= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ГАЛОГЕНЫ В АПАТИТАХ РУДНО-МАГМАТИЧЕСКИХ МЕДНО-ПОРФИРОВЫХ СИСТЕМ СРЕДНЕГО УРАЛА

А. И. Грабежев, В. Н. Смирнов, Л. К. Воронина, В. Г. Гмыра

Ранее нами кратко рассматривалось распределение фтора и хлора в апатите рудоносных гранитоидов редкометальных, золоторудных и меднопорфировых месторождений Урала [1, 2]. В полном виде аналитический материал по некоторым медно-порфировым объектам приведен в [3], авторы указывают на хлорную геохимическую специализацию апатитов рудоносных порфировых гранитоидов. Нами же было установлено, что по уровню вероятного первичного содержания хлора в апатите (табл. 1), обычно не превышающего 0.5–0.7 мас. %, медно-порфировые гранитоиды кварцдиоритовогоплагиогранодиоритового состава различной степени рудоносности принципиально не отличаются между собой и от непродуктивных массивов ряда других габбро-гранитоидных формаций [1]. Например, по нашим данным количество хлора в апатите из габбро и диоритов крупного Новониколаевского габбро-диоритового массива, примыкающего с запада к Михеевскому рудному полю, составляет 0.5-0.6 мас. %. Более того, апатиты из совершенно не минерализованных базокварцевых диоритовых порфиритов Варненской малой интрузии характеризуются очень высокими содержаниями хлора (1.1-1.7 мас. %). Несколько южнее, в их рудоносных аналогах на крупном Михеевском месторождении апатит содержит всего до 0.5-0.7 мас. % хлора.

Новые аналитические данные по объектам Среднего Урала также не свидетельствуют в пользу наличия четко выраженной хлорной специализации апатитов из диоритоидов медно-порфировых массивов. Материалы по медно-скарновому Промежуточному и скарново-медно-порфировому Гумешевскому месторождениям приведены в другой статье одного из авторов в настоящем сборнике. Среднеуральские объекты представлены Восточно-Артемовской малой интрузией сильно пиритизированных (до 0.2 мас. % Си) кварцевых диоритов, многочисленными мелкими халькопирит-пиритовыми рудопроявлениями в пределах Артемовского и Алтынайского массивов диорит-плагиогранодиорит (нередко с калишпатом)-гранитного ряда и Саповским проявлением. Последнее включает густую вкрапленность пирита в зонах мощностью до 100 м в субвулканических базальтах. В секущих базальты дайках базокварцевых диоритовых порфиритов сульфиды полностью отсутствуют. Независимо от количества пирита (0-15 об. %) породы повсеместно метасоматически преобразованы. Плагиоклаз сильно соссюритизирован и деанортитизирован, первичные темноцветы полностью замещены эпидотом и хлоритом. Из табл. 2–5 и рис. 1, 2 сле-

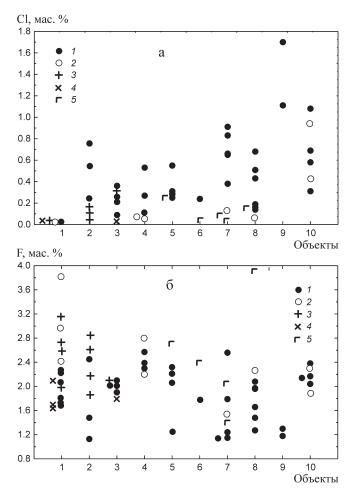


Рис. 1. Содержание хлора (а) и фтора (б) в апатите из пород медно-порфировых объектов Урала. Объекты (месторождение, рудопроявление, массив): 1 – Гумешевское, 2 – Промежуточное, 3 – Саповское, 4 – Восточно-Артемовское, 5 – Алтынайский, 6 – Артемовский, 7 – Тарутинское, 8 – Михеевское, 9 – Варненский; 10 – Верхнеуральское.

