ГЕОХРОНОЛОГИЯ

Lu-Hf ИЗОТОПНЫЙ СОСТАВ ЦИРКОНОВ ИЛЬМЕНО-ВИШНЕВОГОРСКОГО КОМПЛЕКСА (РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ МЕТОДОМ ЛАЗЕРНОЙ АБЛЯЦИИ)

И. Л. Недосекова, Е. А. Белоусова*, В. В. Шарыгин**

Состав изотопов гафния в цирконах в последнее время становится важным инструментом для реконструкции источника магматических пород, а также для решения вопросов происхождения и эволюции магматических, метаморфических и оса-дочных комплексов. Нf – существенный структурный элемент в кристалле циркона с количеством 5000-20000 г/т (иногда выше). Lu/Hf-отношения в цирконе низкие (<0.01) и, следовательно, состав изотопов Hf в цирконе очень близок первичным отношениям изотопов Hf во время его кристаллизации. Циркон устойчив во многих гипогенных и гипергенных процессах. Метамиктизация и более поздние процессы изменения практически не оказывают влияния на состав изотопов Hf в цирконе [12, 25]. Относительная стабильность Hf-изотопии в цирконе делает изотопы Hf мощным инструментом для изучения возраста источника и изотопной эволюции самых различных пород [7, 25, 29]. Реконструкция начального состава изотопов Hf исходной породы иногда возможна даже в том случае, если эта порода больше не существует – разрушена, переплавлена или метаморфически преобразована, а циркон находится в осадочной или в новообразованной магматической или метаморфической породе. Особенно эффективна комбинация датирования отдельного зерна циркона U-Pb методом с Hf-изотопией из тех же самых зерен (при изучении цирконов локальными изотопными методами – SHRIMP, SIMS и лазерной абляцией), что приводит к получению важной информации относительно источника пород, даже в том случае, когда все другие изотопные системы значительно нарушены или даже уничтожены.

Нами получены первые Lu-Hf изотопные данные (в комбинации с U-Pb изотопными данными) методом лазерной абляции для цирконов из карбонатитов и щелочных пород Ильмено-Вишневогорского комплекса с целью изучения возраста пород и их источников вещества.

Ильмено-Вишневогорский щелочно-карбонатитовый комплекс находится на стыке Среднего и Южного Урала, в ядре Сысертско-Ильменогорского антиклинория – блока докембрийских пород, залегающего среди уральских палеоокеанических комплексов. Ильмено-Вишневогорский комплекс состоит из двух крупных (20 × 6 км) интрузивных массивов миаскитов - Вишневогорского и Ильменогорского, соединенных между собой Центральной щелочной полосой, сложенной фенитами, мелкими телами миаскитов, меланократовыми карбонатносиликатными породами и карбонатитами. Широко развиты щелочные (нефелин-микроклиновые) пегматиты, встречающиеся как в эндо-, так и в экзоконтактах миаскитовых массивов. Карбонатиты максимально развиты в апикальной части Вишневогорского интрузива миаскитов, в миаскитах и щелочных метасоматитах Центральной щелочной полосы, а также встречаются в экзоконтактовом ореоле миаскитовых интрузий – в фенитизированных породах докембрия. Кроме того, карбонатиты редкометально-редкоземельной минерализацис ей установлены в массивах ультрабазитов, залегающих вблизи контакта с интрузиями миаскитов в Булдымском, Халдихинском, Спирихинском ультрабазитовых массивах и др.

Возраст кристаллизации миаскитов и карбонатитов Ильмено-Вишневогорского комплекса, по данным U-Pb и Rb-Sr геохронологии, составляет 440– 410 млн. лет. Кроме того, в породах и минералах Ильмено-Вишневогорского комплекса U-Pb и Rb-Sr методами датируются более поздние процессы метаморфизма, связанные с герцинской орогенией (360–320 млн. лет) и последующим постколлизионным растяжением (260–240 млн. лет) [1, 6, 19, 20].

