
МЕТОДОЛОГИЯ

ЭФФЕКТЫ ИСКУССТВЕННОГО (ВЫСОКОЭНЕРГЕТИЧЕСКИМИ ИОНАМИ ГЕЛИЯ И ПРОТОНАМИ) И ЕСТЕСТВЕННОГО РАДИАЦИОННОГО ПОВРЕЖДЕНИЯ ЦИРКОНА ПО ДАННЫМ РАМАНОВСКОЙ СПЕКТРОСКОПИИ И ЭЛЕКТРОННОГО МИКРОЗОНДА

Ю. В. Щапова, Д. А. Замятин, Э. Г. Вовкотруб*, В. Н. Стрекаловский*, Ф. Г. Нешов**, О. В. Рябухин**, А. В. Кружалов**

Радиационное повреждение (метамиктизация) структуры природного циркона при альфа-распаде радиоактивных примесей U и Th и происходящее при этом изменение химических свойств, механической и термической стабильности – важнейшие генетические факторы, которые необходимо учитывать при: 1) учете замкнутости изотопной подсистемы минерала в геохронологических исследованиях (см., например, обзор [9]); 2) восстановлении термической истории минерала по данным о степени метамиктности [12, 21]); 3) анализе закономерностей формирования твердых растворов циркона с сосуществующими фазами [8, 13]; 4) изучении фазовой стабильности циркона при высоких давлениях [17]. Известны две основные причины метамиктизации [9, 27, 28]: 1) пробеги дочерних ядер отдачи (энергия ~70 кэВ, длина пробега ~30-40 нм) и 2) пробеги альфа-частиц (энергия ~5 МэВ, длина пробега ~10-20 мкм). Оценочные расчеты эффектов взаимодействия этих двух видов облучения со структурой циркона показали [9], что энергия альфа-частиц расходуется как на процессы ионизации атомов вещества (основная доля энергии), так и на столкновения с атомами мишени, приводящие к смещениям последних из положения равновесия и образованию изолированных дефектов (~100 атомных смещений на один альфа-распад) вдоль протяженной траектории пробега альфачастицы с наибольшей плотностью в конце траектории; напротив, энергия ядер отдачи практически полностью расходуется на формирование каскадов атомных смещений (~1000-2000 атомных смещений на один альфа-распад) с образованием аморфизованных областей малого радиуса. Соотношение указанных типов радиационного разупорядочения в природных образцах является весьма информативным параметром; оно может зависеть как от размеров микрокристаллов и/или конфигурации микрообластей с различным содержанием урана, тория [20], так и от термической истории минерала, поскольку рекристаллизация аморфных областей и залечивание дефектов кристаллической фракции различные по механизму и энергиям термической активации физические процессы.

Однако экспериментальная диагностика различных видов разупорядочения по отдельности затруднена по ряду причин. Первая причина - совместное существование различных видов разупорядочения в природных самооблученных образцах. В связи с этим, для изучения разупорядочения циркона широко используется прием имитации природного облучения с помощью искусственного радиационного воздействия – ионной бомбардировки; альфавоздействие имитируется облучением поверхности кристаллов ионами гелия с энергией 3-6 МэВ, повреждение дочерними ядрами отдачи - облучением тяжелыми ионами с энергией ~100 кэВ. Применение этих методов в работах последних лет (см., например, [16, 29, 30]) позволило изучить влияние структурных повреждений на колебательные спектры циркона, выявить структурно-чувствительные параметры этих спектров, исследовать особенности аморфизации структуры при бомбардировке ионами Pb⁺. Отметим, что важным преимуществом изучения искусственно облученных кристаллов (в противоположность естественно облученным образцам в течение геологических времен) является возможность количественной характеристики эффектов радиационного разупорядочения, не измененных процессами термического залечивания структуры (которые всегда присутствуют в природных образцах). Кроме того, применение искусственного облучения позволяет свести к минимуму неконтролируемое влияние состава и содержания примесей, варьирующих в широких пределах в природных самооблученных образцах.

Вторая проблема количественного определения степени радиационного повреждения и соотношения различных типов беспорядка – проблема выбора метода анализа, обладающего пространственным разрешением. В последнее время, с этой целью используется метод локальной рамановской спектроскопии. Пространственное разрешение данного метода составляет ~1–2 мкм по поверхности и ~2–5 мкм по глубине; для диагностики степени метамиктности используется наиболее интенсивная полоса ~1000 см⁻¹ рамановского спектра, соответствующая асимметричным валентным колебаниям SiO₄-

^{*} Институт высокотемпературной электрохимии УрО РАН, г. Екатеринбург

^{**} Уральский федеральный университет, г. Екатеринбург

тетраэдров в кристаллической структуре циркона; ширина данной полосы увеличивается с ростом степени структурной неупорядоченности, то есть неэквивалентности структурных единиц SiO₄ [21, 22]. Ограничением данного метода является тот факт, что, наряду с радиационным разупорядочением, к уширению спектральной полосы могут приводить также внутренние напряжения в структуре циркона, вариации содержания и химического состава примесей, эффекты изменения зарядового состояния тетраэдров и локальный электрический дисбаланс. В ряде работ [12] высказано предположение о том, что причиной уширения и асимметрии рассматриваемой линии является фононный конфайнментэффект (квантово-размерный эффект, связанный с уменьшением времени жизни решеточных колебаний в кристаллитах малого размера, существующих в аморфной матрице сильно метамиктного циркона). Таким образом, данные рамановской спектроскопии затруднительно использовать для количественной оценки соотношения различных типов беспорядка; уширение полосы отражает лишь их интегральное влияние на форму линии.