Характеристика пород: I — гранитоиды габбродиоритового, диоритового, плагиогранодиоритового (монцогранодиоритового на Верхнеуральском рудопроявлении) состава обычно слабо—умеренно пропилитизированные и серцитизированные; 2 — гранитоиды сильно серцитизированные; 3 — эпидозит, эпидотгранатовые скарны; 4 — обогащенные пиритом метасоматиты по мраморам (40–60 об. % пирита), диабазам, скарнам; 5 — двуполевошпатовые жильные граниты. Каждый фигуративный знак отвечает среднему содер-

Каждый фигуративный знак отвечает среднему содержанию элемента в одной пробе.

Таблица 1. Средние содержания Cl и F в апатите из гранитоидов медно-порфировых месторождений и непродуктивных массивов Южного Урала

N_0N_0	Номер	Хло	Хлор Фт			число				
П.П.	пробы	Среднее $\pm 1\sigma$ C_1		Среднее	±1σ	зерен				
Михеевское месторождение										
1	3004-80	0.19	0.12	1.48	0.38	4				
2	3004-92	0.68	0.48	1.97	0.69	10				
3	3004-50	0.14	0.05	1.96	0.42	4				
4	3002-113	0.51	0.17	1.27	0.49	5				
5	3039-181	0.16	0.05	2.08	0.28	4				
6	3002-121	0.43	0.16	1.66	0.65	7				
7	3039-175	0.06	0.08	2.28	0.75	6				
8	3004-61	0.15	0.006	3.93	0.12	3				
		утинское	место	рождение						
9	96–43	0.83	0.28	1.79	0.58	7				
10	143-17	0.38	0.18	2.56	0.90	7				
11	71–20	0.66	0.23	1.24	0.83	5				
12	Б/н	0.65	0.32	1.15	0.56	6				
13	10-22	0.91	0.41	1.15	0.13	4				
14	252-125	0.13	0.07	1.43	0.38	5 5				
15	256-224	0.07	0.03	2.06	0.29	5				
16	253-247	0.04	0.01	1.48	0.13	5				
		аксакское		роявление						
17	Кар-16	0.43	0.06	1.81	0.31	5				
18	Кар-10	0.33	0.30	1.16	0.31	6				
		еуральск	ое рудо	проявлен	ие					
19	By-102	0.69	0.05	2.32	0.45	7				
20	3332-110	1.08	0.4	2.04	0.43	11				
21	3315-191	0.58	0.19	2.17	0.40	12				
22	3321-171	0.31	0.23	2.15	0.34	6				
23	3318–217	0.93	0.22	1.92	0.46	7				
24	3321–183	0.41	0.15	2.38	0.28	13				
	Варненский массив									
25	Ba–1	1.70	0.17	1.30	0.19	5				
26	Ba-7	1.11	0.13	1.18	0.30	5				
	Новоникола									
27	Нн–1	0.48	0.14	1.58	0.80	5				
28	Нн–2	0.69	0.14	3.06	0.27	5				

Примечание. 1, 2 – габбро-диориты; 3–7 – амфиболовый кварцевый диорит (3) и диоритовый порфирит (4), пропилитизированный кварцевый диорит (5) и диоритовый порфирит (6), серицитизированный кварцевый диорит (7); 8 – гранит мелкозернистый послерудный; 9, 10 – плагиогранодиорит амфиболовый (9) и частично пропилитизированный (10); 11-13 - диоритовый порфирит базокварцевый амфиболовый (11, 12) и слабо серицитизированный (13); 14 - карбонат-кварц-серицитовый метасоматит аподиоритовый; 15, 16 - поздне-, послерудный жильный серицитизированный микропегматитовый гранодиорит (15) и плагиогранит (16); 17, 18 - кварцевый диорит амфиболовый (17) и диоритовый порфирит хлоритизированный (18); 19 – габбро; 20, 21 – пропилитизированные кварцевый диорит (20) и гранодиорит (21); 22, 23 - гранодиорит умеренно (22) и сильно (23) серицитизированные; 24 – хлорит-карбонатальбитовый метасоматит; 25, 26 - диоритовый порфирит пропилитизированный; 27, 28 - габбро (27) и кварцевый диорит (28). Приведенные здесь и далее анализы выполнены на микрозонде ЈХА-5 в период 1987–2010 гг.

