— МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ МАГНЕЗИАЛЬНОГО МЕТАСОМАТОЗА В СРЕДНЕРИФЕЙСКИХ МАГНЕЗИТАХ УДЕРЕЙСКОЙ ПРОВИНЦИИ

М. Т. Крупенин, А. Б. Кузнецов*

Решение генетических вопросов образования месторождений кристаллического магнезита имеет как теоретический, так и прикладной аспект, поскольку современной электрометаллургии необходим низкожелезистый магнезит для получения периклаза с высокими диэлектрическими свойствами [11]. Основой периклазовой индустрии России является Южно-Уральская провинция, где на базе Саткинской группы месторождений производится до 90% данной продукции. В то же время, месторождения более высококачественного магнезита (одни из лучших в мире, на уровне месторождений провинции Ляонин, КНР [1]) известны в Удерейской провинции, приуроченной к рифейским отложениям Енисейского кряжа. В данной работе нами представлены первые данные по изучению изотопного состава стронция, углерода и кислорода в магнезитах месторождений Верхотуровское, Голубое и Екатерининское и вмещающих доломитах. Кроме того, впервые проведено сравнение изотопно-геохимических характеристик месторождений магнезита Енисейского кряжа и Южно-Уральской провинции.

Изучение Rb-Sr систематики магнезитов и околорудных доломитов проводилось в валовой карбонатной составляющей образца после его растворения в 2.5N HCl при $t = 60^{\circ}$ C. Концентрации Rb и Sr определялись методом изотопного разбавления с применением смешанного индикатора ⁸⁷Rb+⁸⁴Sr. Изотопный анализ при определении концентраций и определение изотопного состава Sr проводилось на многоколлекторном масс-спектрометре Finnigan МАТ 261 в режиме одновременной регистрации ионных токов всех изотопов. Измерение отношения ⁸⁷Sr/⁸⁶Sr в стандартном карбонате стронция Национального Института стандартов и технологий США NIST SRM-987 в период работы дало значение 0.71027 ± 0.00001 (n = 9). Определение изотопного состава С и О в образцах карбонатных пород проводилось из одной вытяжки на модернизированном масс-спектрометре МИ-1201В по стандартной методике [3]. Аналитическая погрешность измерений изотопного состава углерода не превышала 0.2‰ (1о), а кислорода 0.4‰ (1о).

Геологические условия размещения магнезитовых месторождений Енисейского кряжа очень близки к таковым для Южно-Уральской провинции [6]. Они также приурочены к доломитовому горизонту (аладыинская свита) в отложениях среднего рифея, также имеют пластообразную форму, но явные признаки метасоматического развития по слоистым вмещающим доломитам. Особенностью Каменской структурно-формационной зоны в восточной части Енисейского кряжа, вмещающей магнезитовое оруденение, является полное отсутствие магматических образований [2], что не позволяет рассуждать о постмагматической природе магнезиальных метасоматических флюидов. В то же время, рядом исследователей [4] и нашими полевыми наблюдениями [6] отмечается широкое развитие специфических карбонатных брекчий в составе рудовмещающей доломитовой толщи аладыинской свиты. Среди существующих представлений об их происхождении эти брекчии иногда рассматриваются как результат постдиагенетического обрушения пород в результате растворения эвапоритовых минералов. Выполненные ранее прецизионные исследования Cl-Br-Na систематики магнезитов и вмещающих карбонатных пород показали, что флюидные включения в магнезитах и вмещающих доломитах месторождений Енисейского кряжа отличаются пониженными значениями Cl/Br и Na/Br, что свойственно эвапоритовым рассолам [9]. По сравнению с ними состав флюидных включений в известняках нижележащей свиты карточки соответствует морской воде.