Можно предполагать, что количественная информация о структурном разупорядочении циркона может быть получена из исследований его рентгеновских эмиссионных спектров (РЭС) – спектров рентгеновского излучения, возникающих при релаксации электронной подсистемы минерала при возбуждении рентгеновским излучением или электронной бомбардировкой. Данный метод спектроскопии чувствителен к тонким особенностям структуры силикатов (см., например, [5]). Известно, что форма линий OK_{α} и $Si\bar{K}_{\beta}$ силикатов, характеризующая распределение электронных состояний в валентной полосе минералов, может быть использована для анализа изменений особенностей химической связи кремний-кислород при изменении координационного числа кремния по кислороду, способа сочленения или ближайшего окружения кремнекислородных тетраэдров [5, 23]. Ранее радиационные повреждения в цирконе изучались нами методом рентгеновской фотоэлектронной спектроскопии в работе [7], где были определены особенности электронной структуры радиационноповрежденных образцов на ранних и средних этапах радиационной деструкции, выявлены изменения структуры валентной полосы циркона, связанные с формированием кислородно – вакансионных дефектов и увеличением ковалентности межатомных связей вблизи кислородных вакансий. Данные результаты позволяют ожидать проявления указанных эффектов и в спектрах РЭС валентных состояний кислорода и кремния. Особая привлекательность метода РЭС для исследования структурных повреждений циркона состоит в возможности его локальной реализации (с пространственным разрешением до 1 мкм) при использовании электронного микрозонда, а также в возможности варьирования толщины анализируемого слоя (до нескольких мкм) при изменении энергии электронов зондирующего пучка. Однако нам неизвестны работы, посвященные анализу радиационных повреждений циркона, выполненные методом РЭС.

Цель работы – изучение локальных эффектов атомного разупорядочения в атомной и электронной структуре циркона после его облучения высокоэнергетическими ионами гелия и протонами методами рамановской и рентгеновской эмиссионной спектроскопии; анализ перспектив использования электронного микрозонда для количественного исследования эффектов радиационного повреждения (метамиктизации) в природных самооблученных микрокристаллах циркона.

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Исследовали образцы природного циркона (табл. 1): 1) исходный монокристалл из кимберлитов (Якутия) с возрастом ~350 млн. лет (обозначен далее Z1); 2) микрокристаллы из основных гранулитов Салдинского комплекса с возрастом ~600 млн. лет (обозначены Z2); 3) микрокристаллы из красных гранитов Бердяушского массива с возрастом ~1380 млн. лет (обозначены Z3); значения возраста образцов указаны по данным [4]. Для всех образцов были сделаны оценки радиационной дозы D_а^{расч.} естественного самооблучения (количества α-распадов на один грамм вещества) по формуле [9]:

$$D_{\alpha}^{\text{pacy}} = 8 \times {}^{238} \text{U}[\exp(\frac{t}{\tau_{238}}) - 1] + 7 \times {}^{235} \text{U}[\exp(\frac{t}{\tau_{235}}) - 1] + 6 \times {}^{232} \text{Th}[\exp(\frac{t}{\tau_{232}}) - 1] , (1)$$

где ²³⁸U, ²³⁵U, ²³²U, Th – измеренные значения концентраций урана, тория в образцах (экспериментально определялось содержание ²³⁸U, а содержание ²³⁵U находили с учетом известного соотношения изотопов урана ²³⁸U/²³⁵U = 137.88 [26]); τ_{238} , τ_{232} – периоды их полураспада (τ_{238} = 4.568 млрд. лет, τ_{235} = 0.7138 млрд. лет, τ_{232} = 13.89 млрд. лет); t – возраст образцов; коэффициенты 8, 7 и 6 в формуле соответствуют числу событий α-распада в цепочке радиоактивных превращений соответствующих изотопов.

Из табл. 1 видно, что расчетная доза естественного облучения $D_{\alpha}^{\text{расч}}$ минимальна для образца Z1, максимальна для Z3 и имеет промежуточное значение для Z2. Если известно количество атомных смещений N, возникающих в минерале в процессе каждого альфа распада (по оценкам, приблизительно ~100 атомных смещений, вызываемых альфачастицей, и ~1000 атомных смещений, вызываемых ядром отдачи), то, в соответствии с [9], можно найти ожидаемую в предположении сохранности повреждений в процессе геологической истории сте-

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

Таблица 1. Содержание U и Th, возраст, рассчитанные значения радиационной дозы $D_{\alpha}^{\text{расч}}$ и степени повреждения $D_{dpa}^{\text{расч.сст.}}$ естественным самооблучением, параметры искусственного облучения (вид частиц, флюэнс, рассчитанная глубина проникновения, оценочные значения степени повреждения $D_{dpa}^{\text{расч.сст.}}$ искусственным облучением); значения суммарной (от естественного и искусственного облучения) степени $D_{dpa}^{\text{расч.сум.}}$ радиационного повреждения поверхности образцов

Образец	Параметры естественного самооблучения					Параметры искусственного облучения		Суммарная сте- пень радиаци-
	²³⁸ U, ppm	Th, ppm	Возраст, млн. лет	D _α ^{расч} , 10 ¹⁸ , α-распадов/г	D _{dpa} ^{расч.ест.} смещ./ат.	Вид частиц, флюэнс, рассчитанная глубина проникновения	D _{dpa} ^{расч.иск.} , смещ./ат.	онного повреж- дения D _{dpa} ^{расч.сум.} , смещ./ат.
Z1	14*)	7*)	350	0.026	0.001	-	0	0.001
Z1(He ⁺)	14*)	7*)	350	0.026	0.001	Ионы He ⁺ (3 MэB), F = $3 \cdot 10^{16}$ ионов/см ² , d ≈ 6 мкм	0.048	0.049
Z1(p ⁺)	14*)	7*)	350	0.026	0.001	Протоны p ⁺ (4.5 МэВ), F = $3.5 \cdot 10^{16}$ прот./см ² , d ≈ 100 мкм	0.002	0.003
Z2	43.4**)	28.5**)	600	0.15	0.007	_	0	0.007
Z3	439.2**)	571.4**)	1380	4.4	0.210	_	0	0.210

Примечание. *) – содержания ²³⁸U и Th в образце Z1 указаны по данным [4]; **) – содержания ²³⁸U и Th в образцах Z2 и Z3 определены методом ЛА ИСП МС (Н. Н. Адамович); режим работы лазера – сканирование по поверхности зерна пучком 40 мкм, частота 20 Гц, 80% мощности (0.02 мДж; 1.55 Дж/см²).

