МЕТОДОЛОГИЯ

ПРЕДВАРИТЕЛЬНАЯ ИНФОРМАЦИЯ ОБ АНАЛИЗИРУЕМОМ ОБЪЕКТЕ КАК НЕОБХОДИМОЕ УСЛОВИЕ ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ РЕНТГЕНОСПЕКТРАЛЬНЫХ ОПРЕДЕЛЕНИЙ

Н. П. Горбунова, Л. А. Татаринова

Рентгенофлуоресцентный анализ (РФА) многокомпонентных образцов, отличающихся от серийных проб горных пород, как правило, сталкивается с трудностями, избежать которых помогает некоторая предварительная информация об объекте. Такие сведения позволяют сориентироваться на всех этапах анализа, начиная с пробоподготовки. Так, образцы, богатые хлоридами, гигроскопичны, прессованные из них таблетки деформируются, плохо хранятся на воздухе и водный раствор связующего (5% поливиниловый спирт) добавлять нерационально. При возбуждении спектра таких проб рентгеновской трубкой с родиевым анодом необходимо применить первичный фильтр из алюминия [1]. Тонкодисперсный поро-

Рис. 1. Градуировочная зависимость для высоких содержаний серы.

Рис. 2. Градуировочная зависимость для высоких содержаний окиси титана.

шок карбонат-фосфатов кальция, напротив, позволяет сразу спрессовать таблетку диаметром 20 мм высокой механической прочности [2]. Исходя из характеристик объекта и прибора, можно подобрать оптимальную методику анализа, предвидеть выбор аналитических линий и мешающие влияния других элементов. Это особенно важно при экспрессном анализе единичных проб.

Цель работы – определение сложных по составу образцов, выходящих за пределы марок продуктов серийного рентгенофлуоресцентного анализа, используя качественно-количественные измерения на энергодисперсионном спектрометре EDX-900 HS.

Обычная схема анализа серийных проб, реализуемая на многоканальных спектрометрах с фиксированными определяемыми элементами, предваряется неоднократными измерениями достаточно большого количества стандартов и созданием калибровок по типам пород. Практический опыт показывает, однако, что такая схема требует дополнений, так как в анализируемых партиях встречаются отдельные пробы со значительным содержанием либо рудных (титан, марганец), либо неопределяемых серийно элементов (сера, хлор, цинк, медь и так далее). Мы предлагаем не просто измерять такие неординарные образцы на спектрометре EDX-900HS в режиме качественно-количественного анализа, но и уточнять полученные результаты построени-

Рис. 3. Градуировочная зависимость для высоких содержаний марганца.

Рис. 4. Градуировочная зависимость окиси алюминия.

ем оперативных калибровок (с использованием заранее приготовленных таблеток- излучателей различного состава).

На рис. 1–3 приведены оперативные градуировочные зависимости для высоких содержаний серы (образцы сравнения – пробы А.И. Грабежева с данными химического анализа), титана (образцы сравнения получены разбавлением рутила природным кварцем и окисью железа) и марганца (образцы сравнения – марганцевые руды). Представленные калибровки позволяют нам уточнить химиче-

Таблица 1. Результаты рентгенофлуоресцентного анализа полуторных окислов Аl и Fe в доломитовом сырье (%)

№	№ лаб.	№ заказ.	Al ₂ O ₃	Fe ₂ O ₃	Вывод о каче-
				00щ.	стыссырыя
1	.09–2050	ИЦ-15	0.13	0.26	+
2	.09–2058	ИЦ № 218	0.82	0.86	-
3	.09–2059	ИЦ № 219	0.48	0.64	+
4	.09–2060	ИЦ № 220	0.52	0.72	+

Рис. 5. Градуировочная зависимость окиси железа.

ский состав руд с высоким содержанием серы, марганца, титана.

К основным компонентам, снижающим прочность и долговечность бетона, изготовляемого из доломитовых минеральных порошков, относят включения полуторных окислов Al и Fe в сумме более 1.7% [3]. Отсюда – повышенные требования к точности анализа этих элементов в исходном сырье, предоставленном Уральским филиалом ФГУП "РОСДОРНИИ". Чтобы получить необходимые результаты, нами были измерены на EDX-900HS стандартные образцы состава карбонатов и по их интенсивностям построены оперативные градуировки в формате Excel (рис. 4, 5), которые позволяют быстро оценивать качество образцов (табл. 1).

