= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ПОВЕДЕНИЕ ГАЛОГЕНОВ (CI, F) В АПАТИТАХ РИТМИЧНО-РАССЛОЕННЫХ РУДОНОСНЫХ ГАББРОИДОВ МЕДВЕДЕВСКОГО МЕСТОРОЖДЕНИЯ

Т. Д. Бочарникова, В. В. Холоднов, Е. С. Шагалов

На Медведевском месторождении, которое в настоящее время находится в эксплуатации, установлено два типа Fe-Ti-V оруденения: магматический (основной) и скарново-магнетитовый (второстепенный). Магматический тип оруденения приурочен ко всему разрезу ритмично-расслоенных амфиболовых габбро, анортозитов и габбро-норитов Медведевского массива.

К этому типу оруденения относятся вкрапленные Mt-Il руды и массивные Ti-Mt руды.

Вкрапленные (до густовкрапленных) Mt-Il руды расположены в матрице меланократового, сильно соссюритизированного амфиболового габбро. Среди вкрапленных руд присутствуют маломощные (до 50 см), согласные с расслоенностью вмещающих габброидов, пласты массивных Ti-Mt руд, протяженностью до 10-30 м. На контакте руд с вмещающими их габброидами отмечается интенсивное развитие хлорита. Массивные Ti-Mt руды по сравнению с вкрапленными, присутствуют в весьма ограниченном объеме. Скарново-магнетитовый тип – это очень незначительное и крайне бедное титаном вкрапленное оруденение, связанное с ксенолитами скарнированных и мраморизованных доломитов саткинской свиты и расположенное вдоль контактов с пегматоидным амфиболовым габбро. Предварительная характеристика массивных титаномагнетитовых руд и скарново-магнетитового оруденения дана в [3].

Характер строения рудной зоны в стратифицированном габбро-анортозитового комплексе был изучен по врезке разреза на юго-западном въезде на территорию карьера "Передовой". Здесь в вертикальном сечении разреза интрузии чередуются субгоризонтальные слои рудного мелано- и мезократового амфиболового габбро с переменным содержанием титаномагнетита и ильменита и слои анортозитов. Слой рудоносных габброидов мощностью около 2.5 м расположен между двумя слоями анортозитов мощностью до 0.7 м. Габброиды амфиболизированы, а анортозиты, как и габброиды, интенсивно соссюритизированы. В пределах рудоносных габброидов проявлена более тонкая ритмично-полосчатая расслоенность, обусловленная чередованием рудных меланократовых (с преобладанием титаномагнетита и ильменита над силикатами) и лейкократовых слоев, бедных рудным компонентом. Породы по структуре средне-крупнозернистые, они содержат габбро-пегматитовые обособления (шлиры).

Цель проведенных исследований: поведение галогенов в ритмично-расслоенных рудоносных габброидах Медведевского месторождения. В разрезе отдельных ритмов с использованием полированных шлифов на микроанализаторе JXА-5 (аналитик Л.К. Воронина) изучен состав галогенов в апатитах. Как видно из полученных данных (табл. 1, 2), наметилось различие в содержаниях Cl и F в апатитах, занимающих разную позицию в разрезе отдельного ритма, где каждому типу породы соответствует свое определенное поле состава апатитов (рис. 1-3). Такая закономерность была подмечена ранее при изучении ритмичной расслоенности в Кусинской габбровой интрузии [1]. Там она проявилась более отчетливо, посколькуме концентрации хлора в Кусинской интрузии более чем на порядок превышают его содержания в Медведевском массиве.

В Медведевском массиве, в целом, вверх по разрезу от ритмично-расслоенных габброидов к анортозитам наблюдается направленный рост содержаний фтора в апатитах. При этом, хлор ведет себя по-разному, в одних случаях его концентрации возрастают, а в других снижаются (рис. 1, 2). В качестве примера приведем распределение галогенов в апатитах одного крупного ритма, в котором лейкократовое габбро переслаивается с мела-

Рис. 1. Распределение галогенов в апатитах габбро с тонкой ритмично-полосчатой расслоенностью, обр. кс-723.

 меланократовое рудное габбро, мощность слоя – 0.5 см; 2 – лейкократовое габбро.