Цирконы встречаются практически во всех разновидностях пород Ильмено-Вишневогорского комплекса – в миаскитах, миаскит-пегматитах, карбонатитах и щелочных метасоматитах. Они образуют кристаллы от 0.8 мм до 2 см, в пегматитах – до 10 см. Большая часть кристаллов представлена округлыми или субидиоморфными зернами, но довольно часто встречаются дипирамидальные слабоудлиненные (короткостолбчатые) кристаллы. Окраска циркона меняется от светло-бурой до бесцветной. При изучении отдельных кристаллов цирконов в катодных лучах устанавливается две генерации цирконов [2, 3]. I генерация – ксеноморфные, неоднородные по окраске, слабопрозрачные зерна циркона, с признаками дробления, перекристаллизации и метасо-

^{*} CEMOC ARC National Key Centre, Maequarie University, Sydney, Australia

^{**} Институт геологии и минералогии СО РАН, г. Новосибирск

матических преобразований. Отличительной особенностью ранних генераций цирконов является то, что они не люминисцируют в катодных лучах. II генерация – субидиоморфные зерна округлой формы, часто с отдельными гранями, прозрачные, однородные по окраске, с отчетливой люминесценцией в катодных лучах. В кристаллах циркона II генерации часто присутствуют реликты нелюминесцирующего циркона I генерации. Значительная часть зерен цирконов представлена промежуточными разновидностями, иллюстрирующими различную степень преобразования ранних генераций цирконов и замещение их поздними генерациями.

Цирконы Ильмено-Вишневогорского комплекса, а именно цирконы миаскитов и карбонатитов Вишневогорского, Ильменогорского массивов и Центральной щелочной полосы, ранее были датированы классическим U-Pb методом по объемным навескам с кислотным разложением цирконов [6, 20], а также изучены на SHRIMP-II [2, 3]. Цирконы карбонатитов и щелочных метасоматитов Булдымского массива ранее не датировались. Датирование цирконов различными методами показало синхронность событий в истории миаскитов и карбонатитов. Возраст кристаллизации циркона (I генерации) определен в миаскитах – 408 ± 8 млн. лет, для наименее измененных зерен цирко $ha - 417.5 \pm 7.5$ млн. лет: в карбонатитах -402 ± 8 млн. лет. Процессы метаморфизма и новообразования циркона датируются в миаскитах – 383 ± 14 и 279 ± 10 млн. лет, в карбонатитах 359 ± 25 и $288 \pm$ 38 млн. лет [2, 3].

Для изучения Lu-Hf изотопных составов цирконов Ильмено-Вишневогорского комплекса (в комбинации с U-Pb датированием отдельных зерен циркона) нами были выделены цирконы из миаскитов (Обр. Vnp-1, Vnp-2), миаскит-пегматитов (Обр. Krv-5) и карбонатитов Вишневогорского массива (Обр. 354), а также цирконы из поздних доломитовых карбонатитов и сопровождающих их флогопит-рихтерит-карбонатных метасоматитов Булдымского массива (Обр. K-103).

Проба Vnp-1 – мезократовый миаскит с содалитом, Вишневогорский массив (г. Долгая, Ю. Карьер).

Проба Krv-5 – нефелин-микроклиновый пегматит с биотитом, пирохлором и цирконом (кристаллы до 1 см) из пневматолитовой части пегматитовой жилы (Жила № 5, северная часть Вишневогорского массива, южный склон горы Каравай).

Проба 354 – крупнозернистый кальцитовый карбонатит с биотитом, пирохлором и цирконом (кристаллы от 0.2 до 1 см), образующий шлир среди жильных миаскитов корневой зоны Вишневогорского миаскитового массива (скальный врез по тракту на 6.5 км южнее г. Вишневогорск).

Пробы (К-103) – доломитовые карбонатиты с рихтеритом, флогопитом и монацитом, образующие жилу мощностью до 1 м, и сопровождающиеся флогопит-рихтерит-карбонатными метасоматитами в метагипербазитах (Западный карьер, Булдымский гипербазитовый массив).

Исследования Lu-Hf- и U-Pb-изотопных составов цирконов Ильмено-Вишневогорского комплекса методом лазерной абляции были проведены нами в Национальном Центре геохимической эволюции и металлогении континентов (GEMOS) Университета Маккуори (Macquarie) в г. Сиднее, Австралия. Для U-Pb-датирования был использован ультрафиолетовый лазер UP213 ("New Wave") и ICP-MS спектрометр Aligent-7500, для изотопного анализа гафния применяли лазер New Wave/Merchantek LUV213 в комплекте с мультиколлекторным MC-ICPMS Nu-Plasma. Анализы были выполнены с диаметром пучка 50 мкм. Время абляции составляло 100–120 с, глубина кратера – 40–60 мкм.

