= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ЛИТОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПОРОД ВЕРХНЕГО ВЕНДА С ПРИЗНАКАМИ ВЛИЯНИЯ ПРОЦЕССОВ ПЕДОГЕНЕЗА (ОКРЕСТНОСТИ г. УСТЬ-КАТАВ)

А. В. Маслов, Д. В. Гражданкин

Изучение условий образования примитивных палеопочв, роли процессов почвообразования в эволюции процессов выветривания и формировании осадочных последовательностей позднего докембрия и реконструкция характера экосистем в докембрийских обстановках с периодическим осушением являются одними из актуальных проблем современной геологии. Однако сделано в этой области в нашей стране все еще относительно немного.

В 2008–2009 гг. нами на северной окраине г. Усть-Катав был описан фрагмент разреза ашинской серии верхнего венда (мощность 34.7 м) (рис. 1)¹, в котором наблюдается закономерное чередование пакетов песчаников и пачек алевролитов, позволяющее выделить 4 прогрессивных циклита [2]. В основании каждого из них залегает пакет (мощностью 4.25–4.80 м), сложенный зеленовато-серыми песчаниками без види-

Рис. 1. Общий вид и некоторые детали строения исследованного фрагмента разреза верхнего венда на северной окраине г. Усть-Катав.

¹ В работе Ю.Р. Беккера [1, рис. 4] рассматриваемые образования отнесены к басинской свите, а по представлениям В.И. Козлова с соавторами [3], в указанном разрезе обнажены породы зиганской свиты ашинской серии, что и показано масляной краской на ряде обнажений. U-Pb возраст цирконов из пеплового прослоя, залегающего в 15–20 м ниже описанного нами фрагмента, составляет по данным J. Meert (Университет шт. Флорида, США), 548.2 ± 7.6 млн. лет.

Рис. 2. Некоторые текстурные особенности и характер вариации окраски ряда песчаных пластов в разрезе верхнего венда на северной окраине г. Усть-Катав.

мой слоистости либо с тонкой ровной, волнистой, косоволнистой, многоэтажной косой и конволютной слоистостью, эрозионной подошвой, текстурами нагрузки и скоплениями окатанных обломков аргиллитов. Песчаники разделены прослоями и пластами зеленовато-серых, местами пятнистых (пятна светлые зеленовато-серые и тёмные коричнево-зеленовато-серые) тонкослоистых алевролитов. Пакеты песчаников перекрываются пачками зеленовато-серых тонкослоистых алевролитов с маломощными прослоями песчаников с тонкой, волнистой, косоволнистой и конволютной слоистостью; местами наблюдается многоэтажная косая слоистость. Вверх по разрезу происходит закономерное уменьшение мощностей пачек алевролитов, венчающих циклиты (от 7.1 м до 2.7 м), а начиная с четвертого циклита окраска алевролитов становится красно-коричневой, при этом в составе пакетов песчаников появляются палеопочвы. Их макроскопическими диагностическими признаками