Таблица 1. Сl, F в апатитах из фрагмента разреза габброидов с ритмично-полосчатой расслоенностью (мас. %)

				· ·
№ п/п	Позиция включения апатита, форма, размер	Cl	F	Cl/F
1	зерно таблитчатой формы 40 ×100 мкм между амфиболом и плагиоклазом, n = 12	0.12	1.74	0.07
2	зерно прямоугольной формы 200 × 200 мкм окружено плагиоклазом, n = 8	0.12	1.64	0.07
3	зерно таблитчатой формы 100×60 мкм на границе с плагиоклазом, n = 5	0.09	1.54	0.06
4	зерно таблитчатой формы 150 × 60 мкм на границе с рудным, n = 6	0.09	1.50	0.06
5	зерно гексагональной формы 20 × 20 мкм в плагиоклазе, n = 7	0.05	0.57	0.09
6	зерно неправильной формы 850 × 150 мкм на границе с рудным и амфиболом, n = 18	0.08	1.58	0.05
7	зерно таблитчатой формы 120 × 30 мкм между плагиоклазом, рудным и амфиболом, n = 8	0.09	1.60	0.05
8	зерно прямоугольной формы 100 × 110 мкм между рудным, амфиболом и плагиоклазом,	0.09	1.80	0.05
	n = 14	0.07	1.00	0.05
9	зерно 40×40 мкм в рудном, n = 9	0.10	1.67	0.06
10	зерно таблитчатой формы 20×50 мкм в рудном, n = 8	0.10	1.68	0.06
11	зерно неправильной формы 120 × 50 мкм в плагиоклазе, n = 16	0.07	1.34	0.05
12	зерно гексагональной формы 50×20 мкм в плагиоклазе, n = 12	0.10	1.37	0.07
13	зерно 110 × 80 мкм между амфиболом и плагиоклазом, n = 12	0.10	1.64	0.06
14	зерно таблитчатой формы 100 × 40 мкм между амфиболом и плагиоклазом, n = 11	0.10	1.24	0.08
15	зерно таблитчатой формы 50 × 70 мкм между плагиоклазом и амфиболом, n = 15	0.08	1.33	0.06
16	зерно таблитчатой формы 60 × 60 мкм в срастании с рудным, n = 9	0.08	1.50	0.05
17	зерно таблитчатой формы 100 ×150 мкм, n = 25	0.06	1.20	0.05
18	зерно таблитчатой формы 40 × 80 мкм между зернами амфибола, n = 15	0.08	1.61	0.05

Примечание. Габбро с ритмично-полосчатой расслоенностью, обр. кс-723. 1–10 – меланократовое рудное габбро, мощность слоя – 0.5 см; 11–18 – лейкократовое габбро; n – количество измерений.

нократовым рудным габбро, и далее, разрез завершается анортозитом (рис. 2). При этом, как видно из графика, апатит в лейкократовом габбро содержит меньше фтора, чем в меланократовом рудном габбро. Наиболее высокое содержание фтора наблюдается в апатите анортозита. Снизу вверх в разрезе происходит существенное увеличение количества апатита в самих породах с максимумом в анартозитах, а также значительное укрупнение его выделений, особенно в межзерновых пространствах. В самих анортозитах также наблюдается увеличение лейкократовости вверх по разрезу каждого слоя. Направленное нарастание концентраций фтора в апатите вверх по разрезу каждого

Рис. 2. Распределение галогенов в апатитах крупного ритма.

1 – лейкократовое габбро (обр. кс-728), 2 – меланократовое рудное габбро (обр. кс-726), 3 – анортозит (обр. кс-725).

1 – массивное габбро (обр. кс-717, кс-719), ритмичнорасслоенные габброиды (обр. кс-723, кс-726, кс-28); 2 – анортозиты (обр. кс-721, кс-725); 3 – пегматоидное габбро (обр. кс-738, кс-739).

