= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ АНДЕЗИТОВ ВОСТОЧНОЙ ЗОНЫ СРЕДНЕГО УРАЛА

Е. Н. Волчек, В. С. Червяковский*

На территории Восточной зоны Среднего Урала андезиты встречаются в качестве промежуточных членов в составе сложнодифференцированных комплексов палеозойского возраста. Наибольшее распространение они получили в составе эйфельскораннеживетского базальт-андезит-дацитового и визейского бекленищевского базальт-андезит-дацитриолитового комплексов [5].

Базальт-андезит-дацитовый комплекс среднего девона в пределах зоны представлен сложной ассоциацией лав базальтов, андезибазальтов, андезитов, андезидацитов, дацитов, риодацитов. Широким распространенем пользуются также туфы различного состава, туфоконгломераты, туфогравелиты, туфопесчаники, туффиты, содержащие прослои конгломератов, песчаников, алевролитов, алевропелитов, кремнистых и глинисто-кремнистых пород, известняков. Ранее эти образования описывались в составе базальт-андезит-дацит-риолитовой формации среднего девона [2]. Вулканиты комплекса по всей длине изученной зоны слагают блоки и пакеты тектонических пластин, а также отдельные залежи разной конфигурации. Протяженность полей развития этих пород местами достигает 50 км при максимальной ширине 10 км [5]. Возраст вулканитов определен как эйфельско-раннеживетский на основании того, что вулканогенно-осадочные породы этого комплекса залегают на позднеэмско-эйфельских афировых базальтах глинского комплекса и перекрываются толщей, датируемой на основании фаунистических находок поздним живетом-ранним франом [5]. В объеме комплекса разности вулканитов среднего состава составляют около 40–60% [5].

Обширные выходы пород этого комплекса располагаются в бортах русла р. Рудянки до устья и далее по левому берегу р. Пышмы. Здесь картируется крупный стратовулкан "Дивий камень" [4]. Основание разреза этой вулканической постройки сложено шаровыми лавами базальтов и их туфами. Вверх по разрезу среди бомбово-глыбовых отложений получили развитие андезибазальтовые лавы с брекчиевидным строением кровли. Андезиты слагают лавовые потоки с признаками подушечного строения. В разрезе широко распространены агломераты, брекчии, грубообломочные туфы, содержащие вулканические бомбы [4]. Здесь также наблюдаем

Рис. 1. Распределение редкоземельных элементов в андезитах Восточной зоны Среднего Урала (содержания нормированы по хондриту [8].

Здесь и далее номера на рисунках соответствуют номеру пробы в табл.1 и 2.

^{*} Уральский государственный горный университет, Екатеринбург

широкое развитие субвулканических тел дацитов и риодацитов и даек долеритов.

Бекленищевский базальт-андезит-дацит-риолитовый комплекс раннего карбона (C₁bk) сложен лавовыми фациями андезибазальтов, андезитов, в меньшей степени базальтов. В его состав включены туфы и туффиты различного, в том числе, смешанного состава, туфоконгломераты, туфопесчаники, туфоалевролиты и туфоалевропелиты. Субвулканические образования комплекса представлены дайками и субвулканическими телами долеритов и габбродоллеритов. Ранее эти образования описывались в составе андезитовой формации раннего карбона (C₁) [2].

Самые крупные и лучшие выходы пород комплекса располагаются в бассейне реки Исеть, где они представлены порфировыми и афировыми базальтовыми эффузивами, андезитами и долеритами субвулканической фации. Лавы андезитов протягиваются в направлении с юго-запада на северовосток полосой, ширина которой у д. Бекленищево – д. Перебор составляет порядка 3 км, а к северовостоку между д. М. Белоносово и пос. Покровский достигает 6 км [4]. Для поверхностей некоторых залежей характерно наличие брекчированной корки, состоящей из комков и обломков пористой лавы. Выходы лавовых брекчий базальтового состава имеют подчиненное развитие [1]. Ограниченным распространением пользуются мелкообломочные туфы. По расположению лавовых потоков, наличию пирокластики и пр. здесь намечен предполагаемый центр вулканического извержения и реконструирована вулканическая постройка [1]. Возраст вулканитов определен как ранний карбон на основании того, что породы согласно залегают под карбонатнотерригенными отложениями, в прослоях известковистых песчаников которых содержится фауна фораминифер верхнего визе Archaediscus convexus Grozd. et Leb., Endothyra sp. Howchinia gibba Moell., Loeblichia ex gr. pseudoukrainica Vdov., Archaediscus nodosus (Brazhn.), Ammarchaediscus sp. [3].