пень радиационного повреждения $D_{dpa}^{pacy.ect.}$ – количество атомных смещений, приходящихся на один атом циркона (dpa – "displacements per atom"):

$$D_{dpa}^{pacy.ect.} = D_{\alpha}^{pacy} \frac{W \cdot N}{a \cdot A}, (2)$$

где W – молярная масса минерала (183.4 г/моль); A – число Авогадро ($6.02 \cdot 10^{23}$ молек./моль); a – число атомов в формульной единице ZrSiO₄ (6 ат.); значение N задавали равным 940 смещ./ α -распад в соответствии с результатами расчетов [21] методом Монте-Карло, основанных на значениях пороговых энергий смещения 80, 20 и 45 эВ для атомов Zr, Si и O, соответственно.

С учетом трехстадийной модели радиационного повреждения естественно-облученного циркона, построенной в [9, 18, 28] по данным дифракционных измерений и просвечивающей электронной микроскопии (стадия I – ~0.01 смещ./ат < D_{dpa} < 0.3 смещ./ат. – характеризуется дефектообразованием в кристаллической фракции циркона и началом роста аморфной фазы в виде областей 2-5 нм; стадия II – 0.3 смещ./ат. < D_{dpa} < 0.5 смещ./ат. – структура состоит из кристаллических областей в аморфной матрице; стадия III – $D_{dpa} > 0.5$ –0.8 смещ./ат. – циркон практически полностью аморфизован, Брегговские максимумы не фиксируются), исследуемые образцы могут быть отнесены: Z1 – к "нулевой" стадии повреждения, когда эффекты радиационного воздействия не фиксируются дифракционными и электронно-микроскопическими методами; Z2 – к граничной области между "нулевой" и I стадиями радиационного повреждения; Z3 - к концу I стадии повреждения.

Искусственные радиационные повреждения создавали облучением поверхности образца Z1, предварительно подвергнутой шлифовке и полировке на алмазной пасте, высокоэнергетическими ионами гелия и протонами на классическом циклотроне У-120 физико-технического факультета УрФУ. Методика облучения поверхности состояла в следующем. Выведенный из ускорительной камеры циклотрона пучок ионов Не+ (или протонов) транспортировался по ионопроводу к образцам; фокусировка пучка производилась парой квадрупольных линз. Образцы находились в вакуумной камере (давление 10⁻³ Па) на изолированном, охлаждаемом дистиллированной водой штоке; зона облучения была ограничена диафрагмой размером 20 × 50 мм²; для равномерного облучения образцов использовалась система сканирования пучка ионов. Температура образцов во время облучения измерялась медь-константановой термопарой и не превышала 120°С. Время набора флюенса величиной 10¹⁵ ион(протон)/см⁻² составляло 2.5–3.0 ч. Измерение флюенса ионов проводилась с помощью цилиндра Фарадея и электронной измерительной схемы с точностью 5%. Параметры искусственного облучения (энергия, флюэнс ускоренных частиц, а также рассчитанные методом Монте-Карло значения глубины проникновения ионов гелия (протонов) в образец) приведены в табл. 1.

Степень повреждения структуры, вызванного искусственным облучением, оценивали по формуле:

$$D_{dpa}^{pacy.uck.} = \frac{n \cdot F}{\rho}, (3)$$

где F – флюэнс, ион/см²; с = 0.92·10²³ ат/см³ – атомная плотность циркона; п – число атомных смеще-

ний, вызванных одним ионом на единице длины своего пробега, смещ./ион.см. Смысл параметра п аналогичен смыслу параметра N в формуле (1); его значение зависит как от пороговой энергии смещения атомов мишени – циркона, так и от массы и энергии бомбардирующих ионов; для оценки п обычно используется расчетный метод Монте-Карло. Наши оценки методом Монте-Карло показали, что толщина поврежденного слоя циркона в случае бомбардировки ионами гелия составляет 6.7 мкм, в случае облучения протонами – 200 мкм. Как правило, разупорядочение поверхности высокоэнергетическими ионами не является однородным по глубине поврежденного слоя и наиболее выражено в конце траектории бомбардирующих частиц [9]; однако, не имея точных данных о форме профиля распределения дефектов в поврежденных слоях, мы в первом приближении считали распределение дефектов однородным. Приближенно полагая, что один ускоренный ион гелия, как и одна альфа-частица в естественно-облученных цирконах, вызывает ~100 атомных смещений вдоль своей траектории, в случае облучения образца ионами гелия задавали

$$n_{\text{He}} = \frac{100 \text{ cMem}. / \text{ ион}}{6.7 \text{ мкm}} \approx 15 \text{ смещ}. / \text{ ион} \cdot \text{ мкm};$$

в случае облучения образца протонами прибли женно полагали

 $n_{p} = \frac{100 \text{ смещ.} / \text{ протон}}{200 \text{ мкм}} \approx 0.5 \text{ смещ.} / \text{ протон} \cdot \text{мкм}.$

Суммарную степень повреждения поверхности (от естественного и искусственного видов облучения) находили суммированием значений $D_{dpa}^{pacy.ecr.}$ и $D_{dpa}^{pacy.ecr.}$.