Наложение ¹⁷⁶Lu на ¹⁷⁶Hf скорректировано измерением интенсивности свободного от наложения ¹⁷⁵Lu и использованием ¹⁷⁶Lu/¹⁷⁵Lu 1/40.02669 [10] для вычисления ¹⁷⁶Lu/¹⁷⁷Hf. Аналогично, наложение ¹⁷⁶Yb на ¹⁷⁶Hf было исправлено измерением ¹⁷²Yb и использованием ¹⁷⁶Yb/¹⁷²Yb для вычисления ¹⁷⁶Yb/¹⁷⁷Hf. Соответствующее значение ¹⁷⁶Yb/¹⁷²Yb было определено с использованием ЈМС475 стандарта Hf c Yb, и нахождением ¹⁷⁶Yb/¹⁷²Yb (0.58669), необходимого для вычисления ¹⁷⁶Hf/¹⁷⁷Hf, полученного по чистому раствору Hf. Исследования стандартов цирконов [14, 15] иллюстрируют правильность и точность полученных ¹⁷⁶Нf/¹⁷⁷Нf отношений. несмотря на коррекцию ¹⁷⁶Нf. Погрешности значений $(2\hat{\sigma})$ для ¹⁷⁶Ĥf/¹⁷⁷Hf отношений ± 0.00002, эквивалентно ± 0.7 єНf. Воспроизводимость и точность метода обсуждаются детально в работах [14–17].

Циркон Муд Танк, проанализированный вместе с образцами (каждые 10 измерений), использовался как независимый контроль стабильности работы прибора и воспроизводимости. Большинство данных и среднее значение (0.282527 ± 28, n = 10) находится в пределах рекомендованного 2σ интервала (0.282522 ± 42 (2σ)) [17]. Анализ одного из стандартов циркона № 91500, проанализированный во время этого исследования, дал ¹⁷⁶Hf/¹⁷⁷Hf = 0.282304 ± 42 (2σ), что находится в пределах диапазона значений для этого стандарта [16].

Методика U-Pb датирования была детально описана ранее [10, 15, 18]. Образцы были проанализированы в "пробегах" из 16 анализов, которые включали 12 неизвестных точек. В начале и в конце "пробега" анализировался стандарт циркона GEMOC GJ-1 [11]. Кроме того, два других хорошо охарактеризованных стандарта циркона (№ 91500 и Mud Tank), были проанализированы в пределах каждого "пробега" как независимый контроль по воспроизводимости и стабильности работы прибора. U-Pbвозраст был вычислен, используя пакет программ онлайн GLITTER [www.mq.edu.au/GEMOC]. Мы применили процедуру коррекции Pb по [8]. Пред-

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

<u>№</u> п/п	№ обр.	Солержания г/т			Изотопные отношения									Возраст,
		Соде	pmum	<i>m</i> , 171	потоплые отношения									млн. лет
		U	Th Pb		²⁰⁷ Pb/ ²⁰⁶ Pb 1σ, % ²⁰⁷ Pb/ ²³⁵ U 1σ, % ²⁰⁶ Pb/ ²³⁸ U 1σ, % ²³⁸ U/ ²³² Th 1σ, %									²⁰⁶ Pb/ ²³⁸ U
1	K103-02	9	77	0.20	0.059	19	0.3507	19	0.04312	4	0.11256	9	53.1	272 ± 22
2	K103-03	14	51	0.23	0.07163	9	0.42062	9	0.04259	3	0.27613	7	73.9	269 ± 14
3	K103-10	37	146	0.67	0.05114	5	0.30538	5	0.04331	2	0.24778	8	-10.8	273 ± 8
4	K103-12	27	104	0.42	0.051	12	0.29799	12	0.0424	3	0.24859	8	-11.3	268 ± 16
5	K103-13	11	65	0.27	0.06268	15	0.36789	14	0.04257	4	0.17115	6	62.7	269 ± 20
6	K103-15	24	96	0.48	0.07048	8	0.40161	7	0.04135	2	0.24628	8	73.7	261 ± 12
7	K103-16	14	59	0.21	0.05672	12	0.32867	11	0.04204	3	0.23742	4	45.7	265 ± 14
8	K103-17	19	141	0.32	0.05887	9	0.34211	9	0.04216	2	0.12911	8	53.8	266 ± 12
9	K103-19	10	34	0.17	0.0346	27	0.20349	26	0.04268	4	0.29617	7	-142.6	269 ± 20
10	K103-20	27	104	0.43	0.05386	9	0.31566	8	0.04253	2	0.2587	8	27.1	268 ± 14
11	K103-21	10	54	0.11	0.06292	27	0.36505	26	0.04209	7	0.17568	6	63.6	266 ± 36
12	V354-2	118	13	1.04	0.05172	6	0.31896	6	0.04472	2	8.90015	6	-3.4	282 ± 6
13	V354-3	71	147	0.52	0.063	10	0.57695	9	0.06643	3	0.47429	6	42.8	415 ± 14
14	V354-5	1227	4554	37.87	0.05432	6	0.49597	5	0.06622	2	0.26554	7	-7.8	413 ± 9
15	V354-6	27	17	0.43	0.05431	10	0.48264	9	0.06445	3	1.61263	6	-5	403 ± 13