дует, что содержание хлора в апатите диоритоидов каждого месторождения сильно варьирует в пределах зерен, отдельных образцов и объектов в це-

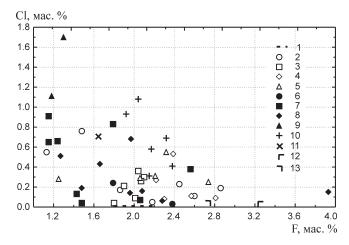


Рис. 2. Соотношение хлора и фтора в апатите из пород медно-порфировых объектов Урала. Объекты: 1–10 – см. на рис. 1, 11 – кварцевый диорит Вознесенского месторождения, 12 – монцогранодиорит Талицкого месторождения, 13 – заметно серицитизированный кварцевый диорит Северо-Томинского месторождения.

Таблица 2. Средние содержания хлора и фтора в апатите из пород порфировых объектов Среднего Урала (мас. %)

				•	•	
N_0N_0	Номер	Число	Хл	ор	Фт	тор
П.П.	пробы	зерен	X	$\pm 1\sigma$	X	±1σ
1	5-107	11	0.21	0.23	1.90	0.26
2	10-87.8	6	0.36	0.16	2.04	0.42
3	5–95	6	0.09	0.06	2.01	0.43
4	3–76	6	0.30	0.19	2.10	0.34
5	3-71.2	7	0.26	0.12	2.07	0.38
6	5-127.5	6	0.04	0.02	1.80	0.32
7	68	8	0.53	0.11	2.39	0.62
8	52.3	9	0.27	0.22	2.22	0.45
9	100	7	0.11	0.06	2.57	0.64
10	95	5	0.09	0.08	2.81	0.60
11	25.5	8	0.08	0.06	2.30	0.40
12	80-51	7	0.28	0.10	1.25	0.21
13	239–25	10	0.31	0.20	2.21	0.62
14	563-102	10	0.55	0.47	2.32	0.90
15	566–28	7	0.29	0.17	2.06	0.50
16	199–35	5	0.25	0.03	2.74	0.64
17	240–15	8	0.24	0.21	1.79	0.47
18	111	7	0.03	0.02	2.38	0.47

Примечание. 1–6 — Саповское проявление; 7–11 — Восточно-Артемовское рудопроявление; 12–16 — Алтынайский массив; 17, 18 — Артемовский массив. Характеристика пород приведена в табл. 3, 4.

лом. В значительной мере это обусловлено выносом хлора из апатита (содержание до 0.00–0.3 мас. %) при развитии метасоматических ассоциаций, а также причинами рассмотренными в другой статье данного сборника. Поэтому за условно первичные значения содержаний хлора в апатите разумно принять верхние содержания (как правило, отвечающие минимально измененным гранитоидам), варьирующие в интервале 0.4—1.0 мас. %. Количество фтора в апа-

Таблица 3. Средние содержания хлора и фтора в отдельных зернах апатита из пород по скважине 1013 Восточно— Артемовского рудопроявления и Саповского проявления (мас. %)