Рис. 1. Рамановские спектры исходных образцов циркона Z1, Z2, Z3 с указанием основных мод собственных колебаний SiO₄-тетраэдров (при регистрации рассеянного излучения с поверхности образцов).

Из табл. 1 видно, что степень искусственного повреждения тонкого поверхностного слоя образца Z1 слоя ионами гелия близка к таковой для образцов на первой стадии естественного самооблучения (имеет промежуточное значение между степенями повреждения образцов Z2 и Z3); степень повреждения образца Z1 протонами низка и находится в граничной области между "нулевой" и первой стадиями (имеет значение, близкое к степени повреждения образца Z2).

МЕТОДЫ ИССЛЕДОВАНИЯ

Рамановские спектры регистрировали рамановском микроскопе Renishaw с использованием аргонового лазера (514 нм) в поляризованном и неполяризованном свете в диапазоне от 100 до 1300 см⁻¹. Пространственное разрешение составляло 1–3 мкм, глубина анализируемого слоя менее 5 мкм [22]. Глубину залегания анализируемого слоя искусственно облученных образцов варьировали от 0 до 20 мкм от поверхности кристалла. Спектральное разрешение (аппаратная функция) составляло ~2.5 см⁻¹.

Спектры РЭС SiK_в регистрировали на микрозонде Сатеса SX100 с использованием кристаллаанализатора LPET в интервале энергий 1800– 1850 эВ; ток катода составлял 30–250 нА, число накоплений спектра подбиралось для достижения оптимального соотношения сигнал-шум и составляло 5–10. С целью варьирования глубины проникновения зондирующих электронов в образец, ускоряющее напряжение задавали равным 8, 15 и 20 кэВ; при этом, в соответствии с формулой [14] для длины пробега электронов в веществе, глубина анализируемого слоя циркона составляла 3.2, 9.3 и 15.0 мкм.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рамановские спектры исходных образцов типичны для кристаллического [6] и частично метамиктного [22] цирконов (рис. 1). В спектре присутствуют интенсивные полосы собственных колебаний тетраэдров SiO₄ ~439 см⁻¹ (симметричные деформационные колебания $v_2(SiO_4)$), ~975 см⁻¹ (симметричные валентные колебания $v_1(SiO_4)$), ~1008 см⁻¹ (антисимметричные валентные колебания $v_3(SiO_4)$), а также вращательные и решеточные моды в области ниже 400 см⁻¹. Наиболее интенсивной модой в спектре является полоса v₃(SiO₄); при этом ее интенсивность зависит от ориентации кристалла относительно направления возбуждения [6]. Как отмечалось выше, ширина и положение в спектре данной полосы чувствительны к степени радиационного разупорядочения структуры [20, 22]; для образцов, не испытавших существенных термических воздействий в процессе геологической истории и, таким образом, сохранивших накопленные

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010

Образец	Глубина залегания анали- зируемого слоя, мкм	Положение полосы, см ⁻¹	Ширина полосы, см ⁻¹	D _α ^{Раман} , 10 ¹⁸ , α-распадов/г
Z1	0	1008.0	4.8	0.03
	5	1008.4	4.3	
	10	1008.4	4.3	
	15	1008.4	4.0	
	20	1008.4	4.4	
Z2	0	1006.7	5.4	0.4
Z3	0	999.0	14.6	1.1
$Z1(He^+)$	0	1007.7	11.2	0.8
	5	1009.0	9.7	0.7
	10	1008.3	9.3	0.6
	15	1008.3	9.0	0.6
	20	1008.0	8.0	0.5
$Z1(p^+)$	0	1008.4	4.3	0.3
	5	1008.3	5.3	0.4
	10	1008.3	5.3	0.4
	15	1008.3	5.3	0.4

Таблица 2. Параметры полосы асимметричных валентных колебаний v₃(SiO₄) в рамановских спектрах образцов циркона и полученные по ним значения эквивалентной дозы самооблучения

структурные повреждения, в работе [21] для области малых доз (0.01–0.15·10¹⁸ α-распадов/г) установлено линейное калибровочное соотношение между величиной дозы естественного самооблучения $D_{\alpha}^{\ \ pacч}$ (оцениваемой по формуле 1) и шириной полосы $v_3(SiO_4)$. Для образцов, демонстрирующих отклонения от указанного соотношения, предполагается частичное залечивание повреждений в процессе термических воздействий и вводится понятие эквивалентной дозы $D_{\alpha}^{\ Paман}$ (обозначение наше) – дозы естественного самооблучения, необходимой для создания наблюдаемой в колебательных спектрах степени радиационной деструкции при отсутствии отжига.

Параметры полосы асимметричных валентных колебаний $v_3(SiO_4)$ рамановских спектров, а также определенные по ширине полосы v₃(SiO₄) в соответствии с калибровочным графиком [21] значения эквивалентной дозы D_α^{Раман} для всех образцов приведены в табл. 2. Параметры спектра образца Z1 характерны для высококристаллических цирконов; малое значение ширины полосы (4.8 см⁻¹) отвечает отсутствию заметного разупорядочения структуры и дает значение эквивалентной дозы 0.03 · 10¹⁸ α-распадов/г, что хорошо согласуется с оценочным значением 0.026·10¹⁸ α-распадов/г. Установлено (табл. 2), что варьирование с помощью конфокального микроскопа глубины залегания анализируемого слоя в пределах от 0 до 20 мкм от поверхности кристалла практически не влияет на параметры спектра, что указывает на однородность строения поверхностных слоев образца Z1.

