
МЕТОДОЛОГИЯ

ПРИМЕНЕНИЕ РАМАНОВСКОЙ МИКРОСПЕКТРОСКОПИИ ДЛЯ ИССЛЕДОВАНИЯ СТРУКТУРНЫХ ОСОБЕННОСТЕЙ БИОГЕННОГО АПАТИТА

Д. В. Киселева

Спектроскопические методы, в частности, ИКспектроскопия и спектроскопия комбинационного рассеяния света (КРС или рамановская спектроскопия), являются основными в изучении особенностей структуры и дефектообразования органоминеральных агрегатов, в частности, костных и зубных тканей. Методы дают информацию об особенностях их локальной молекулярной структуры. При этом, в экспериментах по рамановской спектроскопии реализуется высокое пространственное разрешение (до 0.5-1 мкм) в сочетании с простотой пробоподготовки, сниженными требованиями к образцу (он может быть непрозрачным, гидратированным и др.) и отсутствием разрушений после анализа. Метод может рассматриваться как весьма перспективный в различных материаловедческих приложениях. Линии КР-спектров настолько узки, что даже малые сдвиги частоты и изменения формы линий четко фиксируются на спектре, что, в свою очередь, позволяет различать разнообразные химические соединения, ответственные за полосы [6]. КРС метод достаточно широко применяется в исследованиях современной и ископаемой костной (зубной) ткани и является дополняющим данные ИК-спектроскопии при анализе структурных изменений и межмолекулярных реакций. В биологических тканях на рамановских спектрах фиксируются колебания структурных молекулярных и ионных единиц неорганической составляющей – карбонат-гидроксиапатита, таких как фосфат-, карбонат- и гидрофосфат-ионы, а также многочисленные колебания, связанные с протеиновой матрицей. На спектрах симметричные колебания молекул или ионов являются самыми интенсивными [6]. Разрушение кристаллической решетки кости в совокупности с встраиванием в ее структуру примесных ионов отражается на рамановских спектрах ископаемых костных тканей [7]. По КРС-спектрам авторы оценивали степень замещения матричных ионов, ионную гетерогенность,

Таблица	1	Иссловонных	of poster I	TO OTHER	TROUGH
	1.	исследованные	ооразцы	костных	тканеи

Образец	Место отбора из сустава	Диагноз
А	середина	здоровый
В	верх	коксартроз
С	киста	коксартроз
D	середина	коксартроз
Е	НИЗ	коксартроз

относительное содержание структурных карбонатионов, наличие карбоната кальция и люминесцирующих ионов. Также по рамановским спектрам костной ткани с возрастом около 3000 лет был сделан вывод о вхождении карбоната кальция в гидроксиапатитовую матрицу при фоссилизации [3]. В работе [9] проведено рамановское микроскопическое картирование молекулярных группировок минеральной и органической компоненты зуба человека: распределение органических веществ оценивалось по валентному колебанию связи С-Н в области 2880–2700 см⁻¹, фосфат- и карбонат ионов – по симметричным валентным колебаниям v_s(PO) при 961 см⁻¹ и v_s(СО) при 1070 см⁻¹. В статье [4] приводится обзор по применению рамановской спектроскопии в биомедицинских исследованиях, в частности, исследование костных имплантатов, покрытых тонкими слоями улучшающих биосовместимость материалов; изучены плотность, кристалличность, распределение протеинов. В исследовании современных зубных тканей рамановская спектроскопия широко применяется в стоматологии при оценке воздействия различных процедур препарирования зуба для последующего пломбирования или протезирования, таких как кислотное травление или обработка лазером [5]. При этом проводится оценка изменения минеральной и органической составляющих дентина и эмали.

Цель работы – исследование особенностей костной ткани человека при деформирующем коксартрозе на основе данных рамановской спектроскопии.

ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Изучены головки бедренных костей двух больных коксартрозом (мужчины и женщины), удаленные на III стадии заболевания; в сравнительных целях изучен здоровый сустав мужчины. Из бедренных эпифизов были получены три горизонтальных среза – верхний, средний и нижний, самый ближний к костной ткани бедренной кости. Исследованные образцы перечислены в табл. 1. Образцы (пять фрагментов костной ткани) помещены в эпоксидную смолу и смонтированы на предметное стекло. Анализ выполнен в различных точках поверхности (рис. 1). Эксперименты выполнены на рамановском спектрометре LabRam HR (HORIBA Scientific) с решеточным монохроматором (фокус 800 мм, плоское поле, скорректированное на хроматизм), многоканальным ССD детектором (1024 × 256 пикселей со спектральным диапазоном 200–1050 нм, спектральное разрешение 0.35 см⁻¹/пиксель при 633 нм с решеткой 1800 штр/мм). Для возбуждения рамановских спектров использовался лазер (длина волны излучения 632 нм, мощность излучения на образце 7 мВт, время измерения 15–25 с, объектив ×100). Оцифрованные спектры обработаны в программе PeakFit V.4.11, произведена коррекция базовой линии, сглаживание спектров, разложение суммарных пиков на элементарные составляющие.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2 приведены типичные рамановские спектры костной ткани человека (здоровой и пораженной коксартрозом) в диапазоне 150–3400 см⁻¹. Интерпретация линий спектра по данным [1, 6] приведена в табл. 2 (линии 1508 и 1250 см⁻¹ приписаны эпоксидной смоле и исключены из рассмотрения). Наиболее информативные участки рамановского спектра рассмотрены ниже.

Область 920–980 см⁻¹. Линия симметричного валентного колебания PO_4^{3-} (v₁) является самой интенсивной в спектре минерализованной ткани. Ее особенностью является высокая чувствительность к минеральному окружению: частота и форма этой линии зависят от локального окружения и изменяются вследствие замещений анионных группировок и изменения степени кристалличности. Во многих исследованиях апатитовых тканей и синтетических апатитов частота линии PO_4^{3-} (v₁) связывалась с составом окружающего минерала [6].

В рамановской спектроскопии минерализованных тканей принято подразделять апатитовое окружение на три группы с различными частотами соответствующих линий. В замещенном карбонатапатите В-типа (карбонат-ионы замещают фосфатионы в решетке апатита) фосфатная линия v1 проявляется в диапазоне 955–959 см⁻¹. В высококристаллическом незамещенном гидроксиапатите линия v₁ сдвигается в область 962-964 см⁻¹. И, наконец, линия с частотой 945-950 см⁻¹ свидетельствует о наличии разупорядоченной фосфатной решетки апатита [6]. Происходит ли это вследствие замещений А-типа (карбонат-ионы замещают гидроксил-ионы) или из-за присутствия аморфного фосфата кальция, неясно; авторы [6] используют термин "разупорядоченный фосфат". В общем случае, в костной и зубной ткани полоса фосфата v_1 является суперпозицией всех трех составляющих; обычно она имеет несимметричную форму из-за вклада колебаний разупорядоченного фосфата и незамещенного гидроскиапатита. Для оценки степени кристалличности апатита используют вычисление ширины линии фосфата v_1 на ее полувысоте.

Рис. 1. Внешний вид шлифа с костными фрагментами и точками анализа.

Область 1065–1070 см⁻¹ соответствует колебаниям карбонат-иона В-типа. Для оценки отношения фосфат/карбонат принято использовать отно-

Рис. 2. Рамановские спектры фрагментов костной ткани человека.

A1, A2 – здоровая; B6, D2, C4 – пораженная коксартрозом ткань. Рамановский спектрометр LabRam HR (HORIBA Scientific) с лазером возбуждения 632 нм.

КИСЕЛЕВА

Рамановский частотный сдвиг, см ⁻¹	Фрагмент, колебание		
430	РО ₄ ³⁻ v ₄ (Р-О деформационное)*		
580	$PO_4^{3-}v_4$ (P-О деформационное)*		
855	Бензольное кольцо пролина		
876	Бензольное кольцо гидроксипролина		
950–964	$PO_4^{3-}v_1$ (P-O симметричное валентное)*		
1001–1003	"Дыхательная" мода бензольного кольца фенилаланина		
1030	$PO_4^{3-}v_3$ (P-O асимметричное валентное)*		
1045	$PO_4^{3-}v_3$ (P-O асимметричное валентное)*		
1065–1070	СО ₃ ²⁻ v ₁ замещение В-типа (С-О плоскостное валентное)*		
1245-1270	Амид III, С-N-Н валентное		
1445	СН ₂ деформационное крутильное		
1555–1565	Амид II, С-N-Н валентное		
1610–1620	У8а (колебания побочной цепочки тирозина)		
1665	Амид I, С-С-Н валентное		
2880–2935, 3070	Колебания С-Н		
3350	Колебания С-N		