Андезиты эйфельско-раннеживетского базальтандезит-дацитового комплекса представляют собой порфировые породы с 25–30% вкрапленников плагиоклаза, представленного зональным андезином неравномерно пренитизированным и сосюритизированным. Темноцветные минералы представлены пироксеном, частично хлоритизированным. Основная масса состоит из микролитов плагиоклаза, хлорита, соссюрита. Андезиты базальт-андезит-дацит-риолитового комплекса раннего карбона по составу вкрапленников являются пироксенплагиоклазовыми. Структура их порфировая. Вкрапленники плагиоклаза представлены зональным андезином.

Сумма щелочных металлов в андезитах среднего девона не превышает 4.6% при содержаниях $K_2O = 1.3 - 1.7\%$ (табл. 1). Судя по имеющимся анализам это низкотитанистые (0.4–0.6% TiO₂) поро-

Таблица 1. Содержание петрогенных (мас. %) и микроэлементов (г/т) в вулканитах базальт-андезит-дацитового комплекса среднего девона

87

Лаб. №	10-931	10-935	10-934	10-933	10-932
авт. №	TH-5/B	TH-6/B	П-31/В	П-32/В	П-37/В
SiO	49.99	68 50	59.31	58.00	59.93
TiO.	2 25	0.51	0.57	0.82	0.43
A1.0.	12.17	13.18	17.02	13 74	18 24
Fe ₂ O ₂	20.30	9.87	9.71	16.88	7 24
MnO	0.29	0.12	0.19	0.18	0.13
MgO	1.81	0.12	1 73	2 79	0.13
CaO	6.60	0.43	3.48	1 72	4 72
Na O ICP	3 70	3.65	2.61	3.24	1 30
K.O	0.24	2.00	1.45	1 33	1.37
$\mathbf{R}_{2}\mathbf{O}$	1 19	0.07	0.11	0.14	0.09
	2.00	1.60	4 20	1 70	5.80
Li	7 70	8 75	9.30	16.44	12.00
Be	1 54	1 70	0.52	0.50	0.66
Na	28139 12	27041 67	19339 21	24064.03	10263 55
Sc	19.25	6 72	12 04	19.07	8 39
Ti	7031.08	1547 74	1894 15	3224 54	1429 13
V	108.81	30.54	97 33	227.37	63 64
Ċr	19.83	34 47	13.18	37.05	13.61
Mn	1308.99	337.28	612 35	613 76	424 84
Co	16 37	5 72	11 15	18 73	6 38
Ni	9 44	15 49	9 74	20.47	6.97
Cu	25.78	16.85	25.37	67.81	18.22
Zn	121.40	54 35	62.80	64 50	43.17
Ga	18.65	16.14	12.02	11.68	11.93
Ge	1 11	0.82	0.67	0.87	0.80
Rb	3.62	16.23	18.01	22.38	20.03
Sr	316.98	49.57	142.12	255.68	48 71
Ŷ	50.14	36 31	11 17	18 16	11.07
Zr	231.54	336.29	58.38	61.54	52.65
Nb	9.42	5.58	1.17	1.72	1.30
Mo	1 93	1 31	0.95	1 75	0.81
Ag	0.33	0.35	0.07	0.77	0.25
Cď	0.58	0.33	0.12	0.05	0.07
Sn	2.44	4.21	0.59	0.85	0.59
Sb	1.00	0.64	0.56	1.30	1.37
Те	0.01	0.01	0.01	0.01	0.01
Cs	0.12	0.41	0.86	0.96	1.68
Ba	140.24	231.73	345.52	231.12	340.67
La	21.34	10.00	6.69	9.10	9.26
Ce	57.42	35.85	16.01	21.53	20.44
Pr	8.25	4.48	1.81	2.77	2.37
Nd	39.74	20.20	7.52	12.65	9.70
Sm	10.09	5.40	1.67	3.15	2.00
Eu	3.59	0.96	0.45	0.85	0.63
Gd	11.39	5.98	1.85	3.34	1.96
Tb	1.77	1.08	0.30	0.54	0.31
Dy	11.31	7.92	2.19	3.79	2.21
Но	2.29	1.79	0.48	0.81	0.48
Er	6.40	5.65	1.54	2.43	1.52
Tm	0.90	0.89	0.24	0.36	0.24
Yb	5.62	6.18	1.70	2.43	1.72
Lu	0.84	0.97	0.28	0.38	0.28
Hf	6.05	9.21	1.82	1.99	1.76
Ta	0.78	0.48	0.08	0.11	0.10
W	4.93	6.13	7.70	4.16	3.70
11	H/O	0.15	0.04	0.02	0.07
Pb	7.29	16.38	3.13	4.46	3.20
B1	0.01	0.19	0.02	0.03	0.03
1h	2.82	4.58	2.46	2.23	5.15
U	1 1 5 /	1 326	125	0.94	1 34

