—— ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

РАСЧЕТ ИЗОТОПНЫХ СМЕЩЕНИЙ ДЛЯ ЭЛЕМЕНТОВ ЛЕТУЧИХ СОЕДИНЕНИЙ ПРИ ПЕРЕХОДАХ "ГАЗ–КОНДЕНСАТ"

А. И. Малышев

В настоящее время в реконструкциях условий образования тех или иных отложений широко распространен подход (см., например, [1–5, 7, 11, 12, 15–19] и мн. др.), при котором в генетических реконструкциях используются данные об изотопии водорода, углерода, кислорода, серы и других элементов, способных образовывать легколетучие соединения. Так, например, в работе [12] приводятся данные о том, что изотопный состав С и О карбонатов вмещающих известняков и руд варьирует в пределах δ^{13} С от 2 до –4.0‰ PDB, δ^{18} O от 12 до 23.5‰ SMOW, что, по мнению авторов, указывает на наличие двух изотопных резервуаров – метаморфогенного флюида, уравновешенного с известняками, и магматогенного флюида.

При этом не учитывается то обстоятельство, что химические элементы в составе легколетучих соединений способны в эндогенных условиях неоднократно претерпевать изменения агрегатного состояния "газ-конденсат". В свою очередь, подобные переходы могут привести к ощутимым изотопным смещениям в составе образующих эти соединения элементов. Это делает существующую практику использования изотопного состава в качестве критерия генетических оценок не вполне корректной.

В частности, изотопный анализ серы применяется для выяснения источников серы в месторождениях сульфидных руд, для выяснения генезиса месторождений самородной серы, урановых и медных руд в песчаниках и для получения сведений об образовании нефти и газа. Однако с течением времени и получением новых данных об изотопном составе серы Норильских медно-никелевых месторождений стали возникать сложности с определением источника серы в этих месторождениях. Причем эти сложности отмечаются как сторонниками концепции контаминации коровой серы, так и ее противниками. В работе [6] указывается, что "отсутствие существенных различий в изотопном составе серы главных типов руд из различных участков интрузивов в Норильском районе, включая и основную массу сульфидов в экзоконтактовых ореолах, противоречит предположению о поступлении в интрузив серы из пород на месте современного залегания". В работе [14] отмечается, что "с учетом геологических данных правомерна постановка вопроса, является ли изменение изотопного соотношения следствием только одного эффекта корово-мантийного смешения изотопов или существуют иные процессы изотопного фракционирования". Рассмотрению процесса изотопной

сепарации, способного объяснить аномальный изотопный состав серы Норильских месторождений без привлечения представлений о контаминации коровой серы, и посвящена данная работа.

В зонах серной отгонки может иметь место довольно значительный эффект изотопной сепарации. Этот эффект возникает за счет различий в давлении, которое создают химические эквиваленты парообразной серы, различающиеся изотопным составом. В классической литературе, посвященной геохимии изотопов серы (например, [6]), этот эффект, как правило, не учитывается, поскольку для серы не рассматривается сама возможность переходов "газ-жидкость" в высокотемпературных условиях. Рассмотрим этот эффект более подробно.

Коэффициент разделения двухкомпонентной жидкой смеси определяется как отношение относительных концентраций компонент c₁, c₂ в паре и в жидкости [20]:

$$\alpha = \left(\frac{c_1}{c_2}\right)_{\text{пар}} / \left(\frac{c_1}{c_2}\right)_{\text{жидк}}$$

Для идеальных растворов, к которым относятся смеси изотопных молекул, коэффициент разделения равен отношению давления пара чистых компонент:

$\alpha(t) = p_1(t)/p_2(t).$

Для оценки в первом приближении эффекта изотопного разделения при переходе серы из газообразного состояния в конденсированное будем исходить из факта, что отношение давлений эквивалентных количеств молекул серы с разным изотопным составом будет пропорционально отношению их молекулярных весов:

$$p_1(t)/p_2(t) = \mu_1(t)/\mu_2(t).$$

Из-за более высокого давления молекул, включающих в себя атомы тяжелого изотопа, эти молекулы будут сильнее поглощаться конденсатом по сравнению с их более легкими аналогами. Ради простоты будем полагать, что тяжелая молекула отличается от легкой наличием одного атома ³⁴S.