Таблица 1. U-Pb данные для цирконов из карбонатитов Ильмено-Вишневогорского комплекса

Примечание. 1–11 – циркон из доломитовых карбонатитов и флогопит-рихтерит-карбонатных метасоматитов Булдымского массива, 12–15 – циркон из карбонатитов Вишневогорского массива. D – дискордантность.

ставленные в этой статье анализы были скорректированы по модели [31] для ²³⁸U/²⁰⁴Pb = 9.74. Никакой коррекции не было применено к анализам, которые являются согласующимися в пределах 2σ с аналитической ошибкой для ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U, или которые имеют меньше чем 0.2% общего Pb. Диаграммы конкордий и эллипсов погрешностей были построены с использованием программного обеспечения Isoplot, версии 2.49 и 3.0 [21, 22].

Результаты U-Pb-анализа цирконов приведены в табл. 1 и на рис. 1. Lu-Hf изотопные данные представлены в табл. 2.

В цирконах миаскитов, миаскит-пегматитов и карбонатитов, Вишневогорского массива были изучены ранние генерации циркона I. Возраст кристаллизации раннего циркона в пробе из карбонатитов Вишневогорского массива определен в 411 \pm 14 млн. лет (рис. 1а). Как уже упоминалось, возраст 410 млн. лет получен также при U-Pb датировании ранних генераций цирконов миаскитов [2]. В цирконах I генерации (в тех же зернах, по которым было проведено U-Pb датирование) были определены изотопов гафния (1⁷⁶Hf/1⁷⁷Hf)₄₁₀ и єHf, отражающие, как известно, изотопный состав родоначальных магм и субстрата плавления, были рассчитаны на возраст 410 млн. лет.

Для вычисления єНf мы приняли значения отношений изотопов для хондритов по Scherer и др. [30]. Для вычисления модельных возрастов (T_{DM}), основанных на выплавлении пород из деплетированной мантии, мы приняли модель с (176 Hf/ 177 Hf)_i = 0.279718 в 4.56 Ga и 176 Lu/ 177 Hf = 0.0384, которая производит современные значения 176 Hf/ 177 Hf = 0.28325, близкие средним значениям MORB [14, 15]. Модельные возраста T_{DM} , которые вычисле-

Рис. 1. U-Pb диаграмма для цирконов из карбонатитов Вишневогорского миаскитового массива (а) и из поздних доломитовых карбонатитов Булдымского ультрабазитового массива (б).

НЕДОСЕКОВА и др.