В производстве керамики рентгенофлуоресцентный анализ используется для аналитического контроля качества сырьевых материалов: глин, перлита, мела, пресс-порошка, фритта, так как содержания окислов Na, Al, Si, K, Ca, Fe и других элементов оказывают существенное влияние на резуль-

Таблица 2. Ориентировочные содержания компонентов эмали силикатной (фритта) и результаты РФА

16	Ориентировочные со-	Результаты анализа, %		Особенности энергодисперсионного РФА
Компонент	держания, %	образец 1	образец 2	
Na ₂ O	8-15	12.0	10.4	
Al ₂ O ₃	1–6	4.31	1.50	
SiO ₂	50-68	66.0	57.0	
K ₂ O	0.5–6	0.61	3.90	
CaO	0.5-8	5.33	3.45	
TiO ₂	0.2–6	2.17	2.63	наложение пиков Ті-Ка и Ва-La
BaO	1–10	2.3	10.00	
MnO		0.77	1.24	
FeO	1.5–10	0.56	0.60	наложение пиков Со-Ка и Fe-Кb
Co ₂ O ₃	0.6–2.5	1.17	0.88	
NiO	0.6–3	1.37	2.76	
ZrO ₂		0.43	2.30	
CuO		0.35	0.13	
F	0.5–5			неопределяемые компоненты
Li ₂ O	1–5			
B_2O_3	1.5–7			

Vormonour	Ориентировочные со-	Результаты анализа		Особенности энергодисперсионного РФА
KOMIIOHEHT	держания, %	образец 3	образец 4	
Al ₂ O ₃	1–2	0.28	0.36	
SiO ₂		0.65	0.71	
CaO		0.14	0.18	
TiO ₂	0.1–1.5	0.36	0.11	
MnO	0.1–1	0.19	0.12	
FeO	12–35	38.4	21	Наложение пиков Со-Ка и Fe-Кb
Co_2O_3	25–38	18.46	42.42	
ZrO ₂	1–3	0.94	2.07	
CuO	1–5	1.37	3.51	
Sm ₂ O ₃	15–25	3.85	18.61	Наложение пиков Sm-La и Nd-Lb, Nd-La и
NdO	D 000000 15 25	17.77	0.72	ESC ("пика потери") Со
DyO	в сумме 15-35	13.82	8.11	Наложение пиков Dy-La, Fe-Ka, Sm-Lb

Таблица 3. Ориентировочные содержания и результаты качественно-количественного анализа 2-х образцов кобальтового концентрата на энергодисперсионном спектрометре EDX-900HS

Рис. 6. Сопоставление рентгеновских энергодисперсионных спектров образцов силикатной эмали (1, 2).

Рис. 7. Сопоставление рентгеновских энергодисперсионных спектров образцов кобальтового концентрата (3, 4).

тат обжига [4]. В некоторых случаях, однако, определение оказывается затруднительным. Так, ОАО "Уральский Институт Металлов" (г. Екатеринбург) было представлено 14 образцов кобальтовых концентратов (ТУ 14–11–357–2004) и силикатной эмали с высоким содержанием редкоземельных элементов, что усложняет определение состава таких технологических проб.

В полученных спектрограммах рентгеновские аналитические линии К-спектра элементов группы железа (Ti, V, Cr, Mn, Fe, Co, Ni) находятся в той же области энергии, что и аналитические линии L-спектра бария, лантана и редкоземельных элементов. В данных пробах имеет место наложение пиков Ti-Ka и Ba-La, Co-Ka и Fe-Kb, Nd-La и ESC("пика потери") Co, Sm-La и Nd-Lb, и особенно для диспрозия: Fe-Ka, Sm-Lb и Dy-La. Все интенсивные линии в спектре нами были отмечены, а расчет содержаний выполнен способом фундаментальных параметров (FP), основанным на теоретической зависимости интенсивности флуоресценции от химического состава проб и реализованном

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

в программном пакете спектрометра EDX-900HS фирмы SHIMADZU (Япония).

В табл. 2 и 3 приведены предоставленные заказчиком ориентировочные содержания компонентов эмали силикатной (фритта) и кобальтового концентрата, а также полученные нами на спектрометрах EDX-900HS и CPM-18 результаты РФА 4-х образцов. На рис. 6 и 7 сопоставлены рентгеновские энергодисперсионные спектры этих образцов.

Выводы. Использование предварительной информации об объекте исследований, построение оперативных градуировочных зависимостей в дополнение к режиму качественно-количественного рентгенофлуоресцентного анализа на EDX-900HS улучшает правильность определения состава сульфидных, марганцевых, титаномагнетитовых руд, доломитового сырья, керамики.

СПИСОК ЛИТЕРАТУРЫ

- Горбунова Н.П., Татаринова Л.А., Киямова А.А. Особенности определения состава различных порошковых и монолитных проб, идентификация образцов рентгенофлуоресцентным методом // Ежегодник-2008. Тр. ИГГ УрО РАН. Вып. 156. Екатеринбург: ИГГ УрО РАН, 2009. С. 299–302.
- Королева Л.Ф., Ларионов Л.П., Горбунова Н.П. Синтез и перспективы биокерамики на основе допированных карбонат-фосфатов кальция // Химия твердого тела и функциональные материалы: тез. докл. Всерос. конф. Екатеринбург. 2008 г. С.192.
- ГОСТ Р 52129–2003. Порошок минеральный для асфальтобетонных и органоминеральных смесей. Технические условия.
- 4. Афонин В.П., Комяк Н.И., Николаев В.П., Плотников Р.И. Ренгенофлуоресцентный анализ. Новосибирск: Наука, 1991. 173 с.