В ходе изучения Rb-Sr систематики магнезитов и вмещающих карбонатных пород Енисейского кряжа установлено, что концентрации Rb и Sr и изотопный состав Sr в выделенных генерациях похожи на таковые в соответствующих породах Южно-Уральской провинции (рис. 1, табл. 1). Содержание стронция в доломитах находится на уровне 34-43 г/т, в магнезитах – 0.8–9.3 г/т, а в известняках оно повышается до 254 г/т. Минимальные значения отношения ⁸⁷Sr/⁸⁶Sr характерны для глинистых известняков свиты карточки (0.7085) и вышележащих доломитов аладыинской свиты (в среднем 0.7074). Около магнезитовых залежей величина этого отношения возрастает до 0.7146. В магнезитах отношение ⁸⁷Sr/⁸⁶Sr значительно варьирует от 0.7107 до 0.7218, составляя в среднем 0.7146 (8 проб). Таким образом, маг-

^{*}Институт геологии и геохронологии докембрия РАН, г. Санкт-Петербург

Рис. 1. Соотношение радиогенного стронция и стронция в известняках (1), доломитах (2) и магнезитах (3) Енисейского кряжа.

Рис. 2. Соотношение радиогенного стронция и Fe₂O₃ в доломитах (1 и 2) и магнезитах (3 и 4) Енисейского кряжа.

Месторождения: 1 и 3 – Екатерининское, 2 и 4 – Верхотуровское и Голубое.

незиты сформировались под действием растворов, которые взаимодействовали с терригенными толщами и приобрели избыточное, относительно рифейских карбонатных пород количество радиогенного ⁸⁷Sr. Это объясняется химической агрессивностью этих растворов, поскольку по составу флюидных включений мы реставрировали их рассольную эвапоритовую природу [9]. Наиболее высокое отношение ⁸⁷Sr/⁸⁶Sr установлено для анкеритов Екатерининского месторождения (0.7219), образующих линейную зону мощностью до 2 м, секущую магнезиты и доломиты. Это соответствует более позднему развитию железистых карбонатов (анкеритов и сидеритов), обогащенных радиогенным ⁸⁷Sr. В то же время, распределение железа в карбонатных поро-

Рис. 3. Распределение изотопов углерода, кислорода и радиогенного стронция в профиле метасоматический магнезит – вмещающий доломит в южном борту карьера Екатерининский, Киргитейская группа месторождений Енисейского кряжа. 1 – доломит слоистый и брекчированный, 2 – магнезит крупнокристаллический полосчатый серый, 3 – магнезит гигантокристаллический гнездовый белый, 4 – точки опробования (соответствуют пробам Ekt-9-1...7).

дах и магнезитах не пропорционально концентрациям железа (рис. 2), как это было установлено для магнезитовых месторождений Южно-Уральской провинции [7]. Наименее железистые магнезиты и доломиты встречаются в Екатерининском месторождении (Fe₂O₃ на уровне 0.03-0.11%). Более высокие концентрации железа (до 0.09-0.27%) обнаружены в магнезитах и вмещающих доломитах Верхотуровского и Голубого месторождений. Однако эти концентрации совпадают с содержанием Fe во вмещающих доломитах Саткинского месторождения, которые являются наименее железистыми в Южно-Уральской провинции. Вероятно, это объясняется низкими концентрациями железа в осадочном резервуаре формирования магнезиальных флю-

