МЕТОДОЛОГИЯ

МАСС-СПЕКТРОМЕТРИЧЕСКИЙ АНАЛИЗ ЛОКАЛЬНОГО МИКРОЭЛЕМЕНТНОГО СОСТАВА МИНЕРАЛОВ: МЕТОДИЧЕСКИЕ АСПЕКТЫ

Н. Н. Адамович, С. В. Палесский*

Фундаментальные и прикладные исследования в области наук о Земле (работы по анализу строения и истории формирования земной коры, размещения полезных ископаемых, процессов петрогенеза и рудообразования, миграции элементов в техно-, биогенных процессах и др.) основаны на экспериментальных данных по геохимии и изотопному составу редких и рассеянных элементов. Мировой уровень подобных исследований определяется состоянием лабораторной базы и используемыми методиками анализа геологических (геоэкологических) объектов. Современные геохимические исследования в значительной степени базируются на масс-спектрометрических данных, причем наиболее широко используются приборы с возбуждением масс-спектра проб в индуктивно-связанной плазме. Масс-спектрометрия с индуктивно связанной плазмой (ICP-MS) является современным высокочувствительным методом анализа, позволяющим проводить одновременное определение большого числа элементов с низкими и ультранизкими пределами обнаружения. Поскольку одним из главных ограничений ICP-MS является невозможность прямого анализа веществ в твердом и порошкообразном состоянии, появление лазеров высокой мощности решило проблему прямого микроэлементного анализа твердофазных природных объектов (минералов, стекол и др.) с локальностью определения до 10-20 мкм (LA-ICP-MS метод масс-спектрометрии с лазерной абляцией проб). При этом, до настоящего времени практически нерешенной остается проблема подбора необходимых стандартных образцов (СО) "микрогомогенного" состава: в связи с большим разнообразием состава и свойств природных объектов возникает необходимость расширения базы микрогомогенных СО с подходящим по матричному и микроэлементному составом.

Цель работы – отработка твердофазных СО для LA-ICP-MS анализа ряда силикатных, фосфатных и сульфидных минералов; анализ перспектив LA-ICP-MS определения микроэлементов в минералах с градуировкой по стандартным водным растворам.

Экспериментальное оборудование, методики и образцы. Экспериментальные исследования процессов лазерного испарения минералов выполнены на масс-спектрометре ELAN 9000 с индуктивно связанной плазмой и приставкой LSX-500 в лаборатории ФХМИ Института геологии и геохимии УрО РАН (лазер YAG:Nd, длина волны излучения 266 нм, энергия в импульсе 0.25-0.9 мДж, частота повторения импульсов 1-20 Гц, количество импульсов 50-200, диаметр пятна абляции 50 мкм, длительность импульса <10 нс), а также на массспектрометре высокого разрешения с индуктивно связанной плазмой Element II и приставкой UP-213 в лаборатории Института геологии и минералогии СО РАН (лазер YAG:Nd, длина волны излучения 213 нм, энергия в импульсе 0.03-0.3 мДж, частота повторения импульсов 1-20 Гц, количество импульсов 50-200, диаметр пятна абляции 40 мкм, длительность импульса <10 нс). Изучен ряд силикатных (циркон, кварц и др.), фосфатных (монацит, апатит и др.) и сульфидных (галенит, пирит, молибденит, антимонит, сфалерит, халькопирит и др.) минералов, кварцевых стекол и биоминеральных образований (современных и ископаемых костных и зубных тканей).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Отработка стандартных образцов микрогомогенного состава. С целью уточнения требований по гомогенности СО в LA-ICP-MS методике выполнены исследования таблетированного гомогенного карбонатного стандарта MACS-3 (Microanalytical Carbonate Standard) Международной ассоциации геоаналитиков (IAG), разработанного в рамках круговых лабораторных испытаний GeoPT. Для калибровки масс-спектрометра и выполнения анализа проводилась лазерная абляция двух зон на пробе (рис. 1); полученные таким образом результаты сопоставлены с аттестованными величинами содержаний элементов (Ag, As, Au, Br, Ba, Be, Bi, Ca, Cd, Ce, Cl, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, La, Li, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Pd, Pb, Pr, Pt, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Th, Ti, Tl, U, V, W, Zn, Zr); систематические отклонения практически отсутствуют; разброс данных не превышает границ погрешности метода [1-3].

Выполнено LA-ICP-MS исследование состава и распределения РЗЭ в ряде образцов силикатных (диопсиде, энстатите) и фосфатных (монацит,

^{*} Институт геологии и минералогии СО РАН, г. Новосибирск

Рис. 1. Фото таблетки образца MACS-3 со схемой сканирования пучка лазера в двух его зонах и результаты LA-ICP-MS анализа в сопоставлении с аттестованными значениями концентраций.