Гртемовеко	No	Хл		Фт			Глубина, м	No	Хл	op	Фт	ор	
Глубина, м	зерна	X	±1σ	X	±1σ	n		зерна	X	±1σ	X	±1σ	n
68	1	0.39	0.11	2.17	0.50	16	5-107	4	0.09	0.02	2.06	0.32	21
	2	0.39	0.13	1.84	0.12	15		5	0.10	0.04	1.74	0.13	5
	3	0.44	0.08	1.80	0.20	14		6	0.12	0.03	1.65	0.25	11
	4	0.51	0.05	1.77	0.15	15		7	0.17	0.05	1.80	0.17	7
	5	0.60	0.05	2.44	0.30	5		8	0.18	0.02	1.98	0.22	10
	6	0.60	0.03	2.89	0.12	11		9	0.25	0.11	2.02	0.16	9
	7	0.64	0.20	2.69	0.18	22		10	0.47	0.18	1.98	0.28	17
	8	0.64	0.14	3.50	0.21	26		11	0.79	0.06	2.48	0.24	6
52.3	2	0.06	0.04	1.87	0.27	31	10-87.8	1	0.09	0.02	1.87	0.16	14
	1	0.07	0.02	2.08	0.38	13		2	0.29	0.03	2.80	0.26	9
	4	0.08	0.05	2.60	0.31	17		3	0.32	0.04	1.80	0.18	12
	8	0.16	0.4	2.83	0.21	17		4	0.46	0.05	1.59	0.08	7
	9	0.24	0.05	2.66	0.25	16		5	0.48	0.10	2.20	0.23	26
	6	0.24	0.02	1.54	0.13	10		6	0.49	0.07	1.99	0.22	18
	5	0.27	0.04	2.17	0.27	16	5–95	1	0.03	0.01	1.39	0.13	12
	3	0.30	0.03	1.72	0.19	16		2	0.05	0.02	2.21	0.36	27
	7	0.32	0.02	2.51	0.08	12		3	0.06	0.02	1.77	0.15	7
95	5	0.004	0.005	2.37	0.15	13		4	0.10	0.02	1.97	0.12	10
	3.	0.05	0.03	2.61	0.33	34		5	0.12	0.02	2.67	0.36	7
	4	0.06	0.02	3.85	0.23	47		6	0.19	0.08	2.06	0.41	15
	1	0.12	0.06	2.78	0.12	16	3–76	1	0.11	0.01	2.74	0.20	14
	2	0.21	0.05	2.45	0.23	17		2	0.14	0.02	2.11	0.25	9
100	3.	0.04	0.01	2.61	0.33	17		3	0.59	0.02	1.79	0.16	14
	1	0.06	0.02	2.78	0.12	18		4	0.42	0.03	1.91	0.16	4
	4	0.06	0.04	3.85	0.23	17		5	0.15	0.04	2.15	0.19	9
	5	0.09	0.03	2.37	0.15	18		6	0.37	0.79	1.91	0.29	8
	6	0.13	0.01	2.08	0.38	13	3-71.2	1	0.08	0.01	2.39	0.32	7
	2	0.18	0.04	2.45	0.23	11		2	0.13	0.03	1.97	0.10	6
	7	0.19	0.05	1.87	0.27	17		3	0.24	0.03	1.96	0.40	11
25.5	1	0.02	0.01	1.86	0.24	14		4	0.28	0.06	1.94	0.19	15
	2	0.02	0.01	2.81	0.18	16		5	0.31	0.02	1.81	0.15	15
	3	0.04	0.01	2.55	0.28	7		6	0.36	0.03	1.67	0.02	5
	4	0.04	0.04	2.12	0.20	16		7	0.39	0.05	2.78	0.41	10
	5	0.06	0.01	1.98	0.20	9	5-127.5	1	0.07	0.03	2.35	0.20	14
	6	0.14	0.02	1.86	0.12	12		2	0.03	0.01	1.53	0.11	4
	7	0.14	0.01	2.48	0.27	5		3	0.04	0.01	2.00	0.18	8
	8	0.14	0.02	2.74	0.34	8		4	0.03	0.01	1.65	0.11	10
5–107	1	0.03	0.01	1.65	0.18	11		5	0.03	0.01	1.73	0.19	5
	2	0.06	0.02	1.98	0.32	17		6	0.05	0.01	1.52	0.34	24
	3	0.09	0.01	1.56	0.14	5							

Примечание. **Восточно-Артемовского рудопроявление:** 68 – м/з и м/з–с/з кварцевый диорит слабо серицитизированный, 52.3 и 95 – тоже умеренно–сильно серицитизированные и пиритизированные, 100 и 25.5 – серицит-кварцевые метасоматиты пиритизированные. **Саповское проявление:** 5–107, 10–87.8, 5–95 – диоритовые порфириты базокварцевые; 3–76 – эпидозит; 3–71.2 – базальт; 5–127.5 – диабаз-базальт очень сильно пиритизированный. Содержание пирита в пробах (кроме 5–127.5) не превышает 1–3 мас. %. х – среднее арифметическое, σ – квадратическое отклонение, n – количество определений в зерне.