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

			-	-														
Компонен- ты/образцы	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O _{3общ.}	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	ппп	ГМ	CIA	Na ₂ O/ K ₂ O	K ₂ O/ Na ₂ O	Al ₂ O ₃ / SiO ₂	#	##
m-09-08-3	61.13	0.8	16.63	7.71	0.08	3.14	0.53	0.50	4.89	0.15	5.30	0.41	70	0.10	9.78	0.27	0.22	1.84
m-09-08-2	60.42	0.79	16.87	7.27	0.08	3.05	0.58	0.50	5.27	0.17	5.50	0.41	69	0.09	10.54	0.28	0.21	1.80
m-09-08-1	60.44	0.81	17.06	6.69	0.08	3.21	0.76	0.40	5.26	0.31	5.40	0.41	69	0.08	13.16	0.28	0.23	1.77
m-09-08-4	61.53	0.77	17.15	6.97	0.09	3.25	0.49	0.50	4.83	0.13	5.20	0.41	71	0.10	9.66	0.28	0.22	1.89
m-09-08-5	59.10	0.82	17.46	8.15	0.07	3.36	0.59	0.40	5.44	0.14	5.30	0.45	70	0.07	13.61	0.30	0.23	1.78
m-09-08-6	62.38	0.77	16.91	6.41	0.08	3.16	0.45	0.40	4.87	0.13	5.00	0.39	71	0.08	12.18	0.27	0.21	1.90
m-09-08-7	60.10	0.79	16.59	8.34	0.07	3.18	0.46	0.40	5.02	0.12	5.10	0.43	70	0.08	12.55	0.28	0.22	1.83
m-09-08-8	59.51	0.78	17.28	8.08	0.06	3.2	0.46	0.40	5.42	0.12	5.30	0.44	70	0.07	13.56	0.29	0.21	1.82
m-09-08-9	62.37	0.78	17.36	5.88	0.06	3.16	0.49	0.40	5.18	0.12	5.10	0.39	71	0.08	12.94	0.28	0.21	1.88
m-09-08-10	60.84	0.78	16.86	7.75	0.06	3.03	0.48	0.40	5.07	0.13	5.10	0.42	71	0.08	12.66	0.28	0.21	1.88
m-09-08-11	62.46	0.78	17.44	5.82	0.07	3.13	0.48	0.40	5.00	0.13	5.00	0.39	72	0.08	12.5	0.28	0.21	1.94
m-09-08-12	59.85	0.79	16.89	8.23	0.06	3.08	0.47	0.50	5.16	0.14	5.10	0.43	70	0.10	10.31	0.28	0.21	1.84
m-09-08-13	60.66	0.70	16.94	8.64	0.09	3.77	0.48	0.40	3.66	0.13	4.60	0.43	76	0.11	9.14	0.28	0.25	2.04
m-09-08-14	60.44	0.78	16.79	8.15	0.08	3.49	0.49	0.40	4.44	0.14	4.90	0.43	73	0.09	11.11	0.28	0.24	1.90
m-09-08-15	60.88	0.79	16.76	8.04	0.06	2.96	0.52	0.40	5.25	0.17	5.00	0.42	70	0.08	13.14	0.28	0.21	1.83
m-09-08-16	60.35	0.81	16.69	7.99	0.07	3.21	0.56	0.50	4.97	0.19	5.00	0.42	70	0.10	9.94	0.28	0.23	1.80
m-09-08-17	62.15	0.75	16.01	8.26	0.07	3.37	0.46	0.30	4.41	0.13	4.90	0.40	72	0.07	14.71	0.26	0.24	1.88
m-09-08-18	59.84	0.79	16.85	8.53	0.06	2.99	0.53	0.40	5.35	0.17	5.20	0.44	69	0.07	13.39	0.28	0.21	1.82
m-09-08-19	60.23	0.79	16.31	8.75	0.06	2.93	0.53	0.30	5.07	0.18	5.10	0.43	70	0.06	16.9	0.27	0.21	1.85
m-09-08-20	62.83	0.67	17.04	7.31	0.06	2.79	0.44	0.30	4.17	0.13	4.40	0.40	75	0.07	13.89	0.27	0.19	2.21
m-09-08-21	60.32	0.78	16.59	8.39	0.06	2.75	0.61	0.30	5.05	0.22	5.10	0.43	70	0.06	16.83	0.28	0.20	1.90
m-09-08-22	60.55	0.77	17.68	7.53	0.05	2.85	0.57	0.30	5.05	0.19	5.10	0.43	72	0.06	16.84	0.29	0.19	2.02
m-09-08-23	61.6	0.81	17.32	6.42	0.05	2.73	0.5	0.40	5.07	0.12	5.70	0.40	71	0.08	12.69	0.28	0.19	1.99
m-09-08-24	60.06	0.84	18.27	6.66	0.04	2.33	0.43	0.40	5.34	0.04	5.90	0.43	72	0.07	13.35	0.30	0.15	2.15
Медиана	60.50	0.79	16.90	7.87	0.07	3.14	0.49	0.40	5.06	0.14	5.10	0.42	71	0.08	12.81	0.28	0.21	1.88
CO	1.01	0.04	0.47	0.88	0.01	0.29	0.07	0.07	0.42	0.05	0.31	0.02	2	0.01	2.20	0.01	0.02	0.11
Минимум	59.1	0.67	16.01	5.82	0.04	2.33	0.43	0.30	3.66	0.04	4.40	0.39	69	0.06	9.14	0.26	0.15	1.77
Максимум	62.83	0.84	18 27	8 75	0.09	3 77	0.76	0.50	5 44	0.31	5 90	0.45	76	0.11	16 90	0.30	0.25	2.21