апатит) минералов; в первом случае градуировка проводилась по широко распространенному силикатному стандартному образцу NIST 612. Первоначально с использованием электронно-зондового микроанализатора SX 100 (с локальностью до 5–10 мкм) проведен количественный анализ содержания основных химических компонентов и элементное микрокартирование микрокристаллов изученных минералов. На рис. 2а представлен усредненный химический состав (мас. %) микрозерен диопсида из уральских ультрабазитов по данным электронно-зондового микроанализатора SX100 и метода LA-ICP-MS; видно, что результаты удовлетворительно согласуются для подавляющего большинства элементов кроме натрия. На рис. 26 представлены также данные по вариациям содержания РЗЭ, нормированные по хондриту, в двух участках зерна диопсида из уральских ультрабазитов, полученные с помощью метода LA-ICP-MS.

В рамках разработки методических аспектов выполнены сопоставительные анализы широкого круга геологических образцов на двух массспектрометрах ELAN 9000 и Element II. Полученные данные достаточно хорошо согласуются меж-

Рис. 2. Химический состав микрозерна диопсида из уральских ультрабазитов по данным электронно-зондового микроанализатора SX100 (а) и LA-ICP-MS методики и содержание РЗЭ, нормированное по хондриту, в двух участках микрозерна диопсида по данным LA-ICP-MS методики (б).

Эле-	Монацит (обр. 1)		Монацит (обр. 2)	
мент	Element II	ELAN 9000	Element II	ELAN 9000
Mg	168.568	4.519	2.973	7.086
Al	11986.715	636.540	329.554	288.811
Si	21365.133	4068.977	5856.710	3931.704
Ca	8799.609	4628.026	11076.009	6553.883
Ti	150.136	4.213	42.181	2.053
V	8.946	4.405	5.378	4.383
Mn	12.575	0.519	6.906	1.506
Fe	1860.605	37.474	443.893	280.749
Co	1.146	0.181	0.054	0.039
Ni	15.050	0.243	н/о	0.023
Rb	7.865	0.653	4.450	0.819
Sr	116.245	13.025	124.849	15.712
Nb	38.380	1.611	0.939	0.595
Cd	0.514	0.122	0.032	0.095
In	0.017	0.010	0.010	0.010
Ba	21.186	1.229	55.537	10.308
La	277498.905	101353.875	235223.593	114800.682
Ce	359807.018	177534.577	320903.232	204386.774
Pr	49777.530	20486.756	44544.101	23964.207
Nd	196059.928	77904.200	181103.820	94574.451
Sm	40986.545	15162.632	43526.167	21024.590
Eu	846.999	501.151	818.263	617.452
Gd	30416.083	10305.281	33357.272	15645.730
Tb	3163.719	1205.025	3567.784	1862.030
Dy	15046.570	5726.751	16310.972	8655.830
Но	2152.412	1016.008	2313.608	1253.725
Er	4427.100	2141.111	4466.574	3080.487
Tm	411.584	196.525	441.523	290.689
Yb	1800.704	796.370	1960.070	1235.972
Lu	122.256	66.869	133.405	105.860
Hf	222.554	0.081	13.176	0.115
Ta	1.428	0.062	0.495	0.059
Pb	1399.269	1176.217	1396.151	1479.367
Th	155888.832	67872.187	142770.656	86800.744
U	3252 664	2134 700	4361 751	3687 855

Таблица 1. Микроэлементный состав (г/т) зерен монацита по данным LA-ICP-MS

Таблица 2. Микроэлементный состав (г/т) зерен апатита по данным LA-ICP-MS

Эле-	Апатит (обр. 1)		Апатит (обр. 2)	
мент	Element II	ELAN 9000	Element II	ELAN 9000
Mg	670.592	5.360		249.159
Aľ	81.825	48.138	443.411	25.361
Ca	526759.226	326739.051	365567.062	311955.929
Ti	1561.371	27.653	1069.280	9.446
V	0.168	0.047	1.078	0.451
Mn	285.987	125.750	898.473	516.745
Fe	542.743	51.326	476.603	199.813
Co	13.045	0.207	4.582	0.125
Ni	22.862	0.203	9.833	0.313
Rb	0.080	0.058	0.974	0.029
Sr	770.618	105.887	1530.200	428.577
Nb	0.037	0.047	0.503	0.003
Cd	0.366	0.233	0.695	0.314
In	0.022	0.034	0.688	0.041
Cs	0.017	0.043	0.542	0.036
Ba	1.765	1.220	6.632	1.226
La	2.054	0.711	231.470	223.499
Ce	4.615		851.018	636.083
Pr	0.928	0.518	133.854	122.335
Nd	5.728		558.890	608.883
Sm	3.601	2.614	178.876	194.352
Eu	1.118	0.626	40.186	49.014
Gd	11.173	5.394	171.877	177.698
Tb	2.248	1.189	20.931	21.234
Dy	23.284	10.719	104.375	109.664
Ho	7.102	3.132	18.426	18.374
Er	30.875	12.746	46.441	45.675
Tm	4.242	1.941	5.259	5.276
Yb	30.531	12.590	28.102	29.123
Lu	4.546	1.640	3.590	3.443
Hf	383.030	3.840	0.811	1.041
Та	0.004	0.010	0.419	0.015
Pb	8.132	13.475	43.805	61.773
Th	0.000	4.289	18.875	19.310
U	0.029	0.079	78.456	140.272