No							206Pb/238U				Т	Т
л/п	№ обр	Lu, г/т	Yb, г/т	Hf, Γ/τ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	возраст,	Hf(T)	εHf(t)	2σ	л _{DM} ,	т _{DMC,} мпрл пет
							млн. лет				тард. нет	тард. нет
1	K103–02	31	274	8734	0.000488	0.282593	268	0.282591	-0.5	0.6	0.92	1.33
2	K103–03	16	132	8649	0.000251	0.282587	268	0.282586	-0.7	0.7	0.92	1.34
3	K103–10	16	139	8013	0.000282	0.282589	268	0.282588	-0.6	0.4	0.92	1.34
4	K103–11	26	230	7377	0.000496	0.282522	268	0.282520	-3.0	0.5	1.02	1.49
5	K103–12	26	215	8225	0.000438	0.282601	268	0.282599	-0.2	0.4	0.91	1.31
6	K103–13	23	199	8480	0.000371	0.282589	268	0.282587	-0.7	0.8	0.92	1.34
7	K103–15	22	184	8819	0.000353	0.282557	268	0.282555	-1.8	0.5	0.97	1.41
8	V354–2	3	23	6614	0.000057	0.283055	282	0.283055	16.2	2.6	0.27	0.27
9	V354–3	9	91	6445	0.000204	0.282680	411	0.282678	5.7	0.6	0.79	1.04
10	V354–5	149	1706	5088	0.004066	0.282577	411	0.282546	1.0	1.0	1.04	1.34
11	V354–6	12	125	6530	0.000265	0.282660	411	0.282658	5.0	0.6	0.82	1.09
12	V354–8*	76	673	5190	0.002028	0.282679	411	0.282663	5.2	0.6	0.84	1.08
13	V354–10*	3	26	6869	0.000060	0.282673	411	0.282673	5.5	0.5	0.80	1.06
14	V354–12*	13	124	5978	0.000306	0.282664	411	0.282662	5.1	0.5	0.82	1.08
15	Vnp-2	2	17	10430	0.000030	0.282623	411	0.282623	3.8	0.2	0.87	1.17
16	Vnp-1A	4	29	12126	0.000044	0.282633	411	0.282633	4.1	0.3	0.86	1.15
17	Vnp-1B	2	15	7980	0.000034	0.282668	411	0.282668	5.4	0.5	0.81	1.07
18	Krv-5–2*	2	16	7683	0.000039	0.282632	411	0.282632	4.1	0.3	0.86	1.25
19	Krv-5–1*	2	16	6623	0.000045	0.282617	411	0.282617	3.5	0.4	0.88	1.28
20	Krv-5-3*	2	19	7929	0.000043	0.282654	411	0.282654	4.8	0.3	0.83	1.20

Таблица 2. Lu-Hf изотопные данные для цирконов Ильмено-Вишневогорского комплекса

Примечание. Погрешности значений (2σ) для ¹⁷⁶Hf/¹⁷⁷Hf не превышают 0.007%. Первичное отношение изотопов гафния рассчитано на возраст, определенный в этих пробах цирконов U-Pb методом. Величины εHf рассчитаны относительно хондритового резервуара CHUR с использованием константы распада ¹⁷⁶Lu λ = 1.865·10⁻¹¹ по [30]. Т_{DM} – модельный возраст источника, основанный на выплавлении магмы из деплетированной мантии (¹⁷⁶Lu/¹⁷⁷Hf = 0.038), Т_{DMC} – модельный возраст источника по двухстадийной модели, основанной на выплавлении магмы из средней континентальной коры (¹⁷⁶Lu/¹⁷⁷Hf = 0.015), которая была ранее образована из деплетированной мантии. * – в этих пробах возраст нами не определялся. 1–7 – доломитовые карбонатиты Булдымского массива, Западный карьер; 8–14 – кальцитовые карбонатиты Вишневогорского массива, г. Долгая, Ю. Карьер; 18–20 – миаскит-пегматиты Вишневогорского го массива, Жила № 5.

ны с использованием измеренного ¹⁷⁶Lu/¹⁷⁷Hf отношения в цирконе, могут дать только минимальный возраст для источника магмы, из которой кристаллизовался циркон. Поэтому мы также вычислили, для каждого циркона, "crustal" модельный возраст T_{DMC} , который предполагает, что его родительская магма была выплавлена из средней континентальной коры (¹⁷⁶Lu/¹⁷⁷Hf = 0.015; Geochemical Earth Reference Model database, http://www.earthref.org/), которая была ранее образована из деплетированной мантии.