При условии, если количество молекул в газообразном состоянии невелико по сравнению с их количеством в конденсированном состоянии, то есть доля D сброса серы в конденсат близка к 1, получаем выражения для изотопных соотношений в газе G и жидкости L:

$$G = \frac{S_{34}}{\frac{\mu_1}{\mu_0} (1 - NS_{34}) + (N - 1)S_{34}} u$$

$$L = \frac{L_{34}}{L_{32}} = \frac{S_{34}(G+1) - (1-D)G}{S_{32}(G+1) - (1-D)}$$

Здесь: D – доля сброса серы в конденсат; S₃₄ и S₃₂ – исходные доли соответственно тяжелого и легкого изотопов (за исходный изотопный состав серы принимается метеоритный стандарт); N – среднее число атомов в молекуле; μ_0 – молекулярный вес серы, молекулы которой состоят исключительно из атомов легкого изотопа ³²S; μ_1 – молекулярный вес серы, утяжеленной атомом изотопа ³⁴S.

При уменьшении доли конденсата жидкая фаза насыщается тяжелым изотопом и на определенном этапе возникает равновесное состояние, при котором повышенная концентрация рис. 1 тяжело-

Рис. 1. Зависимость изотопного состава серы сульфидов от глубины их залегания (а) по данным В.А. Коваленкера с соавторами [8] и результаты пересчета этих данных в область *PT*-диаграммы зон серной отгонки (б).

В скобках – число анализов для каждой точки. Горизонтальные линии показывают пределы колебаний δ^{34} S в каждой точке. При построении диаграммы использованы данные о давлении паров насыщения и критических параметрах веществ из [20, табл. 11.1–11.6, 13.4–13.6]. Для перехода от давлений насыщения парциальных паров серы к вероятным глубинам использованы данные [12] о в среднем 5-кратном превышении флюидным давлением его литостатического эквивалента. Из этой же работы [12] взяты данные о содержании серы в базитовых расплавах, использованные при построении диаграммы. го изотопа в жидкости полностью компенсирует избыточное давление молекул с более тяжелым изотопным составом. Условие этого равновесия определяется выражением

$$\frac{S_{34}(G+1) - (1-D)G}{S_{22}(G+1) - (1-D)} = 2S_{34}/S_{32} - G$$

из которого определяется равновесная доля D сбро-

са в конденсат
$$D_{\text{равновесн}} = 1 - S_{32} \frac{G+1}{2}$$

При дальнейшем уменьшении доли конденсата его изотопный состав уже не меняется, оставаясь предельно насыщенным тяжелым изотопом, тогда как в газовой фазе эффект смещения изотопных соотношений постепенно (с увеличением доли газовой фазы) затухает.

Результаты оценки эффекта изотопной сепарации при переходе "газ-конденсат" приведены в табл. 1. Как можно видеть, смещение изотопных соотношений в конденсате серы может меняться от близких к 0 значений до δ^{34} S = 20.262. Все это делает невозможным использование изотопного состава серы как критерия оценки ее источников. Более того, это легко объясняет имеющиеся аномалии в изотопном составе серы таких крупнейших сульфидных месторождений, как Норильские, без привлечения каких-либо предположений о контаминации коровой серы.