Таблица 1. Химический состав (мас. %) и значения некоторых индикаторных отношений в алевроаргиллитах верхнего венда из разреза на северной окраине г. Усть-Катав

Примечание. CO – стандартное отклонение, $\# - (CaO+MgO)/Al_2O_3$, $\#\# - Al_2O_3/(CaO+MgO+Na_2O+K_2O)$.

являются стратификация на почвенные горизонты, плитчато-блоковая отдельность песчаников и алевролитов и текстуры деформации, а также характерная темная красновато-серая окраска алевролитов с голубовато-серыми пятнами оглеевания [2]. Особый интерес представляют текстуры деформации (рис. 2): в отличие от сейсмодислокаций, текстур нагрузки, конволютной слоистости и следов обезвоживания, деформации в песчаниках затрагивают только верхнюю часть пластов, постепенно угасая вниз, представляя собой своеобразные антиформные складки.

Аналогичные текстуры деформации наблюдаются в подпочвенных горизонтах гелисолей, где антиформные складки обусловлены криотурбацией, а также широко распространены в ископаемой летописи перигляциальных обстановок осадконакопления [5 и др.]. Реликтовая слоистость и характер брекчирования позволяют рассматривать палеопочвы верхнего венда как энтисоли (недиференцированные почвы на рыхлых наносах), инсептисоли (сборная группа слаборазвитых почв, не имеющих четких диагностических признаков), либо недоразвитые гелисоли [2].

В исследованном разрезе выделены два типа палеопочв [2] – "юрюзанский" и "катавский" педотипы. В верхних частях пластов песчаников в юрюзанском педотипе наблюдается блоковая отдельность с реликтами слоистости, а на боковых поверхностях блоковой отдельности сохранились отпечатки арумбериеморфных организмов. Катавский педотип приурочен к верхним частям пластов песчаников темной красновато-серой окраски с текстурами деформаций; здесь также наблюдается блоковая отдельность с арумбериями. Указанные педотипы характеризуют недифференцированный примитивный почвенный профиль.

В настоящем сообщении проанализированы особенности изменения некоторых литохимических параметров (ГМ, СІА, Al₂O₃/SiO2, Na₂O/K₂O, (CaO + MgO)/Al₂O₃ и Al₂O₃/(CaO + MgO + Na₂O + K₂O) алевроаргиллитов в самой верхней (примерно 15-метровой) части данного разреза (непосредственно под песчаниками такатинской свиты девона) и некоторые другие черты их химического состава. Содержания основных петрогенных оксидов в песчаниках и алевроаргиллитах рассматриваемого нами фрагмента разреза верхнего венда определены в ИГГ УрО РАН рентгеноспектральным флуоресцентным методом на СРМ-18 (аналитики – Н.П. Горбунова, Л.А. Татаринова, В.П. Власов и Г.С. Неупокоева) (табл. 1 и 2).