Первичные отношения изотопов гафния в цирконах I Вишневогорского массива из миаскитов $((^{176}\text{Hf}^{/177}\text{Hf})_{410} = 0.282623 - 0.282668, \epsilon\text{Hf} = 3.8 - 5.4),$ миаскит-пегматитов $((^{176}\text{Hf}^{/177}\text{Hf})_{410} = 0.282617 - 0.282654, \epsilon\text{Hf} = 3.5 - 4.8)$ и карбонатитов $((^{176}\text{Hf}^{/177}\text{Hf})_{410} = 0.282658 - 0.282678, \epsilon\text{Hf} = 5.0 - 5.7)$ имеют близкие значения, что указывает на единый источник их вещества. В приведенных выше данных не учитывается определение изотопов гафния в обр.V-354-5 ($\epsilon\text{Hf} = 1$), так как в этой точке велика ошибка определения. Без учета этой точки первичные изотопные составы гафния в породах Вишневогорского массива показывают незначительные вариации $((^{176}\text{Hf}^{/177}\text{Hf})_{410} = 0.282617 - 0.282678,$

єHf = 3.5–5.7) и имеют параметры умеренно деплетированной мантии (рис. 2).

Кроме того, было сделано пока единственное определение изотопов гафния в цирконе II генерации из карбонатитов Вишневогорского массива, возраст которого U-Pb методом был определен в 282 млн. лет (см. табл. 1, 2). Циркон II генерации значительно отличается от раннего циркона высоким значением первичного изотопного отношения гафния $((^{176}Hf/^{177}Hf)_{282} = 0.283055)$ и высоким єHf = 16, соответствующим значениям деплетированной мантии, показывая появления нового источника вещества, участвующего в метасоматических преобразованиях миаскитов и карбонатитов, вероятно, связанного с позднеколлизионными процессами.

U-Pb датирование цирконов из доломитовых карбонатитов и сопровождающих их редкометальных щелочных метасоматитов Булдымского массива (Пр. К-103) показало, что возраст его формирования составляет 268 ± 6 млн. лет (рис. 16, табл. 1). Таким образом, в Булдымском гипербазитовом массиве, устанавливаются минеральные ассоциации поздних карбонатитов и щелочных метасоматитов, формирование которых связано с коллизионными метасоматическими процессами.

Рис. 2. Первичные отношения изотопов ¹⁷⁶Hf/¹⁷⁷Hf и єНf в цирконах Ильмено-Вишневогорского комплекса.

1–3 – цирконы Вишневогорского массива: 1 – из миаскитов, 2 – из карбонатитов, 3 – из миаскит-пегматитов. 4 – цирконы Булдымского массива (из доломитовых карбонатитов). Для сравнения приведены линии изотопной эволюции мантийных резервуаров DM и SHUR. Для расчета изотопной эволюции DM и SHUR использована константа распада ¹⁷⁶Lu λ = 1.865·10⁻¹¹ [30].

Первичные отношения изотопов гафния в цирконах доломитовых карбонатитов Булдымского массива ((176 Hf/ 177 Hf)₂₆₈ = 0.282525–0.282591, ϵ Hf = -0.2...-3) близки хондритовым (рис. 2, табл. 2) и значимо отличаются от цирконов карбонатитов Вишневогорского массива более низкими значениями первичных отношений гафния и ϵ Hf, что иллюстрирует участие различных источников вещества в их формировании.

Состав изотопов Hf и Nd для пород Ильмено-Вишневогорского комплекса приведен на диаграмме єHf-єNd (рис. 3), которая иллюстрирует мантийный тренд изотопных составов ("mantle array"), полученный при изучении различных типов деплетированнной мантии (MORB) – составы базальтов срединно-океанических хребтов, и обогащенной мантии – составы базальтов океанических островов (OIB), а также составы остоводужных базальтов (IAV) [13, 23, 24, 26–28, 32, 34 и др.]. Кроме того, на этой диаграмме приведены результаты изучения

Рис. 3. Диаграмма єНf-єNd для цирконов из пород Ильмено-Вишневогорского комплекса.

Цифрами в кружках обозначены поля составов для цирконов:1 – из миаскитов, миаскит-пегматитов и карбонатитов Вишневогорского массива, 2 – из доломитовых карбонатитов и флогопит-рихтерит-карбонатных метасоматитов Булдымского массива. Для сравнения на диаграмме приведены изотопные составы пород мантийного тренда – базальтов срединно-океанических хребтов (MORB) [23, 24, 27 и др.], базальтов океанических островов (OIB) [23, 24, 26, 32 и др.] и островодужных базальтов (IAV) [13, 27, 34]), а также изотопные составы пород нижней коры [33].