Действительно, при рассмотрении закономерностей распределения тяжелого изотопа серы в сульфидах месторождений исследователи [8] обратили внимание на то, что сульфиды, относительно обогащенные ³⁴S, залегают на больших глубинах, чем сульфиды относительно обедненные тяжелым изотопом серы. Был построен график зависимости изотопного состава сульфидов от глубины их залегания (рис. 1а). Анализ распределения δ^{34} S по площади месторождений показал отчетливое, последовательное снижение количества изотопа ³⁴S в сульфидах по восстанию ветвей интрузива в направлении от прикорневых к фронтальным их частям. Наиболее четко эта зональность проявлена в пределах северо-восточной и центральной ветвей, с которыми связано Талнахское месторождение, однако и на Октябрьском месторождении (северо-западная ветвь) во фронтальной части интрузива сульфиды относительно обеднены тяжелым изотопом.

Как можно видеть из табл. 1, при постепенном сбросе серы, точнее, как следует из таблицы, при доле сброса в конденсат $D \leq 0.5$, изотопное смещение в образующемся конденсате является функцией температуры. Это происходит постольку, поскольку в зависимости от температуры меняется среднее число атомов в молекуле серного пара – от 8 атомов в нормальных условиях до 2.78 атомов при критической температуре 1040°С. Вхождение атома тяжелого изотопа в короткую высокотемпературную молекулу приводит к более существенно-

