during metamorphism of carbonate rocks from the Nevado-Filabride complex, Betic Cordilleras, Spain // Canadian Minerelogyst. 1995. V. 33. P. 85–104.
- Schmidt M.W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. // Contrib. Mineral. Petrol. 1992. V. 110. P. 304–310.
- 17. *Schmidt M.W., Thompson A.B.* Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships, and the role of epidote in magmatic evolution // American Mineralogyst. 1996. V. 81. P. 462–474.
- Treloar P.J. Chromian muscovites and epidotes from Outokumpu, Finland // Mineralogycal Magazine. 1987. V. 51. P. 593–599.
- 19. Uher P., Kováčik M., Kubiš M., et al. Metamorphic vanadian-chromian silicate mineralization in carbonrich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia // American Mineralogyst. 2008. V. 93, № 1. P. 63–73.
- Zen E-an, Hammarstrom J.M. Magmatic epidote and its petrologic significance // Geology. 1984. V. 12. P. 515–518.