В образцах **Z2 и Z3 ширина полосы асимме**тричных валентных колебаний v₃(SiO₄) увеличивается, а ее положение в спектре сдвигается в область низких энергий колебаний с ростом дозы облучения, что отражает рост степени структурной неупорядоченности и расширение элементарной ячейки циркона при радиационном повреждении. Сравнение полученных данных с экспериментальными результатами из [19] (рис. 2) показывает, что зависимость положения полосы $v_3(SiO_4)$ от ее ширины в образцах Z1, Z2, Z3 типична для естественно облученных цирконов (линия 1 на рис. 2). Отметим, что значения эквивалентной дозы для образцов Z2 и Z3 оказываются заметно ниже оценочных значений, полученных на основе данных о содержании радиоактивных элементов и возраста; этот факт позволяет

Рис. 2. Зависимость положения полосы асимметричных валентных колебаний $v_3(SiO_4)$ от ее ширины (1, 2, 3 – исходные образцы Z1, Z2, Z3, соответственно; 4, 5 образцы Z1, облученные ионами гелия (4) и протонами (5)) в сравнении с литературными данными из [19] (6). Пунктирными линиями показаны направления изменения степени радиационного повреждения для естественно (1) и искусственно (2) облученных образцов Z1, Z2, Z3.

Рис. 3. Рамановские спектры образца циркона Z1, подвергнутого облучению ионами гелия, при варьировании глубины залегания анализируемого слоя.

предполагать частичный отжиг природных образцов Z2 и Z3 в процессе их геологической истории.

Рамановские спектры образца Z1, подвергнутого искусственному облучению ионами гелия, показаны на рис. 3. В ионно-облученном образце наблюдаются те же моды колебаний, что и в исходном, однако их полосы в спектре уширены. В отличие от неповрежденной поверхности, в спектре рамановского рассеяния ионно-облученного образца присутствует люминесцентный фон, связанный, очевидно, с возбуждением зондирующим лазером (514 нм) люминесцентных центров, характерных для разупорядоченного циркона. Аналогичный эффект наблюдали ранее [1] в рамановских спектрах (при возбуждении 488 нм) частично метамиктных природных образцов. Можно предположить, что в колебательных спектрах проявляется край "желтой" люминесценции циркона (максимум полосы свечения 560-570 нм, максимум полосы возбуждения полосы 310 нм, время послесвечения 25–35 мкс [4]), которая в большинстве работ [2, 4, 10, 11, 15, 24, 25] связывается с радиационными повреждениями структуры. Это предположение подтверждается специально выполненными измерениями импульсной катодолюминесценции исходного и ионно-облученного образцов, показавшими рост относительной интенсивности желтой полосы при регистрации свечения с поврежденной поверхности циркона (отметим, что в данном методе исследования при возбуждении электронами с энергией ~ 140 кэВ толщина поверхностного анализируемого слоя оценивается величиной ~ 20 мкм, что не намного превышает толщину поврежденного слоя ~7 мкм и дает возможность исследования его люминесцентных свойств). Обращает на себя внимание факт немонотонной зависимости выхода люминесценции от глубины залегания анализируемого слоя – максимум выхода наблюдается при 5 мкм. Можно предполагать, что повышенная люминесценция из данного слоя обусловлена наибольшей степенью его повреждения (глубина проникновения ионов гелия – 6.7 нм, максимальная эффективность создания дефектов – в конце их траектории); кроме того, заметное влияние на выход люминесценции должны оказывать процессы поглощения рассеянного излучения в поврежденном приповерхностном слое кристалла.

Из табл. 2 видно, что ширина полосы v₃(SiO₄) уменьшается с ростом глубины залегания анализируемого слоя; эквивалентная доза радиационного облучения при этом уменьшается от значений 0.8·10¹⁸ α-распадов/г (~0.04 смещ./ат., начало I стадии радиационного повреждения) до 0.5·10¹⁸ α-распадов/г (~0.02 смещ./ат., граничная область между I и "нулевой" стадиями). Можно полагать, что такой характер зависимости колебательных параметров поверхностного слоя обусловлен неоднородностью структуры поврежденной поверхности. Особенностью спектров ионно-облученной поверхности является нетипичная зависимость положения полосы от ее ширины (линия 2 на рис. 2), состоящая в сохранении значения частоты колебания при заметном уширении его полосы при облучении. Этот результат, указывающий на сохранение средних размеров SiO₄-тетраэдров при увеличении разброса их параметров ближнего порядка, может быть следствием специфики искусственного облучения по сравнению с естественным - преимущественным созданием легкими ионами гелия (аналогами альфа-частиц) точечных дефектов в кристаллической структуре при отсутствии эффектов аморфизации структуры тяжелыми ядрами отдачи. Облучение поверхности циркона Z1 протонами слабо влияет на параметры колебательного спектра. Увеличение ширины полосы v₃(SiO₄) очень незначительно, значение эквивалентной дозы невелико, оно оказывается близким к таковому для образца Z2.

Таким образом, на основе данных колебательной спектроскопии проведена экспериментальная оценка степени радиационного повреждения структуры естественно и искусственно облученных образцов; установлен факт термического воздействия в процессе геологической истории и частичного отжига радиационных повреждений в природных образцах Z2 и Z3; показано, что степень повреждения структуры циркона после искусственного облучения ионами гелия зависит от глубины от поверхности; установлена малая эффективность повреждения структуры при облучении протонами.

Рентгеновский эмиссионный спектр SiK_{β} высококристаллического циркона Z1 приведен на рис. 4а. Общий вид спектра типичен для силикатов; выделяются полосы SiK_{β}[,] и SiK_{$\beta1}; энергия указанных полос</sub>$

Рис. 4. Рентгеновские эмиссионные спектры (точки) образца Z1 в исходном состоянии (а) и после облучения ионами гелия (б) и их разложение на три гауссовы компоненты (индивидуальные компоненты – пунктир; огибающая – сплошная линия). Ускоряющее напряжение 20 кВ, ток катода 250 нА; оценочная глубина анализируемого слоя 15 мкм.