тите из диоритоидов также варьирует в широких пределах (обычно 1.2–2.1 мас. %), обычно повышаясь в кислотных метасоматитах и от ранних генераций к поздним (табл. 5). При преобразовании диоритов в эпидозиты и эндоскарны существенной миграции фтора не наблюдается, иногда фиксируется слабый привнос. Следующий по времени процесс – кислотное выщелачивание, сопровождается значительным привносом фтора. Так, по мере усиления серицити-

зации диоритов содержание фтора в апатите из них увеличивается, достигая 3.3—4.5 мас. % в серициткварцевых метасоматитах. Заключительный этап минералообразования — сульфидизация метасоматитов, также сопровождается привносом фтора. Например, апатит из существенно сульфидных метасоматитов, образовавшихся по экзоскарнам и мраморам, содержит 1.3—2.5 мас. % фтора, то есть столько же, сколько содержит и апатит из диоритов (рис. 1).

Таблица 4. Средние содержания хлора и фтора в отдельных зернах апатита из гранитоидов Алтынайского и Артемовского массивов (мас. %)

Скв., глуб.	No	Хл	юр	Фт	ор	n	Скв., глуб.	№	Хл	юр	Фт	op	n
в метрах	зерна	X	±1σ	X	$\pm 1\sigma$	11	в метрах	зерна	X	±1σ	X	±1σ	n
80-51	1	0.18	0.01	0.95	0.09	10	566–28	1	0.06	0.02	2.74	0.18	17
	2 3	0.21	0.02	1.00	0.14	13		2	0.13	0.03	1.49	0.27	12
	3	0.26	0.01	1.25	0.10	7		3	0.23	0.05	1.95	0.21	9
	4	0.27	0.02	1.34	0.28	11		4	0.31	0.03	1.71	0.15	15
	5	0.27	0.02	1.51	0.16	16		5	0.38	0.12	1.66	0.29	23
	6	0.32	0.07	1.42	0.14	14		6	0.41	0.23	2.70	0.25	26
	7	0.48	0.12	1.27	0.20	16		7	0.54	0.07	2.16	0.23	10
239–25	1	0.05	0.01	1.67	0.20	14	199–35	1	0.00	0.00	2.25	0.15	14
	2	0.05	0.02	2.28	0.25	15		2	0.004	0.005	2.37	0.15	8 7
	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	0.19	0.01	1.46	0.26	12		3.	0.01	0.00	2.63	0.31	
	4	0.26	0.04	1.95	0.29	15		4	0.05	0.03	2.61	0.33	12
	5	0.26	0.12	3.30	0.23	14		5	0.06	0.02	3.85	0.23	15
	6	0.27	0.03	1.78	0.15	11	240–15	1	0.11	0.03	1.26	0.15	8 7
	7	0.36	0.02	1.88	0.19	16		2	0.13	0.01	1.99	0.18	
	8	0.49	0.11	2.91	0.32	11		3	0.13	0.03	2.29	0.17	15
	9	0.59	0.05	2.94	0.13	15		4	0.14	0.01	1.56	0.16	17
	10	0.61	0.03	1.95	0.12	14		5	0.19	0.03	1.59	0.25	17
563-102	1	0.06	0.03	3.56	1.82	22		6	0.21	0.03	2.22	0.20	20
	2 3	0.09	0.02	2.11	0.15	12		7	0.26	0.05	2.26	0.19	15
		0.11	0.02	1.58	0.11	17		8	0.73	0.21	1.11	0.16	14
	4	0.14	0.03	3.16	0.17	17	III	1	0.01	0.01	2.05	0.30	14
	5	0.36	0.02	1.88	0.36	10		2	0.02	0.01	3.05	0.18	16
	6	0.47	0.32	3.93	3.05	21		3	0.02	0.01	1.99	0.17	15
	7	0.82	0.04	1.47	0.15	12		4	0.02	0.01	1.75	0.23	17
	8	1.01	0.05	1.96	0.17	15		5	0.04	0.03	2.51	0.26	15
	9	1.18	0.09	1.88	0.12	10		6	0.05	0.02	2.50	0.30	15
	10	1.22	0.10	1.63	0.16	8		7	0.05	0.01	2.80	0.24	13

Примечание. Алтынайский массив: 80–51, 239–25, 563–102, 566–28 – среднезернистые амфиболовые соответственно диорит, кварцевый диорит, кварцевый диорит и гранодиорит I фазы; 199–35 – гранит II фазы. Артемовский массив: 240–15 – амфиболовый кварцевый диорит, I фаза; III – с/3–к/3 амфибол-биотитовый гранит с небольшим количеством калишпата, II фаза. x – среднее арифметическое, σ – квадратическое отклонение, n – количество определений в зерне.