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

ofmanau	Питонория	Маатаражнанна		Sr D/T	\$180 % DDD	\$13C % DDD	⁸⁷ Sr/ ⁸⁶ Sr
ооразец	ЯИТОЛОГИЯ	месторождение	ПWO,70	51, 171	0 '0,700 PDB	0 C, 700 PDB	измеренное
Ekt-9-1	магнезит гз светло-серый	Екатерининское	0.3	2.2	-21.5	-1.3	0.7145
	полос						
Ekt-9-2	магнезит гз белый гнезд	Екатерининское	0.2	2.6	-22	-1.1	0.7136
Ekt-9-3	магнезит гз серый полос	Екатерининское	0.3	3.7	-20.8	-1.2	0.7142
Ekt-9-4a	магнезит гз серый	Екатерининское	0.4	9.3	-18	-1.2	0.7156
Ekt-9-4b	доломит мз слоист-брек	Екатерининское	0.7	43.5	-13.7	-0.2	0.7146
Ekt-9-5	доломит мз слоист-брек	Екатерининское	0.5	34.3	-11.5	0.2	0.7125
Ekt-9-6	доломит мз слоист-брек	Екатерининское	0.6	39.9	-11.5	1.2	0.7159
Ekt-9-7	доломит мз слоист-брек	Екатерининское	0.5	36.2	-12.7	1.7	0.7077
Ekt-5	доломит мз слоист	Екатерининское	0.8	41.3	-8.9	1.6	0.7078
Ekt-14a	Fe-доломит, + гетит, бурый	Екатерининское	2.7		-14.8	-1.7	0.7219
Bep-2	известняк глинистый серый	Верхотуровское	23.9	234	-9.8	0.7	0.7088
		(свита карточки)					
Bep-3	известняк глинистый серый	Верхотуровское	19.2	254	-10.4	0.6	0.7082
		(свита карточки)					
Bep-4	доломит мз брек серый	Верхотуровское	1	34.1	-15.9	0.7	0.7082
Bep-6	доломит мз слоист серый	Верхотуровское	1	42.6	-11.8	1.9	0.7067
Bep-5b	магнезит гз розовый	Верхотуровское	0.6	6.6	-12.4	0	0.7107
Bep-7	магнезит гз белый	Верхотуровское	0.1	0.8	-12.6	-0.1	0.7112
C1/998	магнезит гз белый	Голубое	0.1	1.3	-14.9	-0.2	0.7149
Гол-1	магнезит гз белый	Голубое	0.2	1.9	-15.8	0.5	0.7218
Гол-3	доломит мз брек серый	Голубое			-9.1	1.3	0.7067

Таблица 1. Состав б¹³О, б¹⁸О и ⁸⁷Sr/⁸⁶Sr в магнезитах и вмещающих карбонатных породах Енисейского кряжа

Примечание. Структура: гз – гигантозернистая (< 10 мм), мз – мелкозернистая (0.2–0.5 мм); текстура брек – брекчиевая, слоист – слоистая, полос – полосчатая.

идов в пределах Енисейского кряжа. Возможно, это были эвапоритовые рассолы, не содержавшие железа, а во вмещающих терригенных породах, с которыми агрессивные рассолы контактировали на этапе дорудной миграции, его также было недостаточно. Однако, более поздние растворы, вероятно сформированные в другом резервуаре, или при иных параметрах, имели повышенные концентрации железа, что привело к образованию наложенных на магнезиты зон анкеритов.

В профиле, отобранном субпараллельно слоистости вмещающих доломитов и вкрест несогласно залегающей метасоматической магнезитовой залежи на Екатерининском месторождении (рис. 3) отмечается закономерное изменение отношения 87 Sr/ 86 Sr и значений δ^{13} C и δ^{18} O. Около непосредственного контакта с магнезитом отношение ⁸⁷Sr/⁸⁶Sr в доломите варьирует в пределах 0.7125-0.7159, однако на удалении 10 м от контакта оно снижается до типовых значений во вмещающих доломитах – 0.7077. В указанном профиле отмечается постепенное облегчение изотопного состава кислорода в доломитах по мере приближения к контакту с магнезитом на расстоянии до 0.4 м (δ^{18} O от -8.9 до -13.7‰) и далее в вглубь самого магнезитового тела $(\delta^{18}O \text{ от} - 18 \text{ до} - 21.5\%)$. В белом гигантозернистом магнезите из гнезда (проба Ekt-9-2 в этом профиле) наблюдается самое низкое значение $\delta^{18}O$ (-22‰). Такое закономерное поведение объясняется, вероятно, температурным фракционированием при метасоматозе в результате внедрения горячих рассолов в доломитовую толшу. Соответственно, в данном профиле наблюдается и облегчение изотопного состава углерода в доломитах по мере приближения к контакту с магнезитом от +1.7 до -0.2‰. Значения δ^{13} С в магнезитах стабильны (1.1...-1.3‰). В целом в магнезитах изотопная система углерода и кислорода полностью уравновешена, колебания очень незначительные, что указывает на одноактный и достаточно мощный процесс перекристаллизации, определивший качественное изотопное фракционирование. Аналогичный тренд облегчения изотопного состава углерода в магнезитах относительно вмещающих доломитов с узкими рамками вариаций наблюдается и в месторождениях Верхотуровское и Голубое (рис. 4). Это можно также объяснять температурным эффектом внедрения горячих рассолов [10], поскольку фоновые для карбонатных отложений аладьинской свиты среднего рифея значения составляют +1...+3‰ [13]. Кроме того, определенное значение для увеличения изотопно легкого углерода в метасоматических магнезитах может иметь генерация аутигенной углекислоты, образующейся в процессе катагенетического окисления органического вещества при миграции гидротермальных флюидов.