близка к полученным для циркона в [23]. Как известно [5], спектр SiK_в силикатов образуется за счет прямых дипольных переходов 1s-3p, структура спектра отражает распределение 3р-состояний Si в валентной полосе: низкоэнергетическая подполоса SiK_{в'} (энергия ~ 1819 эВ) имеет O2s-характер; высокоэнергетическая полоса SiK_{β1} сформирована связывающими состояниями О2р и Si3p. Полосу SiK_{B1}, которая в силикатах обычно демонстрирует внутреннюю структуру, подразделяют на две подполосы сильно- (~1833 эВ) и слабосвязывающих (~1835 эВ) состяний О2р-Si3p. Особенности спектра электронных состояний Si3p по данным наших квантовохимических расчетов кристаллического бездефектного циркона показаны на рис. 5а; в целом, они хорошо согласуются с экспериментальными данными; тонкая структура полос не регистрируется экспериментально вследствие ограничения по спектральному разрешению прибора. Из рис. 4 видно, что подполосы в области SiK₆₁ явно не выявляются, однако полоса является асимметричной. В соответствии

Рис. 5. Спектр плотности электронных состояний Si3p в валентной полосе циркона по данным квантовохимических расчетов: а – для атомов кремния тетраэдра SiO₄ в кристаллическом бездефектном цирконе; б – для атомов кремния дефектной группировки SiO₃ в цирконе с вакансиями атомов кислорода; в – для атомов кремния дефектной группировки SiO₂ в цирконе с дивакансиями атомов кислорода. Энергетическая шкала является относительной; ноль соответствует рассчитанному значению энергии Ферми; энергии связи электронов в валентной полосе отрицательны.

с представлениями и трехкомпонентной структуре линии SiK_{β} экспериментальный спектр был аппроксимирован тремя гауссовыми пиками; параметры пиков I, II и III представлены в табл. 3.

Вид спектров SiK_β всех исследованных цирконов качественно аналогичен, однако форма линии изменяется, что проявляется в параметрах индивидуальных гауссовых компонент спектров (см. табл. 3). Получено, что характеристики подполосы SiK_β, близки для всех образцов, в то время как подполоса SiK_{β1} оказывается чувствительной к структурному состоянию циркона. Так, в образце после облучения ионами гелия (рис. 4б) пик II несколько уменьшается, а пик III несколько увеличивается по ширине; при этом отношение высоты H_{III} высокоэнергетического пика (слабосвязывающие состояния) к высоте H_{II} низкоэнергетического (сильносвя-

ЩАПОВА и др.

Образец	Условия регистрации спектра – энергия эВ:	Толщина анализи-	Положение и полуширина гауссо- вых пиков, эВ			Параметр А асимме-	
oopuota	ток катода, нА	руемого слоя, мкм	I пик	II пик	III пик	трии полосы SiK _{β1}	
Z1	20 кэВ	15.0	1818.8	1832.5	1833.6	0.96	
	250нА		3.2	1.7	4.5		
	15 кэВ	9.3	1819.0	1832.7	1833.8	1.00	
	250нА		3.3	1.7	4.4		
	15 кэВ	9.3	1818.9	1832.5	1833.7	0.94	
	50нА		3.2	1.6	4.5		
	8 кэВ	3.2	1818.7	1832.5	1833.4	1.13	
	250нА		3.3	1.6	4.4		
$Z1(He^+)$	20 кэВ	15.0	1819.0	1832.8	1833.8	1.33	
	250нА		3.0	1.7	4.1		
	15 кэВ	9.3	1819.2	1833.0	1834.1	1.27	
	250нА		3.0	2.0	4.2		
	15 кэВ	9.3	1819.0	1832.7	1833.8	1.21	
	50нА		3.2	1.9	4.1		
	8 кэВ	3.2	1819.0	1832.7	1833.8	1.35	
	250нА		3.1	2.0	4.3		
Z1(p ⁺)	20 кэВ	15.0	1818.9	1832.6	1833.6	1.17	
, u	250нА		3.1	1.7	4.3		
	15 кэВ	9.3	1819.0	1832.7	1833.7	1.08	
	250нА		3.2	1.6	4.4		
	15 кэВ	9.3	1819.0	1832.6	1833.7	1.12	
	50нА		3.0	1.6	4.4		
	8 кэВ	3.2	1819.0	1832.5	1833.6	1.08	
	250нА		3.3	1.8	4.4		
Z2	15 кэВ	9.3	1819.4	1833.0	1834.2	0.90	
	30нА		3.0	2.0	4.4		
Z3	15 кэВ	9.3	1819.4	1832.7	1833.6	2.20	
	30нА		3.0	2.0	4.1		

Таблица 3. Параметры спектров РЭС исследованных образцов циркона

зывающие состояния) пика заметно увеличивается, и форма полосы SiK_{$\beta1$} изменяется. В качестве параметра, характеризующего изменения формы линии SiK_{$\beta1$} в экспериментальных спектрах РЭС, может быть предложен параметр **А асимметрии поло**сы в виде:

$A = H_{III}/H_{II}.$ (4)

Параметр асимметрии А, в зависимости от толщины анализируемого слоя искусственно облученных образцов, показан на рис. 6; А имеет наименьшие значения (0.94–1.13) для исходного высококристаллического образца Z1; наибольшие значения (1.21–1.35) – для образца, подвергнутого облучению ионами гелия Z1(He⁺); промежуточные значения – для образца, облученного протонами Z1(p⁺). Закономерных изменений параметра при варьировании толщины анализируемого слоя не выявлено.