		. ,		1		1 1	1	1		
Компоненты/образцы	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O _{3общ}	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅
m-09-08-26	70.03	0.60	12.43	6.65	0.14	2.75	0.52	1.70	1.86	0.13
m-09-08-25	62.95	0.62	14.26	7.57	0.21	3.17	1.80	1.70	2.45	0.12
m-09-08-27	74.61	0.49	11.02	5.20	0.16	2.06	0.55	2.30	1.17	0.09
m-09-08-28	65.70	0.57	13.34	7.92	0.09	3.31	0.36	2.40	2.41	0.13
m-09-08-29	70.60	0.51	12.98	6.43	0.09	2.78	0.58	0.30	2.38	0.10
m-09-08-30	69.82	0.57	13.14	6.71	0.07	2.82	0.42	0.40	2.46	0.13
m-09-08-31	71.84	0.51	12.47	6.17	0.07	2.80	0.40	0.40	2.21	0.13
m-09-08-33	76.50	0.43	11.86	3.19	0.06	2.39	0.38	0.40	1.90	0.12
m-09-08-34	68.84	0.54	13.64	7.17	0.06	2.97	0.34	0.40	2.45	0.12
m-09-08-35	70.15	0.61	13.66	6.16	0.05	2.46	0.45	0.40	2.52	0.14
m-09-08-36	75.11	0.48	12.92	3.86	0.03	1.77	0.33	0.40	2.28	0.09
m-09-08-37	65.87	0.57	14.50	8.27	0.05	2.54	0.47	0.40	2.60	0.11
Медиана	70.09	0.56	13.06	6.54	0.07	2.76	0.44	0.40	2.39	0.12
CO	4.04	0.06	0.98	1.54	0.05	0.44	0.40	0.83	0.41	0.02
Минимум	62.95	0.43	11.02	3.19	0.03	1.77	0.33	0.30	1.17	0.09
Максимум	76.50	0.62	14.50	8.27	0.21	3.31	1.80	2.40	2.60	0.14

Таблица 2. Химический состав (мас. %) песчаников верхнего венда в разрезе на северной окраине г. Усть-Катав

Сопоставление состава алевроаргиллитов указанного фрагмента с составом фанерозойского кратонного глинистого сланца (ФКГС, [6]) выявило существенное обеднение их оксидами кальция и натрия (соответственно, (CaO_{образец}/CaO_{ФКГС})_{медиана} и (Na₂O_{образец}/Na₂O_{ФКГС})_{медиана} составляют 0.38 ± 0.05 и 0.36 ± 0.06) при некотором обогащении Fe₂O_{3общ.}, MgO и K₂O. Содержания оксидов кремния, титана и алюминия в проанализированных нами алевроар-

Рис. 3. Содержания основных петрогенных оксидов в алевроаргиллитах, нормированные на состав ФКГС (а) и самого нижнего в исследованном фрагменте разреза образца тонкозернистых терригенных пород (б).

гиллитах сопоставимы с содержаниями их в ФКГС (рис. 3a). Нормирование составов алевроаргиллитов на состав самого нижнего в исследованном нами фрагменте образца тонкозернистых обломочных пород особых изменений не демонстрирует – медианные содержания подавляющей части петрогенных оксидов составляют 0.93 (CaO)–1.04 (K₂O) от их содержания в "базальном" образце и только для оксидов фосфора и натрия это несколько не так (рис. 3б).

Медианная величина гидролизатного модуля (ГМ¹) в алевроаргиллитах исследованного фрагмента составляет 0.42 ± 0.02 . Для ФКГС величина ГМ составляет 0.38. Какая-либо определенная тенденция в изменении значений ГМ снизу вверх по разрезу не наблюдается (рис. 4*a*).

Для CIA² медианное значение в алевроаргиллитах составляет 71 \pm 2 (CIA_{ФКГС} = 68). Если исключить из анализа пробы, отобранные в 7.27 и 12.47 м выше подошвы рассматриваемого фрагмента, то основываясь на рис. 46, можно сделать вывод и об отсутствии какой-либо определенной тенденции в изменении химического индекса изменения снизу вверх по разрезу.