нижнекоровых пород, в частности, составы гранулитов, которые в ряде случаев близки мантийным изотопным составам [33]. При построении диаграммы были использованы первичные отношения изотопов неодима в породах Ильмено-Вишневогорского комплекса, изученные нами ранее [4, 5]. Параметры DM рассчитаны с использованием изотопных отношений ¹⁴⁷Sm/¹⁴⁴Nd = 0.2148, ¹⁴³Nd/¹⁴⁴Nd = 0.51315 [35], ¹⁷⁶Lu/¹⁷⁷Hf = 0.038 и ¹⁷⁶Hf/¹⁷⁷Hf = 0.28325 [30] на возраст 410 млн. лет.

Точки карбонатитов Ильмено-Вишневогорского комплекса на диаграмме єNd-єHf находятся в пределах мантийного тренда в области развития обогащенных мантийных составов и нижнекоровых пород. Первичные отношения изотопов Hf и Nd в цирконах пород Ильмено-Вишневогорского комплекса образуют на диаграмме єNd-єSr дискретные поля составов. Цирконы из миаскитов, миаскитпегматитов и карбонатитов Вишневогорского массива имеют изотопные параметры умеренно деплетированной мантии. Цирконы из поздних доломитовых карбонатитов Булдымского массива имеют составы, обогащенные нерадиогенным гафнием и неодимом. Данные Hf изотопии хорошо согласуются с ранее полученными нами Sr-Nd изотопными данными по источникам вещества Ильмено-Вишневогорского комплекса [4, 5].

Работа выполнена по целевой программе междисциплинарных проектов УрО РАН, СО РАН и ДВО РАН 2009–2011 года, № 09-с-5-1014.

СПИСОК ЛИТЕРАТУРЫ

- Кононова В.А., Донцова Е.И., Кузнецова Л.Д. Изотопный состав кислорода и стронция Ильмено-Вишневогорского щелочного комплекса и вопросы генезиса миаскитов // Геохимия. 1979. № 12. С. 1784–1795.
- Краснобаев А.А., Русин А.И., Бушарина С.В. и др. Цирконология миаскитов Ильмено-Вишневогорского комплекса // Ежегодник-2007. Екатеринбург: ИГГ УрО РАН, 2008. С.
- Краснобаев А.А., Недосекова И.Л., Бушарина С.В. Цирконология карбонатитов Вишневогорского массива (Ильменские горы, Ю. Урал) // Ежегодник-2008. Тр. ИГГ УрО РАН. Вып. 156. Екатеринбург: ИГГ УрО РАН, 2009. С. 261–263.
- Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Баянова Т.Б. Ильмено-Вишневогорский миаскиткарбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия) // Геология рудых месторождений. 2009. Т. 51, № 2. С. 157–181.
- 5. Прибавкин С.В., Недосекова И.Л. Источники вещества карбонатитов Ильмено-Вишневогорского комплекса по данным изотопии SR и Nd в карбонатах // Докл. AH. 2006. Т. 408, № 3. С. 381–385.
- Чернышев И.В., Кононова В.А., Крамм У. и др. Изотопная геохронология щелочных пород Урала в свете данных уран-свинцового метода по цирконам // Геохимия. 1987. № 3. С. 323–338.
- Amelin Y., Lee D.C., Halliday A.N., Pidgeon, R.T. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons // Nature. 1999. № 399 (6733). P. 252–255.
- Andersen T., Correction of common Pb in U-Pb analyses that do not report ²⁰⁴Pb // Chemical Geology. 2002. № 192. P. 59–79.
- Belousova E.A., Griffin W.L., Shee S.R. et al. Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP -MS analysis // Australian Journal of Earth Sciences. 2001. № 48. P. 757–765.
- 10. *DeBievre P., Taylor P.D.P.* Table of the isotopic composition of the elements // International Journal of MassSpectrometry and Ion Processes. 1993. № 123. P. 149.
- 11. Elhlou S., Belousova E.A., Griffin W. L. et al. Trace element and isotopic composition of GJ redzircon standard by Laser Ablation // Conference Abstract. Geochimica et Cosmochimica Acta. 2006. № 70 (18). P. A158.
- 12. *Fujimaki H.* Partition coefficients of Hf, Zr, and REE betweenzircon, apatite, and liquid // Contributions to Mineralogy and Petrology. 1986. № 94. P. 42–45.
- 13. *Gill J.B.* Sr-Pb-Nd isotopic evidence that both MORB and OIB source contribute to oceanic island arc magmas in Fiji // Earth Planet. Sci. Lett. 1984. № 61. P.3–84.
- Griffin W.L., Pearson N.J., Belousova E.A. et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites // Geochim. Cosmochim. Acta. 2000. № 64. P. 133–147.
- 15. *Griffin W.L., Belousova E.A, Shee S.R., et al.* Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research. 2004. № 127. P. 19–41.
- 16. *Griffin W.L., Pearson N. J., Belousova E.A., Saeed A.* Comment: Hf-isotope heterogeneity in standard zircon