Можно предполагать, что наблюдаемые изменения формы линии спектра связаны с изменением характеристик химической связи кремнийкислород в радиационно-поврежденных слоях. Ранее нами методом рентгеновской фотоэлектронной спектроскопии [7] показано, что трансформация структуры валентной полосы циркона при радиационных повреждениях обусловлена высокой плотностью кислородно-вакансионных дефектов и увеличением ковалентности межатомных связей вблизи кислородных вакансий. В связи с этим в данной работе был проведен анализ результатов квантовохимических расчетов (рис. 5б, в) спектров плотности состояний Si3p для атомов кремния дефектных группировок SiO₃ (вблизи вакансии атома кислорода) и SiO₂ (вблизи дивакансии атома кислорода). Результаты расчетов предсказывают уширение и изменение внутренней структуры полосы Si3p-О2р связывающих состояний, что хорошо согласуется с наблюдаемыми изменениями экспериментальных спектров. Эти данные позволяют связать изменения формы линии SiK_в искусственно облученных образцов с радиационным повреждением их структуры. На рис. 7 показан параметр асимметрии линии SiK_{в1} всех исследованных образцов в зависимости от оценочного значения степени их радиационного повреждения. Видно, что имеет место корреляция величины параметра А с значениями D_{dpa}^{расч.сум.}.

Таким образом, можно сделать вывод о влиянии радиационного повреждения структуры циркона на его электронное строение и о возможности наблюдения данного эффекта в спектрах РЭС SiK_β. Поскольку образование дивакансий соответствует начальной стадии полимеризации кремнекислород-

Рис. 6. Зависимость параметра асимметрии полосы SiK_{β 1}от глубины анализируемого слоя циркона: 1 – исходный образец Z1; 2 – образец Z1(p⁺); 2 – образец Z1(He⁺).

ной подрешетки (появлению связей Si–O–Si, отсутствующих в исходной структуре), то можно ожидать проявления радиационных эффектов и в спектрах РЭС атомов кислорода OK_a, как это имеет место в рентгеновских фотоэлектронных спектрах. Полученные результаты открывают возможность диагностики структурного состояния образцов циркона методом локальной рентгеновской эмиссионной спектроскопии с использованием микрозонда.

выводы

Методами рамановской и рентгеновской эмиссионной спектроскопии исследован ряд специально подобранных образцов циркона различной степени радиационного повреждения искусственным (ионы гелия, протоны) и естественным (альфа-частицы, ядра отдачи) облучением. На основе данных рамановской спектроскопии проведена экспериментальная оценка степени радиационного повреждения образцов: наименьшими повреждениями обладают образцы из кимберлитов (Якутия), наибольшими – из гранитов Бердяушского массива; промежуточная степень повреждения характерна для гранулитов Салдинского комплекса и искусственнооблученных образцов. На основе сравнения вычисленной по данным о концентрациях радиоактивных элементов и возрасте образцов дозы облучения и определенной экспериментально по рамановским спектрам эквивалентной дозы облучения сделано предположение о том, что цикроны гранулитов Салдинского комплекса и Бердяушского массива испытали термические воздействия и частичный отжиг радиационных повреждений в процессе геологической истории. Показано, что эффективность искусственного повреждения структуры высокоэнергети-

Рис. 7. Параметр асимметрии полосы SiK_{β1}B зависимости от оценочного значения степени радиационного повреждения образцов циркона.

ческими ионами гелия выше, чем протонами. Установлено, что структурно-чувствительным параметром рентгеновских эмиссионных спектров SiK_в является ширина и форма полосы SiK_{B1}; выявлена корреляция параметра асимметрии данной полосы со степенью радиационного повреждения. На основе сопоставления с результатами квантовохимических расчетов сделан вывод о влиянии на форму линии SiK_{в1} изменения электронной структуры валентной полосы циркона при радиационном образовании высокой плотности кислородно-вакансионных дефектов. Полученные результаты открывают возможность диагностики структурного состояния образцов циркона методом локальной рентгеновской эмиссионной спектроскопии с использованием микрозонда; преимуществом данного метода по сравнению с традиционным методом рамановской спектроскопии является возможность структурных определений в одном цикле микрозондовых исследований микропримесного состава образцов.

Работа выполнена в рамках программ в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009–2013 гг. НИР по теме: "Геохимия, микроструктура и радиационные явления в минералах-кониентраторах радиоактивных элементов как основа для петрогенетических, геохронологических и материаловедческих приложений" (госконтракт № 02.740.11.0727), а также Президиума РАН № 23 "Научные основы инновационных энергоресурсосберегающих экологически безопасных технологий оценки и освоения природных и техногенных ресурсов", № 20 "Создание и совершенствование методов химического анализа", а также в рамках программы УрО РАН "Состав, структура и физика радиационно-термических эффектов в фосфатных и силикатных минералах и стеклах как основа для геохронологических построений и создания материалов для утилизации высокоактивных долгоживущих радионуклидов" и при поддержке гранта РФФИ № 09–05–00513.