Обращает на себя внимание компактное размещение полей магнезитов в координатах $\delta^{13}C-\delta^{18}O$ относительно широкого поля распределения доломитов (см. рис. 2–4). Особенно хорошо это видно на примере Екатерининского месторождения, магнезиты которого образуют небольшую область, нахо-

Рис. 4. Распределение стабильных изотопов кислорода и углерода в карбонатных породах и магнезитах Енисейского кряжа.

1 – глинистые известняки свиты карточки; 2–8 – аладьинская свита: 2–4 – доломиты Екатерининского (2), Верхотуровского (3) и Голубого (4) месторождений; 5–7 магнезиты соответственно тех же месторождений; 8 – анкерит Екатерининского месторождения.

дящуюся за пределами сравнительно широкого поля распределения вмещающих доломитов аладыинской свиты. Это указывает на одноактность формирования магнезитов и достижение определенного равновесия при прохождении гидротермального магнезитового метасоматоза. Компактные неперекрывающиеся между собой поля размещения магнезитов трех изученных месторождений в координатах б¹³С-б¹⁸О испытывают изменчивость по изотопному составу кислорода. Самый изотопно тяжелый кислород (среднее –12.5‰) в Верхотуровском месторождении, менее тяжелый (среднее –15.4‰) в месторождении Голубое, и самый легкий (среднее -20.6‰) в Екатерининском. Указанные месторождения расположены соответственно с юго-востока на северо-запад на расстоянии до 30 км, следуя по неширокой полосе развития карбонатных отложений аладыинской свиты в юго-западном периклинальном замыкании Дашкинской синклинали [5, 6]. Большинством исследователей потеря ¹⁸О связывается с изотопным фракционированием, определяемым температурой кристаллизации [12, 14, 15]. В этом случае, можно предполагать, что в северном направлении увеличивалась температура магнезиального метасоматоза в карбонатных породах аладьинской свиты. Подтверждением этого может

быть анализ изотопного состава магнезитов самого северного в Удерейской провинции Тальского магнезитового месторождения.

Первые результаты поведения стабильных изотопов углерода и кислорода, а также изотопного состава стронция в магнезитах и вмещающих карбонатных породах провинции Енисейского кряжа показывают их принципиальное сходство с аналогичными объектами в Южно-Уральской провинции, изученными нами ранее [8]. Магнезиты обеих провинций демонстрируют одинаковую тенденцию деплетирования тяжелых изотопов, в большей степени кислорода, в меньшей углерода в процессе гидротермального метасоматоза. При этом в координатах стабильных изотопов углерода и кислорода магнезиты типовых месторождений изученных провинций образуют компактные, как правило, неперекрывающиеся, группы, что указывает на одноактное их формирование при определенных для каждого месторождения физико-химических параметрах метасоматического флюида (рис. 5). Магнезитовые месторождения Енисейского кряжа демонстрируют более высокотемпературные условия образования по сравнению с большинством месторождений Южно-Уральской провинции, кроме Исмакаевского и Кызылташского.

Рис. 5. Распределение стабильных изотопов кислорода и углерода в магнезитах различных месторождений Южно-Уральской провинции (1–6) и Енисейского кряжа (7–9).