	Daulaatha	T°C	Доля сброса в конденсат						
	Бещество	1, C	0.001	0.1	0.25	0.5	0.75	0.9	0.999
8 ³⁴ S	See	1040	<u>-0.020</u>	<u>-2.249</u>	<u>-6.746</u>	<u>-20.227</u>	<u>-20.262</u>	<u>-20.262</u>	-20.262
0.5	52.78	1010	20.262	20.262	20.262	20.262	6.762	2.254	0.020
	S ₁₆	800	-0.011	-1.250	-3.750	<u>-11.247</u>	-11.257	-11.257	-11.257
	~4.0	000	11.257	11.257	11.257	11.257	3.755	1.252	0.011
	S60	600	-0.008	-0.889	<u>-2.668</u>	-8.003	-8.008	-8.008	-8.008
	0.0		8.008	8.008	8.008	8.008	2.6/1	0.890	0.008
	S _{6.9}	400	$\frac{-0.007}{6.600}$	$\frac{-0.734}{6.600}$	$\frac{-2.202}{6.600}$	$\frac{-0.605}{6.600}$	-6.609	-6.609	-6.609
			0.009	0.009	1.002	5.074	2.204	5 077	5.077
	S _{7.4}	200	5 977	5 977	$\frac{-1.992}{5.977}$	5 977	$\frac{-5.977}{1.993}$	-5.977	-3.977
			-0.005	-0 591	-1 774	-5 320	-5 323	-5 323	-5 323
	S_8	0	5.323	5.323	5.323	5.323	1.775	0.592	0.005
	0.0	<210	-0.024	-2.707	-8.119	-24.339	-24.390	-24.390	$-\overline{24.390}$
	503	\$218	24.390	24.390	24.390	24.390	8.141	2.713	0.024
	so	<157.5	<u>-0.030</u>	<u>-3.362</u>	<u>-10.083</u>	<u>-30.224</u>	<u>-30.303</u>	<u>-30.303</u>	<u>-30.303</u>
	502	<u></u>	30.303	30.303	30.303	30.303	10.119	3.372	0.030
	HaS	<100.4	<u>-0.055</u>	<u>-6.156</u>	<u>-18.46</u>	<u>-55.291</u>	<u>-55.556</u>	<u>-55.556</u>	<u>-55.556</u>
	1120		55.556	55.556	55.556	55.556	18.578	6.189	0.056
δ18Ο	H ₂ O	≤374.15	-0.099	-11.021	-33.063	-99.175	-99.215	<u>-99.215</u>	<u>-99.215</u>
	-		99.215	99.215	99.215	99.215	33.081	24 202	0.099
	SO_3	≤218	$\frac{-0.024}{24293}$	$\frac{-2.099}{24.293}$	$\frac{-6.097}{24.293}$	$\frac{-24.291}{24.293}$	$\frac{-24.295}{8.098}$	$\frac{-24.295}{2.600}$	$\frac{-24.295}{0.024}$
			-0.030	-3360	-10.080	-30 239	-30.243	-30.243	-3024
	SO_2	≤157.5	$\frac{0.050}{30.243}$	$\frac{3.300}{30.243}$	$\frac{10.000}{30.243}$	30.243	10.082	3.361	$\frac{-30.213}{0.030}$
		-20.05	-0.043	-4.821	-14.463	-43.386	-43.393	-43.393	-43.393
		≤30.85	43.393	43.393	43.393	43.393	14.466	4.822	0.043
\$130	СЧ	<205.6	<u>-0.008</u>	<u>-0.881</u>	-2.642	<u>-7.924</u>	<u>-7.926</u>	<u>-7.926</u>	<u>-7.926</u>
0.00	C ₈ n ₁₈	≥293.0	7.926	7.926	7.926	7.926	2.642	0.881	0.008
	C-H-	<267.0	<u>-0.009</u>	<u>-1.014</u>	<u>-3.043</u>	<u>-9.130</u>	<u>-9.131</u>	<u>-9.131</u>	<u>-9.131</u>
	0/11/6		9.131	9.131	9.131	9.131	3.044	1.015	0.009
	C_6H_{14}	≤234.2	$\frac{-0.011}{10.725}$	$\frac{-1.191}{10.725}$	$\frac{-3.5/4}{10.725}$	-10.722	$\frac{-10.725}{2.576}$	-10.725	$\frac{-10.725}{0.011}$
			10.723	1 1 1 2 6	10.725	12 025	12 028	1.192	12 028
	C ₅ H ₁₂	≤196.8	12.928	$\frac{-1.430}{12.928}$	$\frac{-4.309}{12.928}$	$\frac{-12.925}{12.928}$	$\frac{-12.928}{4310}$	$\frac{-12.928}{1437}$	$\frac{-12.928}{0.013}$
	C II	-1.52.0	-0.016	-1.797	-5.390	-16.169	-16.175	-16.175	-16.175
	C_4H_{10}	≤152.0	16.175	16.175	16.175	16.175	5.393	1.798	0.016
	CII	<06.7	-0.021	-2.381	-7.143	<u>-21.426</u>	<u>-21.436</u>	-21.436	-21.436
	C ₃ H ₈	≥90. /	21.436	21.436	21.436	21.436	7.148	2.382	0.021
	C.H.	<32.3	<u>-0.031</u>	<u>-3.491</u>	<u>-10.471</u>	<u>-31.406</u>	<u>-31.428</u>	<u>-31.428</u>	<u>-31.428</u>
	C2116		31.428	31.428	31.428	31.428	10.481	3.493	0.031
	CO ₂	≤30.85	-0.022	-2.468	-7.405	<u>-22.211</u>	-22.222	-22.222	<u>-22.222</u>
	2		22.222	22.222	22.222	22.222	/.410	2.470	0.022
δ²H	H ₂ O	≤374.15	$\frac{-0.055}{52.626}$	$\frac{-3.847}{52.626}$	$\frac{-17.342}{52.626}$	$\frac{-32.023}{52.626}$	$\frac{-52.020}{17.542}$	$\frac{-52.020}{5.847}$	$\frac{-52.020}{0.053}$
			_0.020	_3 169	-9 506	_28 518	_28 518	_28 518	-28 518
	H_2S	≤100.4	$\frac{0.029}{28.518}$	$\frac{-5.105}{28.518}$	$\frac{-9.500}{28.518}$	28 518	9 506	$\frac{20.510}{3169}$	$\frac{20.310}{0.029}$
			-0.009	-0.963	-2.889	-8.667	-8.667	-8.667	-8.667
	C_8H_{18}	≤295.6	8.667	8.667	8.667	8.667	2.889	0.963	0.009
	CII	-267.0	<u>-0.010</u>	-1.097	-3.290	<u>-9.871</u>	<u>-9.871</u>	<u>-9.871</u>	-9.871
	$C_7\Pi_{16}$	≥207.0	9.871	9.871	9.871	9.871	3.290	1.097	0.010
	C.H.	<234.2	<u>-0.011</u>	<u>-1.274</u>	<u>-3.821</u>	<u>-11.463</u>	<u>-11.463</u>	<u>-11.463</u>	<u>-11.463</u>
	~6**14	r	11.463	11.463	11.463	11.463	3.821	1.274	0.011
	C ₅ H ₁₂	≤196.8	$\frac{-0.014}{12.000}$	$\frac{-1.518}{12.666}$	-4.555	-13.666	-13.666	-13.666	-13.666
	5 12		13.666	13.000	13.000	15.000	4.555	1.518	0.014
	C_4H_{10}	≤152.0	$\frac{-0.017}{16.014}$	$\frac{-1.8/9}{16.014}$	$\frac{-3.038}{16.014}$	$\frac{-10.914}{16.014}$	$\frac{-10.914}{5.638}$	$\frac{-10.914}{1.870}$	$\frac{-10.914}{0.017}$
				_2 465	_7 30/	_22 183	_22 183	_22 183	_22 183
	C ₃ H ₈	≤96. 7	$\frac{0.022}{22.183}$	$\frac{2.403}{22.183}$	$\frac{7.354}{22.183}$	22.183	7.394	2.465	0.022
			-0.032	-3.579	-10.737	-32.211	-32.212	-32.212	-32.212
	C_2H_6	≤32.3	32.212	32.212	32.212	32.212	10.737	3.579	0.032