СПИСОК ЛИТЕРАТУРЫ

- 1. Вотяков С.Л., Быков В.Н., Борисов Д.Р. и др. О влиянии метамиктного состояния цирконов на их колебатеотные спектры, лазеро- и ренгенолюминесценцию // Урал. мин. сб. № 10. Миасс. 2000. С. 201–212.
- Вотяков С.Л., Иванов И.П., Краснобаев А.А. и др. Спектроскопические и люминесцентные свойства ортосиликата циркония, выращенного гидротермальным методом // Неорг. Матер. 1986. Т. 22. С. 281–286.
- 3. *Краснобаев А.А.* Циркон как индикатор геологических процессов. М.: Наука, 1986. 150с.
- Краснобаев А.А., Вотяков С.Л., Крохалев В.Я. Спектроскопия цирконов (свойства, геологические приложения). М.: Наука, 1988. 150 с.
- Курмаев Э.З., Черкашенко В.М., Финкельштейн Л.Д. Рентгеновские спектры твердых тел. М.: Наука, 1988. 175 с.
- Уилкинсон Г.Р. Спектры комбинационного рассеяния ионных, ковалентных и металлических кристаллов. // Применение спектров комбинационного рассеяния / Под ред. А. Андерсона. М.: Мир, 1977. С. 408–578.
- Щапова Ю.В., Вотяков С.Л., Кузнецов М.В., Ивановский А.Л. Влияние радиационных дефектов на электронную структуру циркона по данным ренгеновской фотоэлектронной спектроскопии // ЖСХ. 2010. Т. 51. № 4. С. 687–682.
- Anderson A. J., R.Wirth, R.Thomas. The alteration of metamict zircon and its role in the remobilization of high-field-strenth elements in the georgeville granite, Nova Scotia // The Canadian Mineralogist. 2008. V. 46, N. 1. P. 1–18.
- Ewing R.C., Meldrum A., Wang L. et al. Radiation effects in zircon // Zircon. Reviews in Mineralogy and Geochemistry. Eds. J.M. Hanchar, P.W.O. Hoskin. 2003. V. 53. P.387–425.
- Gaft M. Application of thermal treatment of zircon for the interpretation of luminescence centers // J. Thermal Anal. 1992. V. 38. P. 2281–2290.
- Gaft M., Shinno, Panczer G., Reisfeld R. Laserinduced time-resolved spectroscopy of visible broad luminescence bands in zircon // Mineralogy and Petrology. 2002. V. 76. V. 235–246.
- Geisler T., Pidgeon R.T., von Bronswijk W., Pleysier R. Kinetics of thermal recovery and recrystallization of artially metamict zircon: a Raman spectroscopic study // Eur. J. Mineral. 2001. V. 13. P. 1163–1176.
- 13. *Geisler T., Schaltegger U., Tomaschek F.* Reequilibration of Zircon in Aqueous Fluids and Melts // Elements. 2007. V. 3. P. 43–50.
- Kanaya K., Okayama S. Penetration and energy-loss theory of electrons in solid targets // J. Phys. D: Appl. Phys. 1972. V. 5. P. 43–58.
- 15. *Kempe U., Grunner T., Nasdala L., Wolf D.* Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study

of zircons from the Saxonians Granulite Complex, Germany // Cathodoluminescence in Geosciences. Springer, Berlin-Heidelberg, 2000. P. 415–455.

- Lian J., Rios S., Boatner L.A. et al. Microstructural evolution and nanocrystal formation in Pb⁺-implanted Zr-SiO4 single crystals // J. Appl. Phys. 2003. V. 94, N. 9. P. 5695–5703.
- Lang M., Zhang F., Lian J. et al. Irradiation-induced stabilization of zircon (ZrSiO4) at high pressure // Earth and Planetary Science Letters. 2008. V. 269, № 1–2. P. 291–295.
- Murakami T., Chakoumakos B.C., Ewing R.C. et al. Alpha-decay event damage in zircon // American Mineralogist. 1991. V. 76, № 9–10, P. 1510–1532.
- Nasdala L., Irmer G., Jonckheere R. Radiation damage ages: Practical concept or impracticalvision? – Reply to two comments on "Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage", and further discussion // Contrib. Mineral. Petrol. 2002. V. 143. P. 758–765.
- Nasdala L., Hanchar J.M., Kronz A., Whitehouse M.J. Long-term stability of alpha particle damage in natural zircon // Chemical Geology. 2005. V. 220. P. 83–103.
- Nasdala L., Wenzel M., Vavra G. et al. Metamictisation of natural zircon: accumulation vs. thermal annealing of radioactivity- induced damage // Contrib. Mineral. Petrol. 2001. V. 141. P. 125–144.
- Palenik C. S., Nasdala L., Ewing R.C. Radiation damage in zircon // American Mineralogist. 2003. V. 88. P. 770– 781.
- Purton J., Urch D.S. High-resolution silicon K_β X-ray spectra and crystal structure // Mineralogical Magazine. 1989. V. 53/ P. 239–244.
- Remond G., Cesbron F., Chapoulite R. et al. Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation // Scanning Microsc. Intl. 1992. V. 6. P. 23–68.
- 25. *Remond G., Phillips M.R., Roques-Carmes C.* Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials // Cathodoluminescence in Geosciences. Berlin-Heidelberg: Springer, 2000. P.59–126.
- Steiger R.H., Joger E. Subcommision on geochronology: convention on the use of decay constants in geoand cosmochronology // Earth Planetary Science Letters. 1977. V. 36. P. 359–362.
- Weber W.J. Models and mechanisms of irradiation-induced amorphization in ceramics // Nuclear Instruments and Methods in Physics Research Section. B: Beam Interactions with Materials and Atoms. 2000. V. 166. P. 98–106.
- 28. Weber W.J., Ewing R.C., Wang L. M. The radiation-induced crystalline-to-amorphous transition in zircon // Journal of Materials Research. 1994. V. 9. P. 688–698.
- Zhang M., Boatner L.A., Salje E.K.H. et al. Pb irradiation of synthetic zircon (ZrSiO₄): Infrared spectroscopic investigation // American Mineralogist. 2008-a. V. 93. P. 1418–1423.
- Zhang M., Boatner L.A., Salje E.K.H. et al. Micro-Raman and micro-infrared spectroscopic studies of Pband Au-irradiated ZrSiO4: Optical properties, structural damage, and amorphization // Phys. Rev. B 77. 2008. P. 144110(13).

ЕЖЕГОДНИК-2009, Тр. ИГГ УрО РАН, вып. 157, 2010