1 – Саткинское, 2 – Бакальское, 3 – Исмакаевское, 4 – Кызылташское, 5 – Семибратское, 6 – Катав-Ивановское, 7 – Верхо-туровское, 8 – Голубое, 9 – Екатерининское.

Изотопный состав С и О кристаллических магнезитов Южно-Уральской и Удерейской провинций соответствует кристаллическим магнезитам Veitsch-type из месторождений Австрии и Словакии [15], Австралии, Китая [15, 17]. Кристаллические магнезиты из этого типа месторождений на графике в координатах $\delta^{13}C - \delta^{18}O$ образуют локальное поле (соответственно -3...+6 и -8...-22‰), отличающее их от магнезитов других генетических типов: криптокристаллических штокверков зоны гипергенеза ультрабазитов, пластов тонкозернистого магнезита в современных щелочных и мезозойских озерах на гипербазитах (Динариды), тонкокристаллической вкрапленности магнезитов в лагунных и себховых доломитах (лагуна Куронг, Австралия), тальк-магнезитовых метасоматитов по серпентинитам и карбонатитов (рис. 6). От магнезитов прочих генетических типов и осадочных карбонатных пород морского генезиса кристаллические магнезиты отличаются слабыми вариациями тяжелого изотопа углерода и заметным недостатком ¹⁸О. Интерпретация полученной картины неоднозначна: она рассматривается как результат изотопного фракционирования в процессе метасоматической перекристаллизации и зависит от степени метаморфизма [15], так и определяется особенностями водной среды, в которой осаждался магнезит [17]. Слабые вариации изотопного состава углерода в магнезитах, практически совпадающие с вмещающими и современными морскими карбонатами, указывают на незначительную роль аутигенной углекислоты в составе магнезиальных растворов, унаследованный характер анионной части магнезитов. Следовательно, можно предположить, что состав анионной части рудных флюидов был не углекислый, а преимущественно сульфатно-хлоридный. Доказательством в пользу гидротермально-метасоматического образования кристаллического магнезита (по нашим данным 100-300°С) является то, что тальк-магнезитовые породы зон среднетемпературной гидротермально-метасоматической переработки в гипербазитовых массивах (типа талькмагнезитовых пород Шабровского месторождения) образуют в рассмотренных координатах компактное поле со значениями $\delta^{18}O = -20...-24\%$ и $\delta^{13}C = -7...-1$ ‰. Облегчение изотопного состава кислорода связано с повышенной температурой метасоматической перекристаллизации. Изотопно легкий относительно кристаллических магнезитов углерод в карбонатитах и тальк-карбонатных породах связан, вероятно, с ювенильным источником углекислоты для карбонатного метасоматоза.

Существуют и кристаллические магнезиты, непосредственно связанные со слабо преобразованРис. 6. Диаграмма δ^{13} С- δ^{18} О для магнезитов различных генетических типов (по [17] с изменениями).

1 - тонкозернистые магнезиты из современных отложений содовых озер на гипербазитах (Греция, Сербия, Турция); 2 – карбонатиты; 3 – кристаллические магнезиты в эвапоритовых доломитах туломозерской свиты ятулия (PR₁), Карелия; 4 - кристаллические магнезиты Касвассаграбен (в эвапоритовых доломитах пермотриаса Австрии; 5 – современные морские карбонаты; 6-криптокристаллические магнезиты в коре выветривания гипербазитов; 7 - кристаллические магнезиты в карбонатных толщах докембрия и палеозоя; 8 – метасоматические тальк-магнезитовые породы по серпентинитам; 9 – тонкая магнезитовая вкрапленность в эвапоритовых доломитах лагуны Куронг (Австралия); 10 - провинции кристаллического магнезита: 1 - Аделаида (рифей южной Австралии), 2 - Вайч тип (палеозой Австрии), 3 - рифей южного Урала, 4 - рифей Енисейского кряжа, 5 - Ойги-Астуретта (палеозой Испании), 6 - Рам-Джангла (рифей южной Австралии), 7 - Та-Ши-Чао (рифей северо-востока Китая).