Таблица 2. Интерпретация полос в рамановском спектре костной (зубной) ткани

Примечание. * полоса минеральной составляющей

Таблица 3. Характеристики рамановских спектров исследованных костных фрагментов

Исследо- ванный фрагмент	Положе- ние линии PO ₄ ³⁻ (v ₁), см ⁻¹	Ширина ли- нии PO ₄ ³⁻ (v ₁) на полувы- соте	Интегральная интенсивность линии PO ₄ ³⁻ (v ₁), отн. ед.	Интегральная интенсивность линии CO ₃ ²⁻ , отн. ед.	Отношение СО ₃ /РО ₄	Интегральная интенсивность пика амида I, отн. ед.	Отношение минерал/органи- ческая матрица
A1	960.343	16.474	45310	6694	0.148	17251	2.627
A2	960.116	14.998	45413	5245	0.116	22998	1.975
B6	960.507	14.819	41160	4932	0.120	28896	1.424
C4	960.978	15.961	36119	3312	0.092	23754	1.521

шения интенсивностей соответствующих пиков рамановского спектра: 959 см⁻¹ для PO₄³⁻ и 1070 см⁻¹ для CO₃²⁻, причем можно использовать как отношение амплитуд пиков, так и их площадей.

Область 1400-1800 см-1. Колебания органической матрицы в данной области обусловлены, в основном, двумя разновидностями связей: колебания связей -CO-NH-, формирующих белковую основу, и колебания, связанные с боковыми цепочками аминокислот. На рамановских спектрах наиболее ярко проявляются пики белковых связей амидной группировки - CONH₂, имеющей 9 колебательных мод; в спектре регистрируются следующие полосы: амид I (1655–1675 см⁻¹), который представляет собой, главным образом, валентное колебание С=О; амид II (1560 см⁻¹, деформационное колебание N-H, валентное C-N); амид III (1240-1260 см⁻¹. валентное С-N, деформационное N-H) [1]. Низкоинтенсивное плечо пика при 1620 см⁻¹ авторы [1] соотносят с колебаниями боковой цепочки тирозина Ү8а. Пик 1450 см⁻¹ соответствует деформационному крутильному колебанию СН₂ в коллагене (два атома водорода, ковалентно связанных с одним и тем же атомом углерода, симметрично двигаются подобно веслам при гребле) [2]. Во многих публикациях пик колебаний амида I (1665 см⁻¹) используется для оценки относительного содержания органической матрицы и расчета отношений минерал/ органическая матрица [1, 6]. В работе [1] исследовано влияние возраста костной кортикальной ткани и дентина на амплитуду пика амида I: с увеличением возраста возрастает и высота пика.

Область 2750–3350 см⁻¹. Пики в этой области, как правило, соотносят с колебаниями связей С–Н (2880–2935, 3070 см⁻¹) и С–N (3320, 3435 см⁻¹) в коллагене [8]. Упомянутыми авторами пик при 2940 см⁻¹ использовался для оценки соотношения минерал/коллаген по отношению площадей пиков 960 см⁻¹/2940 см⁻¹.

Рассчитанные характеристики рамановских спектров костной ткани (положения линий, величины отношений карбонат/фосфат, минерал/органическая матрица) приведены в табл. 3. На основании рассчитанных положений линии v_1 фосфат-иона (960.12–960.98 см⁻¹) можно констатировать, что минеральная фаза всех исследованных образцов представляет собой замещенный по В-типу карбонат-гидроксиапатит, причем его относительное содержание уменьшается от здоровой ткани (в среднем 0.13) к образцу с проявлениями коксартроза (0.12) и кисте (0.09). Наибольшее соотношение минерал/органическая матрица (в среднем 2.3) харак-

терно для образца здоровой костной ткани, для пораженной коксартрозом ткани и кисты оно снижается до 1.4 и 1.5, соответственно. Также наблюдается уменьшение содержания (и интегральной интенсивности) фосфат-ионов в пораженном образце и кисте. Данный факт может свидетельствовать об уменьшении содержания минеральной фазы при развитии коксартроза.