Примечание. П-5/В – долерит (устье р. Рудянки, левый берег р. Пышмы); П-6/В – риодацит (50 м от устья вверх по течению р. Рудянки, правый берег); П-31/В, П-32/В, П-37/В – андезиты (200 м от устья вверх по течению р. Рудянки, правый берег).

№ обр.	Пд-1	Пд-3	Пд-4	Пд-6	Пд-7	697/a	697/2	697/3	698/1	698/2
SiO ₂	58.13	60.84	59.54	56.68	62.59	57.66	61.44	51.82	61.89	61.15
TiO ₂	0.76	0.81	0.65	0.91	0.59	0.69	0.78	1.80	0.73	0.70
Al ₂ O ₃	14.45	17.31	17.07	16.94	14.95	15.61	16.61	15.96	16.32	15.35
Fe	10.28	6.98	7.16	6.76	5.34	9.16	6.28	10.54	7.28	11.72
MnO	0.12	0.07	0.40	0.10	0.09	0.10	0.07	0.18	0.08	0.12
MgO	3.52	1.84	3.24	4.60	1.49	3.94	2.89	5.11	2.04	2.14
CaO	5.70	2.86	3.05	5.84	8.95	5.36	2.68	6.95	2.60	2.66
Na ₂ O	3.60	5.90	3.59	3.84	4.35	3.96	4.54	3.06	5.27	4.97
K ₂ O	0.88	0.65	0.74	0.75	0.41	0.77	1.11	0.51	1.13	0.99
P_2O_5	0.15	0.13	0.14	0.18	0.11	0.19	0.16	0.33	0.13	0.13
ППП	2.10	1.10	2.50	2.65	2.10	1.10	2.30	2.80	1.80	0.50
Сумма	99.68	98.48	98.09	99.25	100.97	98.53	98.87	99.05	99.27	100.43
Ag	0.27	0.36	0.43	0.40	0.29	0.30	0.61	0.34	0.25	0.48
As	3.35	24.15	12.07	7.94	11.16	9.22	6.10	4.20	6.54	8.86
В	32.81	89.35	38.07	22.09	32.14	36.73	40.45	13.62	41.47	21.55
Cd	0.17	0.17	0.30	0.21	0.31	0.22	0.44	0.31	0.27	0.94
Ge	0.14	0.23	0.14	0.14	0.13	0.14	0.16	0.17	0.11	0.17
In	0.03	0.02	0.03	0.04	0.03	0.03	0.05	0.05	0.03	0.05
Ni	45.62	35.37	183.64	91.94	53.36	73.16	46.04	321.92	42.80	86.04
Р	783.37	751.65	971.12	1253.90	843.30	993.22	1002.24	1622.90	709.53	609.54
Li	24.80	17.05	38.25	33.38	3.34	29.69	37.63	68.72	11.75	18.46
Be	1.22	1.62	1.56	1.27	2.03	1.50	1.94	2.08	1.04	1.19
Sc	10.56	11.29	17.38	19.05	18.65	15.91	15.35	25.52	11.43	14.56
Ti	3945.42	4256.27	4776.95	5948.57	5098.46	4493.16	6394.95	11220.09	3475.28	4224.59
V	80.50	77.22	82.30	138.02	76.93	120.36	79.36	196.79	56.41	74.46
Mn	693.38	380.26	4540.99	715.90	913.84	719.27	584.17	1342.03	410.00	885.30
Co	17.64	14.38	27.34	25.26	15.53	18.41	20.38	41.32	10.66	17.25
Cu	32.43	10.97	200.07	12.72	6.28	67.78	13.70	13.02	9.21	29.58
Zn	72.61	64.65	94.58	107.01	57.20	164.28	789.00	139.10	33.19	438.41
Ga	15.79	17.03	18.72	21.13	30.38	18.33	23.15	19.25	14.28	17.30
Rb	15.82	11.85	17.07	16.54	1.77	14.84	14.18	6.16	15.95	19.91
Sr	309.87	483.87	422.17	541.85	360.24	471.95	464.82	512.79	250.67	342.67