Отношение Al₂O₃/SiO₂ является, согласно [8], индикатором количества глинистых минералов и степени подзолистости почв. Для большинства различных типов почв оно варьирует от 0.1 до 0.3, но, например, в песчаных Spodosols ~0.0, а в ФКГС – 0.16. В нашем случае величина Al₂O₃/SiO_{2медиана} также равна 0.16 \pm 0.01. Определенной тенденции в изменении данного параметра снизу вверх по иссле-

¹ ГМ – гидролизатный модуль [4], рассчитываемый как (Al₂O₃ + TiO₂ + Fe₂O₃ + FeO + MnO)/SiO₂ по массовым процентам оксидов.

 $^{^{2}}$ CIA-индекс химического изменения [7], рассчитываемый по формуле $100 \times (Al_{2}O_{3})/(Al_{2}O_{3} + CaO^{*} + Na_{2}O + K_{2}O)$, где содержания оксидов выражены в молекулярных количествах.

Рис. 4. Вариации ГМ (а), CIA (б), Al_2O_3/SiO_2 (в), Na_2O/K_2O (г), $(CaO + MgO)/Al_2O_3$ (д) и $Al_2O_3/(CaO + MgO + Na_2O + K_2O)$ (е) в алевроаргиллитах верхней части исследованного нами фрагмента разреза верхнего венда. На рисунке *е* кроме медианного значения показана также величина $\pm 1\sigma$.

дованному нами фрагменту разрезу в целом нет, но в его самых верхних 2-3 м значения Al_2O_3/SiO_2 несколько растут (рис. 4в).

Индикатором салинизации/засолонения/осолонения почв является отношение Na_2O/K_2O [8]. Медианное его значение для алевроаргиллитов изученного фрагмента разреза составляет 0.12 ± 0.02 (для ФКГС – 0.45); вверх по разрезу можно видеть некоторое снижение величины Na_2O/K_2O (от 0.16– 0.17 до 0.09–0.11) (рис. 4г).

Показателем кальцификации палеопочв считается отношение (CaO + MgO)/Al₂O₃; в почвах без значительного развития карбонатных стяжений и нодулей величина его составляет, как правило, менее 2, тогда как в противоположной ситуации может достигать >10. Для ФКГС (CaO + MgO)/Al₂O₃ = 0.46. Медианная величина отношения (CaO + MgO)/Al₂O₃ в алевроаргиллитах исследованного нами фрагмента разреза верхнего венда примерно в два раза ниже, чем в ФКГС. Снизу вверх указанное отношение в алевроаргиллитах снижается от ~0.54–0.59 до ~0.37–0.45. В 7.27 м выше подошвы разреза значение (CaO + MgO)/Al₂O₃ в алевроаргиллитах достигает величины 0.62 (рис. 4д).

Наконец, отношение $Al_2O_3/(CaO + MgO + Na_2O + K_2O)$ рассматривается как показатель степени концентрации относительно нерастворимых (глинистых) компонентов по сравнению с компонентами растворимыми, высвобождаемыми при процессах гидролиза (Ca²⁺, Mg²⁺, Na⁺ и K⁺). Палеопочвы, подвергшиеся интенсивным процессам выветривания (такие как, например, Oxisols и Ultisols), характеризуются весьма высокими, достигающими иногда почти 100 ед., значениями $Al_2O_3/(CaO + MgO + Na_2O + K_2O)$, тогда как большинство других имеют почти на два порядка более низкие величины данного индикаторного отношения [8]. Последнему случаю как раз и отвечают исследованные нами алевроаргиллиты. Медианное значение $Al_2O_3/(CaO + MgO + Na_2O)$

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

+ K_2O) составляет для них 1.12 ± 0.08 ; снизу вверх по разрезу наблюдается некоторый рост величины данного индикаторного отношения (от 1.10-1.14 до 1.32-1.38) (рис. 4e).