Таблица 5. Содержание фтора и хлора в зернах апатита, включенных в различные минералы, мас. %

Элемент	Биотит, Амфибол*	Плагиоклаз	Калишпат	Кварц	Эпидот	Межзерновое пространство				
	кв. 3, гл. 260 м)									
F	1.68*, 1.58, 1.51*	1.96		1.29		1.66, 1.96				
C1	0.55 0.42 1.11	0.55		1.25		0.42 0.57				
	Талицкое Мо-порфировое месторождение, монцонит (скв. 74, гл. 112 м)									
F	3.53*, 3.11, 3.24*	2.84, 3.27	2.80		3.43	3.40, 3.43				

Примечание. Определения выполнены В.А. Чащухиной и В.Г. Гмырой в 1996 г.

Таким образом, уровень содержания хлора в апатите гранитоидов скорее всего не может считаться критерием их специализации на медно-порфировое оруденение. Отсутствие стабильной корреляции между концентрацией хлора в апатите гранитоидов и степенью их медно-порфировой рудоносности следует и из работ S.E Kesler и W.T. Parry, В.И. Сотникова. То же можно сказать и относительно колчеданных рудно-магматических систем, данные по которым приведены в [3]. В то же время для магнетит-скарновых месторождений, апатиты рудоносных гранитоидов которых содержат более 1.0–1.5 мас. %, роль хлора как переносчика железа очень вероятна [3]. Это подтверждается приве-

денными в настоящей статье материалами по Промежуточному магнетит-медно-скарновому месторождению, а также экспериментальными данными. Меньшие содержания хлора в апатите порфировых гранитоидов могут быть обусловлены повсеместным низко-среднетемпературным изменением последних. Как известно (экспериментальные данные I.A. Kiling и С.W. Burnham, М.А. Коржинского, J.L. Munoz), коэффициент распределения хлора между флюидом и конденсированными фазами сильно смещен в пользу флюида. К тому же он быстро возрастает с понижением температуры. Поэтому низко-среднетемпературный метасоматоз, обычно проявленный на порфировых месторожде-

ниях, должен сопровождаться существенным переходом хлора во флюид, различным в разных ситуациях. Однако, основная причина отсутствия прямой корреляции между содержанием хлора в апатите и рудоносностью порфировых гранитоидов, скорее всего, определяется тем, что хлор не является основным адендом медьсодержащих комплексных соединений при порфировом минералообразовании. Учитывая исключительно широкое распространение сульфидов в медно-порфировых и колчеданных месторождениях (сотни млн. тонн), можно, по-видимому, полагать, что ведущая роль в переносе и отложении меди принадлежит не хлоридным, а сложным гидросульфидным и сульфатным комплексам. Это подтверждается результатами современных исследований - очень высокой концентрацией серы во флюидных включениях из магматитов и гидротермалитов, что обусловлено очень

высоким коэффициентом распределения серы между флюидом и расплавом (100–500 в зависимости от фугитивности кислорода по экспериментам различных авторов).

Исследования выполнены при финансовой поддержке РФФИ (проект 09-05-00289) и ОНЗ-2.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Грабежев А.И., Белгородский Е.А.* Продуктивные гранитоиды и метасоматиты медно-порфировых месторождений. Екатеринбург: УрО РАН, 1992. 199 с.
- 2. Грабежев А.И., Чащухина В.А., Вигорова В.Г. Геохимические критерии редкометальной рудоносности гранитов. Екатеринбург: УрО АН СССР, 1987. 124 с.
- 3. *Холоднов В.В., Бушляков И.Н.* Галогены в эндогенном рудообразовании. Екатеринбург: ИГГ УрО РАН, 2002. 392 с.