Y	21.86	22.81	27.29	27.79	25.63	23.87	38.04	33.74	17.61	22.77
Zr	142.49	179.05	174.83	229.27	178.12	167.32	333.01	218.49	130.35	163.51
Nb	4.74	5.81	5.20	6.59	5.32	5.22	9.46	14.84	3.99	5.76
Mo	0.81	0.50	2.15	0.72	0.92	1.55	0.38	0.64	0.37	1.51
Cs	0.46	0.47	0.66	0.57	0.05	0.29	0.27	0.15	0.49	0.58
Ва	346.62	807.79	1207.66	337.15	33.17	315.10	64/./6	159.84	235.29	324.85
La	10.42	12.18	15.29	15.29	12.58	14.39	21.37	15.1/	8.60	12.00
Ce	28.55	32.52	29.33	34.8/	28.92	28.86	47.94	36.64	22.56	21.56
PT NJ	3.41	5.95	3.91	4.40	5.72	3.95	5.74	4.94	2.70	3.18
ING Sm	15.49	15.40	10.39	1/.80	15.50	10.05	24.00	20.94	11.20	15.55
5III En	5.01	5.50	1.24	4.07	5.50	5.09	1.52	1.00	2.03	5.04
Eu	0.00	2.42	2.96	1.52	2 70	2 70	1.52	5.22	0.80	0.98
Th	0.52	0.59	5.80	4.14	0.61	5.70	5.56	0.88	2.75	5.05
	0.55	0.58	0.05	4.26	3.87	0.58	5.76	5.46	2.00	0.33
Бу Но	0.78	0.80	4.15	4.20	0.84	0.78	1.21	1 15	2.99	0.73
Er	2 20	2 32	2 75	2 55	2.44	2 27	3 53	3 18	1 0/	2.16
Tm	0.36	0.37	0.41	0.38	0.36	0.34	0.54	0.46	0.30	0.34
Yh	2 48	2 46	2.68	2 55	2 35	2 32	3 50	2.96	1 91	2 25
Lu	0.40	0.40	0.42	0.40	0.37	0.37	0.57	0.46	0.30	0.35
Hf	3 37	4 37	4 13	5.28	4 27	3.82	7 24	4 53	3 17	3.82
Та	0.34	0.49	0.44	0.50	0.45	0.40	0.90	0.91	0.28	0.86
W	0.58	0.69	0.78	0.45	0.56	1.34	0.56	0.28	0.41	2.33
TI	0.11	0.04	0.13	0.10	0.01	0.11	0.06	0.03	0.08	0.19
Ph	9.39	10.40	10.32	9.72	21.66	9.08	17.43	5.08	5.15	15.88
Bi	0.10	0.02	0.04	0.02	0.10	0.05	0.09	0.03	0.10	0.24
Th	3.13	4.82	4.25	2.77	4.19	2.76	6.52	1.83	3.01	3.61
U	1.57	1.89	2.08	1.09	2.48	1.34	1.54	0.83	1.31	1.40
Čr	32.09	22.59	42.71	58.87	35.92	56.74	20.14	278.78	32.74	70.53

Таблица 2. Содержание петрогенных (мас. %) и микроэлементов (г/т) в андезитах бекленищеского базальт-андезитдацит-риолитового комплекса раннего карбона (C₁bk)

Примечание. Пд-1, Пд-3, Пд-4, Пд-7, 697/а, 697/2, 698/1, 698/2 – андезиты (левый берег руч. Падун); Пд-6, 697/3 – андезибазальты (левый берег р. Исеть, ниже устья руч. Падун). Образцы предоставлены сотрудниками лаборатории стратиграфии и палеонтологии Н. А. Кучевой, Т. И. Степановой. Аналитические исследования были выполнены в лаборатории ФХМИ минерального вещества ИГГ УрО РАН рентгено-спектральным методом на СРМ-18, рентгенофлюоресцентным методом на EDX-900 HS (Na₂O) и методом ICP-MS.