91500 // Chemical Geology. 2006. № 233. P. 358-363.

- Griffin W.L., Pearson N. J., Belousova E.A., Saeed A. Reply to "Comment to short-communication 'Comment: Hf-isotope heterogeneity in zircon 91500' by W.L. Griffin, N.J. Pearson, Belousova E.A., Saeed A. (Chemical Geology 233 (2006) 358–363)" by F. Corfu // Chemical Geology. 2007. № 244. P. 354–356.
- Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation- inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology // Chemical Geology. 2004. № 211. P. 47–69.
- Kramm U., Blaxland A.B., Kononova V.A., Grauert B. Origin of the Ilmenogorsk-Vishnevogorsk nepheline syenites, Urals, USSR, and their time of emplasement during the history of the Ural fold belt: a Rb-Sr study // J. Geol. 1983. V. 91. P. 427–435.
- 20. Kramm U., Chernyshev I.V., Grauert S. et al. Zircon typology and U-Pb systematics: a Case Study of zircons from nefeline syenite of the Il'meny Mountains, Ural // Petrology. 1993. V. 1. № 5. P. 474–485.
- 21. Ludwig K.R. User manual for Isoplot/Ex, version 2.49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. 2001. № 1a.
- Ludwig K.R. Isoplot 3.00 a geochronological toolkit for Microsoft Excel. Berkeley: Geochronology Center Special Publication. 2003. № 4.
- 23. Patchett P.J. Hafnium isotope results from mid-ocean ridges and Kerguelen // Lithos. 1983. № 16. P. 47–51.
- Patchett P.J., Tastumoto M. Hafnium isotope variations in oceanic basalts // Geophys. Res. Lett. 1980. V. 7. P. 1077–1080.
- Patchett P.J., Kouvo O., Hedge C.E., Tatsumoto M. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes // Contributions to Mineralogy and Petrology. 1981. № 78. P. 279–297.
- 26. Salters V.J.M., White W.M. Hf isotope constraints on mantle evolution // Chem. Geol. 1998. № 145. P. 447–460.
- Salters V.J.M., Hart S.R. The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection // Earth Planet. Sci. Lett. 1991. № 104. P. 364–380.
- Salters V.J.M. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective // Earth Planet. Sci. Lett. 1996. № 141. P. 109–123.
- Schärer U., Corfu F., Demaiffe D. U-Pb and Lu-Hf isotopes in baddeleyite and zircon megacrysts from the Mbuji-Mayi kimberlite: constraints on the subcontinental mantle // Chemical Geology. 1997. № 143 (1–2). P. 1–16.
- Scherer E., Münker C., Mezger K. Calibration of the lutetium-hafnium clock // Science. 2001. № 293. P. 683–687.
- 31. *Stacey J.S., Kramers J.D.* Approximation of terrestrial lead isotope evolution by a two-stage Model // Earth Planet. Sci. Lett. 1975. № 26. P. 207–221.
- 32. *Stille P., Unruh P.M., Tatsumoto M.* Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts // Nature. 1983. № 304. P. 25–29.
- Vervoort J. D., Patchett J. P., Albarede F., et al. Hf-Nd isotopic evolution of the lower crust // Earth and Planetary Science. 2000. Letters 181. P. 115–129.
- 34. White W.M., Patchett P.J. Hf-Nd-Sr and incompatible-element abundances in island arcs: implications for magma origins and crust–mantle evolution // Earth Planet. Sci. Lett. 1984. № 67. P. 167–185.
- 35. Zindler A., Hart S.R. Ann. Rev. Chemical geodynamics // Earth Planet. Sci. 1986. V. 14. P. 493–571.

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010