Таблица 1. Изотопные смещения (‰) в условиях конденсации некоторых веществ

Примечание. В числителе – смещение в остаточном газе, в знаменателе – в образующемся конденсате.

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

му эффекту ее относительного утяжеления, что, в конечном счете, и приводит к более значительному эффекту изотопного смещения [9, 10]. Эта зависимость делает возможным определение по изотопному смещению той температуры, при которой происходил сброс серы в конденсат. Результаты иллюстрирует рис. 1б, где данные по изотопному смещению [8] пересчитаны на температуру и нанесены на РТ-диаграмму зон серной отгонки. Как можно видеть, закономерность В.А. Коваленкера с соавторами хорошо соответствует РТ-границе области сброса серы в высокотемпературный конденсат. Поэтому можно считать, что данные по смещению изотопного состава в сульфидной сере норильских месторождений очень хорошо соответствуют концепции серного перехвата, фактически совпадая с началом выделения основных объемов высокотемпературного конденсата флюидной серы. Все это легко объясняет имеющиеся аномалии в изотопном составе серы Норильских сульфидных месторождений без привлечения каких-либо предположений о контаминации коровой серы.

Аналогичным образом можно рассчитать возможные изотопные смещения и для других элементов, входящих в состав легколетучих соединений. Как можно видеть (табл. 1), расчетные изотопные смещения вполне сопоставимы с вариациями изотопных составов, наблюдаемых в природных обстановках. Это требует более осторожного использования данных по изотопии для элементов, способных претерпевать изотопную сепарацию при переходах "газ-конденсат" в составе летучих соединений.

Работа выполнена при поддержке по Программе № 2 ОНЗ РАН (проект № 09-Т-5-1011) и проекту 11-55-03-ИАП УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Аникина Е.В., Алексеев А.В. Минералого-геохимическая характеристика золото-палладиевого оруденения в Волковском габбро-диоритовом массиве (Платиноносный пояс Урала) // Литосфера. 2010. № 5. С. 75–100.
- 2. Артемьев Д.А., Зайков В.В. Тальк-карбонатные метасоматиты и их роль в формировании кобальтмедноколчеданного оруденения в ультрамафитах Главного Уральского разлома // Литосфера. 2009. № 1. С. 47–69.
- Грабежев А.И. Sr-Nd-C-O-H-S изотопно-геохимическая характеристика медно-порфировых флюидно-магматических систем Южного Урала: вероятные источники вещества // Литосфера. 2009. № 6. С. 66–89.