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

Рис. 2. Спайдерграммы, нормированные по примитивной мантии [6] для андезитов Восточной зоны Среднего Урала.

Рис. 3. Диаграмма Th/Yb–Ta/Yb [7] для андезитов Восточной зоны Среднего Урала.

1 – андезиты базальт-андезит-дацит-риолитового комплекса раннего карбона (C₁bk), 2 – андезиты базальт-андезитдацитового комплекса среднего девона. Полями на диаграмме показаны составы базальтов островных дуг (IA), активных континентальных окраин (ACM), Гавайских островов (HAW); DMS – деплетированная мантия, EMS – обогащенная мантия, MORB+WPB – тренд базальтов несубдукционных обстановок. Справа показаны тренды изменения состава пород за счет субдукционных компанентов (S), контаминации (C), компонентов внутриплитных плюмов (W), фракционирования (F).

ды, с содержанием Al₂O₃ от 14 до 18%, что отвечает уровню известково-щелочных островодужных магматитов. Андезиты характеризуются надсубдукционными геохимическими признаками. Для них типично преобладание легких лантаноидов над тяжелыми и выраженный дефицит европия (рис. 1).

Андезиты раннего карбона по своим петрохимическим характеристикам принадлежат к породам нормального ряда. Для них характерна умеренная титанистость, низкие содержания CaO, MgO, коэффициент глиноземистости al составляет 1.05– 2.18, что позволяет относить их к высокоглиноземистой группе. Сумма щелочных металлов в андезитах в среднем составляет 5.3% при содержании K₂O в среднем 0.8% (табл. 2). Они характеризуются более высокими содержаниями РЗЭ по сравне-

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

нию с андезитами среднего девона, в них возрастает роль легких элементов. Породы обогащены такими элементами как Sr и барием, наблюдается минимум по Th и выраженный Nb минимум на спайдердиаграммах, нормализованных по отношению к N-MORB (рис. 2), что характерно для вулканитов сформированных в пределах субдукционных зон. Для пород типично присутствие Zr-максимума и максимума по U.

Для андезитов обоих комплексов характерен отчетливый Та-Nb минимум на нормализованных многокомпонентных диаграммах, более глубокий в породах среднего девона. На диаграмме Th/Yb-Ta/Yb вулканиты среднедевонского базальтандезит-дацитового комплекса занимают поле островодужных лав, а андезиты базальт-андезит-дацитриолитового комплекса раннего карбона размещаются в поле активных окраин континентов (рис. 3).

СПИСОК ЛИТЕРАТУРЫ

- Дианова Т.В. О некоторых фациях раннекаменноугольных вулканитов Восточной зоны // Палеовулканизм Урала. Свердловск: УНЦ АН СССР, 1975. С. 99–107.
- 2. Коротеев В.А., Дианова Т.В., Кабанова Л.Я. Средне-

палеозойский вулканизм Восточной зоны Урала. Л.: Наука, 1979. 129 с.

- Кучева Н. А, Степанова Т. И., Волчек Е.Н. Геологическое строение каменноугольных образований в нижнем течении р. Камышенка (Бассейн р. Исеть, восточный склон Среднего Урала) // Ежегодник-2006. Екатеринбург: ИГГ УрО РАН, 2007. С. 37–42.
- Огородников В.Н., Поленов Ю.А., Сазонов В.Н., и др. Геологические маршруты по Сухоложскому и Каменскому полигонам. Екатеринбург: УГГУ, 2002. 295 с.
- Смирнов В.Н., Коровко А.В. Палеозойский вулканизм восточной зоны Среднего Урала // Геодинамика, магматизм, метаморфизм и рудообразование. Екатеринбург: ИГГ УрО РАН, 2007. С. 395–420.
- McDonough W.F., Sun S., Ringwood A.E. K, Rb and Cs in the earth and moon and the evolution of the earth's mantle // Roos Taylor Symposium volume. Geochim. Cosmochem. Acta. 1991.
- Pearce J.A. Role of the sub-continental lithosphere in magma genesis atactive continental margins // Eds. C.J. Hawkesworth, M.J. Norry. Continental basalts and mantle xenoliths. Shiva, Nantwich, 1983. P. 230–249.
- Sun S.-s., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes / Eds. A.D. Saunders, M.J. Norry. Magmatism in the Oceanic Basins. Blacrwell: Oxford, 1989. P. 313–345.