Если нормировать содержания основных петрогенных оксидов в песчаниках на содержания их в фанерозойском кратонном песчанике (ФКП, по [6]) то мы увидим, что при сопоставимом в целом зна-

Рис. 5. Содержания основных петрогенных оксидов в песчаниках, нормированные на состав ФКП (а) и самого нижнего в исследованном фрагменте разрезе образца песчаников (б).

Рис. 6. Изменение снизу вверх по фрагменту разреза верхнего венда на северной окраине г. Усть-Катав содержаний ряда петрогенных оксидов в песчаниках, нормированных на их содержания в базальном образце песчаников.

чениях SiO₂, песчаники верхнего венда существенно обеднены оксидом кальция, но в то же время заметно обогащены по сравнению с ФКП оксидами титана, алюминия, Fe₂O_{3общ}, натрия, калия и фосфора (рис. 5а). По сравнению же с составом самого нижнего в исследованном разрезе образца песчаников (рис. 5б) каких-либо принципиальных отличий практически нет, за исключением того, что два образца обладают существенно более низкими содержаниями Na₂O, чем остальные.

По сравнению с самым нижним в исследованном нами разрезе образцом песчаников снизу вверх в песчаниках нет какой-либо устойчивой тенденции к росту или снижению значений SiO₂ и Fe₂O_{3общ}. (рис. 6а, в), тогда как для оксидов алюминия и калия, напротив, вырисовывается некоторая тенденция к обогащению ими более высоких горизонтов разреза (рис. 6б, г).

Суммируя все сказанное выше можно сделать вывод, что какого-либо существенного изменения химический состав алевроаргиллитов и песчаников в исследованном нами фрагменте разрезе верхнего венда не претерпел, и, как и было впервые установлено при полевых исследованиях, здесь мы имеем дело преимущественно с недифференцированными примитивными палепочвами. Свойственные песчаникам данного разреза деформационные текстуры характерны для подпочвенных горизонтов гелисолей, а также описаны в отложениях субаридных перигляциальных обстановок. Слоистость и характер фрагментации дают возможность позиционировать палеопочвы указанного разреза как недиференцированные почвы на рыхлых наносах (энтисоли), слаборазвитые почвы без четких диагностических признаков (инсептисоли), либо как недоразвитые гелисоли [2]. Подтверждением сказанному являются и наблюдаемые в ряде шлифов песчаников и алевропесчаников своеобразные плазменные структуры.

Исследования выполнены при финансовой поддержке Программы № 15 Президиума РАН (проект УрО РАН 09-П-5-1011).

СПИСОК ЛИТЕРАТУРЫ

- 1. Беккер Ю.Р. Позднедокембрийская моласса Южного Урала. Л.: Недра, 1968. 160 с.
- Гражданкин Д.В., Наговицын К.Е., Маслов А.В. Недифференцированные примитивные палеопочвы в разрезах верхнего рифея и венда Южного Урала // Актуальные проблемы литологии. Екатеринбург: ИГГ УрО РАН, 2010. С. 84–86.
- Козлов В.И., Сергеева Н.Д., Абрамова А.Н. Разрез "Устькатавский" // Путеводитель геологической экскурсии по разрезам палеозоя и верхнего докембрия западного склона Южного Урала и Приуралья. Уфа: ИГГ УНЦ РАН, 1995. С. 141–162.
- 4. *Юдович Я.Э.* Региональная геохимия осадочных толщ. Л.: Наука, 1981. 276 с.
- Benn D.I., Prave A. Subglacial and proglacial glacitectonic deformation in the Neoproterozoic Port Askaig Formation, Scotland // Geomorphology. 2006. V. 75. P. 266–280.
- Condie K.C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales // Chem. Geol. 1993. V. 104. P. 1–37.
- Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites // Nature. 1982. V. 299. P. 715–717.
- 8. *Retallack G.J.* A colour giude to paleosols. Chichester: John Wiley & Sons, 1997. 175 p.