ду собой (рис. 3, табл. 1–2.). Возникающие отклонения в результатах можно объяснить неоднородностью образцов, разной чувствительностью массспектрометров, а также некоторыми различиями в параметрах лазерного излучения, которое влияет на количество испаренного "аналита".

К методике определения микроэлементов в минералах с градуировкой по стандартным растворам. Обоснован вывод, что большинство природных минералов негомогенно не только по составу микропримесей, но и по содержанию основных элементов матрицы, то есть они не могут рассматриваться в качестве потенциальных претендентов на стандарты. Одним из путей решения проблемы СО в методе LA-ICP-MS является разработка схемы определения микроэлементов в природных пробах с градуировкой по водным стандартам. Нами начаты работы в этом направлении: предложена конструкция приставки для совмещения двух потоков аргона на горелку масс-спектрометра ELAN 9000 от лазерной приставки LSX-500 и от распылителя градуировочного водного раствора (рис. 4); проведены ее испытания и выбор оптимальных условий испарения пробы с целью повышения локальности анализа и снижения пределов обнаружения микроэлементов; выполнена серия контрольных экспериментов, по результатам которых нами разрабатывается ряд практических рекомендаций.

выводы

Отработан ряд СО микрогомогенного состава для методики ИСП-МС-ЛА локального определения микроэлементов в минералах. Предложена схема и испытана приставка для совмещения двух потоков аргона на горелке масс-спектрометре ELAN 9000 – от лазерной приставки LSX-500 и от распылителя градуировочного водного раствора.

Рис. 3. Содержание РЗЭ, нормированное по хондриту, для образцов монацита (а) и апатита (б) по данным метода LA-ICP-MS на масс-спектрометрах ELAN 9000 и Element II.

Рис. 4. Схема совмещения двух потоков аргона на масс-спектрометре с индуктивно связанной плазмой ELAN 9000 – от лазерной приставки LSX-500 и от распылителя градуировочного водного раствора.

Проведен выбор оптимальных условий испарения пробы с целью повышения локальности анализа и снижения пределов обнаружения микроэлементов; выполнена серия контрольных экспериментов; начаты исследования для обоснования методики ИСП-МС-ЛА анализа минералов с градуировкой по водным стандартам.

Работа выполнена в рамках программ в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009–2013 гг. НИР по теме: "Геохимия, микроструктура и радиационные явления в минералах-концентраторах радиоактивных элементов как основа для петрогенетических, геохронологических и материаловедческих приложений" (госконтракт № 02.740.11.0727), а также Президиума РАН № 23 "Научные основы инновационных энергоресурсосберегающих экологически безопасных технологий оценки и освоения природных и техногенных ресурсов", № 20 "Создание и совершенствование методов химического анализа", а также в рамках программы УрО РАН "Состав, структура и физика радиационно-термических эффектов в фосфатных и силикатных минералах и стеклах как основа для геохронологических построений и создания материалов для утилизации высокоактивных долгоживущих радионуклидов" при поддержке гранта РФФИ № 09–05–00513.

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

СПИСОК ЛИТЕРАТУРЫ

- Адамович Н.Н., Вотяков С.Л. Возможности применения метода лазерной абляции в масс-спектрометрии с индуктивно связанной плазмой для исследования природных объектов // Петрогенезис и рудообразование. Екатеринбург: ИГГ УрО РАН, 2009. С. 335–338.
- 2. Адамович Н.Н., Главатских С.П., Вотяков С.Л. К методике микроэлементного анализа минералов в

масс-спектрометрии с индуктивно связанной плазмой и лазерной абляцией // Современные проблемы геохимии. Иркутск: Институт географии СО РАН, 2009. С. 236–239.

Вотяков С.Л., Адамович Н.Н., Киселева Д.В., Главатских С.П. Лазерная абляция как метод прямого микроэлементного анализа зерен минералов с массспектрометрии с индуктивно связанной плазмой // Минералы: строение, свойства, методы исследования. Миасс: УрО РАН, 2009. С. 105–107.