Таким образом, по данным рамановской микроспектроскопии выявлены структурные особенности костной ткани человека при развитии коксартроза — уменьшение относительного содержания карбонат-ионов В-типа в структуре гидроксиапатита, а также уменьшение содержания минеральной фазы в целом.

Автор приносит благодарность ЗАО "Найтек Инструментс" в лице Е.В. Кравец и А. Галкина за выполнение экспериментальных исследований и С.А. Лемешевой (Омский государственный университет им. Ф.М. Достоевского) за любезно предоставленные для исследования образцы костных тканей.

Работа выполнена в рамках программ в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009–2013 гг. НИР по теме: "Геохимия, микроструктура и радиационные явления в минералах-концентраторах радиоактивных элементов как основа для петрогенетических, геохронологических и материаловедческих приложений" (госконтракт № 02.740.11.0727), а также Президиума РА́Н № 23 "Научные основы инновационных энергоресурсосберегающих экологически безопасных технологий оценки и освоения природных и техногенных ресурсов", № 20 "Создание и совершенствование методов химического анализа", а также в рамках программы УрО РАН "Состав, структура и физика радиационно-термических эффектов в фосфатных и силикатных минералах и стеклах как основа для геохронологических построений и создания материалов для утилизации

высокоактивных долгоживущих радионуклидов" при поддержке гранта РФФИ № 09–05–00513.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ager III J.W., Nalla R.K., Balooch G. et al. On the Increasing Fragility of Human Teeth With Age: A Deep-UV Resonance Raman Study // Journal of Bone and Mineral Research. 2006. V. 21, № 12. P. 1879–1887.
- Draper E.R.C., Morris M.D., Camacho N.P. et al. Novel Assessment of Bone Using Time-Resolved Transcutaneous Raman Spectroscopy // Journal of Bone and Mineral Research. 2005. V. 20, № 11. P.1968–1972.
- Edwards H. G. M., Farwell D. W., de Faria D. L. A. et al. Raman spectroscopic study of 3000-year-old human skeletal remains from a sambaqui, Santa Catarina, Brazil // Journal of Raman Spectroscopy. 2001. V. 32, № 1. P. 17–22.
- Otto C., de Grauw C.J., Duindam J.J. et al. Applications of Micro-Raman Imaging in Biomedical Research // Journal of Raman Spectroscopy. 1998. V. 28, № 2-3. P. 143–150.
- 5. Soares L.E.S., Brugnera Junior A., Zanin F. et al. Molecular analysis of Er:YAG laser irradiation on dentin // Braz. Dent. J. 2006. V. 17, № 1. P. 15–19.
- Tarnowski C.P., Ignelzi Jr M.A., Morris M.D. Mineralization of Developing Mouse Calvaria as Revealed by Raman Microspectroscopy // Journal of Bone and Mineral Research. 2002. V. 17, № 6. P. 1118–1126.
- Thomas D.B., Fordyce R.E., Frew R.D., Gordon K.C. A rapid, non-destructive method of detecting diagenetic alteration in fossil bone using Raman spectroscopy // Journal of Raman Spectroscopy. 2007. V. 38, № 12. P. 1533–1537.
- Uthgenannt B.A., Kramer M.H., Hwu J.A. et al. Skeletal Self-Repair: Stress Fracture Healing by Rapid Formation and Densification of Woven Bone // Journal of Bone and Mineral Research. 2007. V. 22, № 10. P. 1548–1556.
- Wentrup-Byrne E., Armstrong C. A., Armstrong R.S., Collins B.M. Fourier Transform Raman Microscopic Mapping of the Molecular Components in a Human Tooth // Journal of Raman Spectroscopy. 1998. V. 28, № 2-3. P. 151–158.