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

№ п/п	Позиция включения апатита, форма, размер	Cl	F	Cl/F
1	зерно таблитчатой формы 50 × 500 мкм, n = 17	0.10	1.67	0.06
2	зерно гексагональной формы 120 × 400 мкм между плагиоклазом и амфиболом, n = 18	0.08	1.68	0.05
3	зерно 100 х 500 мкм между амфиболом и плагиоклазом			
	профиль – 1, n = 19	0.11	1.87	0.05
	профиль – 2, $n = 17$	0.11	2.15	0.05
4	крупное зерно неправильной формы 100 × 500 мкм			
	профиль – 1, n = 19	0.10	2.42	0.04
	профиль – 2, n = 30	0.08	2.31	0.03
5	зерно изометричной формы 110 × 110 мкм между амфиболом и рудным, n =14	0.12	1.37	0.09
6	зерно изометричной формы 40×40 мкм в рудном, n = 9	0.10	1.45	0.07
7	зерно изометричной формы 40 × 40 мкм между амфиболом и плагиоклазом, n = 7	0.11	1.54	0.07
8	зерно таблитчатой формы 30 × 40 мкм между плагиоклазом и амфиболом, n =12	0.12	1.94	0.06
9	зерно таблитчатой формы 50 × 150 мкм между плагиоклазом, амфиболом и рудным,	0.13	1.61	0.08
	n =20			
10	зерно неправильной формы 15 × 25 мкм между плагиоклазом и амфиболом, n = 3	0.14	1.43	0.10
11	зерно изометричной формы 100 × 100 мкм между амфиболом и рудным, n =15	0.12	1.53	0.08
12	зерно неправильной формы 70 × 30 мкм между плагиоклазом и рудным, n = 15	0.12	1.30	0.09
13	зерно неправильной формы 60 × 150 мкм между плагиоклазом и амфиболом, n = 18	0.13	1.26	0.10
14	зерно таблитчатой формы 40 × 70 мкм между плагиоклазом и амфиболом, n = 28	0.10	1.32	0.07
15	зерно неправильной формы 50 × 150 мкм в агрегате зерен плагиоклаза, амфибола и	0.11	1.38	0.08
	сфена, n = 17			
16	зерно треугольной формы 120 × 150 мкм между плагиоклазом, амфиболом и агрегатом	0.14	1.43	0.10
	этих минералов, $n = 17$			

Таблица 2. Cl, F в апатитах в ритме "анортозит-рудное габбро" из фрагмента разреза расслоенных габброидов, (мас. %)

из исследованных ритмов коррелируется с эволюцией состава самих пород и руд.

От меланократового габбро с густовкрапленным оруденением к анортозитам наблюдается рост щелочей (Na₂O от 0.6 до 2.9%), Al₂O₃ от 8.8 до 20%, SiO₂ от 35 до 51%, P₂O₅ от 0.25 до 0.55%, с одновременным снижением содержаний MgO от 5.8 до 2%, MnO от 0.22 до 0.09%, TiO₂ от 5–9 до 1.5%, FeO_{общ} от 29 до 9%, при устойчивых содержаниях CaO 8–10%. Вверх по разрезу возрастают концентрации стронция и РЗЭ с максимальными содержаниями в анортозитах. Барий проявляет противоположную тенденцию [2].

Также было исследовано содержание галогенов в апатитах из пегматоидного габбро в составе Прасковье-Евгеньевской минеральной копи. В пегматоидном габбро содержания хлора в апатите значительно превышают его концентрации в апатите из рудоносных стратифицированных габброидов (рис. 3).

Таким образом, установлена взаимосвязь состава галогенов в апатитах с составом пород и руд, образующих ритмы расслоенного разреза, что наиболее отчетливо отразилось на распределении фтора и хлора в апатитах двух главных типов пород – рудного габбро и анортозитов. Повышенные концентрации хлора в апатитах из пегматоидного габбро зон эндоконтактов интрузии, по-видимому, обусловлены процессом флюидно-магматического взаимодействия с участием рассольных вод, заимствованных из карбонатных пород, контактирующих с интрузией.

Работа выполнена при финансовой поддержке программ ОНЗ РАН № 2, № 8 и № 10 (проект 09-T-5-1019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бочарникова Т.Д., Холоднов В.В., Прибавкин С.В., Воронина Л.К. Распределение галогенов в расслоенных габброидах Кусинской интузии // Ежегодник-2002. Екатеринбург: ИГГ УрО РАН, 2003. С. 224–227.
- Холоднов В.В., Шагалов Е.С., Бочарникова Т.Д. Новые данные о составе и генезисе Fe-Ti-V руд Медведевского месторождения (Кусинско-Копанский рудно-магматический комплекс, Южный Урал) // Геология, полезные ископаемые и проблемы геоэкологии Башкортостана, Урала и сопредельных территорий: мат-лы 8-й Межрегион. науч.-практ. конф. Уфа: ДизайнПолиграфСервис, 2010. С. 159–161.
- Shagalov Ev.S., Holodnov V.V. Geochemistry of titanomagnetite in rocks and ores of Medvedevskoe deposit, Southern Urals // 20th General Meeting of the International Mineralogical Association 21–27 August, 2010. Budapest, Hungary. Acta mineralogica-petrographica. Abstract series. V. 6. 2010. P. 531.

Примечание. 1–4 – анортозит (обр. кс-725), 5–10 – меланократовое рудное габбров (обр. кс-726), 11–16 – лейкократовое габбро (обр. кс-728).