- Грабежев А.И., Краснобаев А.А. U-Pb возраст и изотопно-геохимическая характеристика Томинско-Березняковского рудного поля (Южный Урал) // Литосфера. 2009. № 2. С. 14–27.
- Грабежев А.И., Ронкин Ю.Л. Изотопы углерода, кислорода и стронция в карбонатах медно-скарновых месторождений Урала // Литосфера. 2007. № 4. С. 102–114.
- 6. *Гриненко В.А., Гриненко Л.Н.* Геохимия изотопов серы. М.: Наука, 1974. 274 с.
- Дворник Г.П. Элементы вертикальной зональности в распределении золотопорфирового оруденения в вулкано-плутонических комплексах Центрально-Алданского района // Литосфера. 2009. № 4. С. 104–107.
- Коваленкер В.А., Гладышев Г.Д., Носик Л.П. Изотопный состав серы сульфидов из месторождений Талнахского рудного узла в связи с их селеноносностью // Изв. АН СССР. Сер. геол. 1974. № 2. С. 80–91.
- 9. *Малышев А.И*. Изотопная сепарация серы в зонах высокотемпературной отгонки // Докл. АН. 2004. Т. 394, № 5. С. 669–672.
- 10. *Малышев А.И*. Сера в магматическом рудообразовании. Екатеринбург: ИГГ УрО РАН, 2004. 189 с.
- Мизенс Г.А., Кулешов В.Н., Степанова Т.А. Первые сведения об изотопном составе углерода и кислорода в каменноугольных известняках восточного склона Южного Урала // Литосфера. 2008. № 4. С. 104–110.
- Мурзин В.В., Сазонов В.Н., Ронкин Ю.Л. Модель формирования Воронцовского золоторудного месторождения на Урале (карлинский тип): новые данные и проблемы // Литосфера. 2010. № 6. С. 66–73.
- Наумов В.Б., Коваленко В.И., Дорофеева В.А. Магматические летучие и их участие в формировании рудообразующих флюидов // Геол. рудн. месторожд. 1997. Т. 39, № 6. С. 520–529.
- Петрология сульфидного магматического рудообразования / В.В. Дистлер, Т.Л. Гроховская, Т.Л Евстигнеева и др. М.: Наука, 1988. 232 с.
- Проскурнин В.Ф., Петров О.В., Гавриш А.В. и др. Раннемезозойский пояс карбонатитов полуострова Таймыр // Литосфера. 2010. № 3. С. 95–102.
- Расулов А.Т. Вариации изотопного состава кислорода в конкреционных карбонатах из верхнепалеозойского флиша Урала // Литосфера. 2009. № 1. С. 93–102.
- 17. Расулав А.Т. Источник углерода углекислого газа изотопно-тяжелых конкреционных карбонатов // Литосфера. 2010. № 2. С. 130–134.
- Седаева К.М., Рябинкина Н.Н., Кулешов В.Н. и др. Отражение Хангенбергского глобального геологического события рубежа девона и карбона в разрезах западного склона Приполярного (р. Кожим) и Южного (р. Сиказа) Урала // Литосфера. 2010. № 6. С. 25–37.
- 19. Сокерина Н.В., Зыкин Н.Н., Ефанова Л.И. и др. Условия формирования кварцевых жил золоторудных проявлений Манитанырдского района (Приполярный Урал) // Литосфера. 2010. № 2. С. 100–111.
- Физические величины. Справочник. М.: Энергоатомиздат, 1991. 1232 с.

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011