ными эвапоритовыми толщами: мелкокристаллические магнезиты в эвапоритовых доломитах туломозерской свиты ятулия (PR₁), Карелия [16]; кристаллические магнезиты Касвассаграбен (в эвапоритовых доломитах пермо-триаса Австрии [17]. На рис. 6 они занимают закономерное положение в области современных морских карбонатов. Относительное обогащение тяжелым изотопом кислорода по сравнению с другими провинциями кристаллического магнезита можно объяснить ранним катагенетическим образованием данных типов при

относительно низкотемпературных условиях метасоматоза. Резкое утяжеление изотопного состава углерода доломитов и магнезитов туломозерской свиты ятулия связано с геологическим феноменом положительной экскурсии δ^{13} С в отложениях этого возраста и широким развитием мелководных замкнутых эвапоритовых водоемов [16].

Таким образом, месторождения кристаллических магнезитов в различных регионах мира, приуроченные к карбонатных толщам докембрия и палеозоя, по данным изучения стабильных изотопов углерода и кислорода, являются результатом низко-среднетемпературного магнезиального метасоматоза. Sr изотопные характеристики магнезитов предполагают участие флюидов, сформированных за пределами карбонатных резервуаров. Наиболее вероятным источником флюида, как показывает изучение Cl-Br-Na систематики флюидных включений в магнезитах ряда провинций, могли быть высокомагнезиальные рассолы эвапоритового происхождения.

Выполняется при поддержке гранта РФФИ 09-05-00964а и Интеграционного проекта "Реконструкция источников поступления вещества в осадочные бассейны Северной Евразии: обстановки седиментогенеза, потенциальная рудоносность".

СПИСОК ЛИТЕРАТУРЫ

- Генетические типы, закономерности размещения и прогноз месторождений брусита и магнезита / П.П. Смолин, А.И. Шевелев, Л.П. Урасина и др. М.: Наука, 1984. 317 с.
- Главнейшие магнезитовые месторождения / Л.П. Урасина, Т.А. Другалева, П.П. Смолин. М.: Наука, 1993. 157 с.
- Гостенбергер Х., Херман М. КН-2 новый ¹³C/¹²C и ¹⁸O/¹⁶O стандарт для масс-спектрометрического анализа геологических проб // Геохимия. 1984. № 12. С. 1939–1940.
- Качевский Л.К. Приложение к полевому семинару "Рифейские отложения Красноярского края". Красноярск: ЗАО Красноярскгеофизика, 2008. 44 с.
- Кириченко Г.И., Кузнецов Ю.А., Основные черты геологического строения Енисейского кряжа // Геология СССР. Т. 15. М.: Госгеолтехиздат, 1961. С. 89–105.
- Крупенин М.Т., Маслов А.В., Козлов П.С. Сравнение геологических условий размещения магнезитовых месторождений Южно-Уральской и Удерейской провинций // Ежегодник-2003. Екатеринбург: ИГГ УрО РАН, 2004. С. 272–280.
- Крупенин М.Т., Кузнецов А.Б. Sг-изотопная характеристика магнезитов и вмещающих карбонатных пород, нижний рифей, Южно-Уральская провинция // Литосфера. 2009. № 5. С. 56–71.
- Крупенин М.Т., Кузнецов А.Б., Крылов Д.П., Смирнова. Е.С. Изотопные индикаторы магнезиального метасоматоза в нижнерифейских отложениях Южно-Уральской провинции // Ежегодник-2009. Тр. ИГГ УрО РАН. Вып. 157. 2010. С. 146–152.

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

- Крупенин М.Т., Прохаска В. Cl-Br-Na Систематика в магнезитах и вмещающих карбонатных породах Удерейской провинции (Енисейский кряж) // Актуальные вопросы литологии: мат-лы 8 Уральского литологического совещания. Екатеринбург: ИГГ УрО РАН, 2010. С. 169–171.
- Омото Х., Рай Р.О. Изотопы серы и углерода // Геохимия гидротермальных рудных месторождений. М.: Мир, 1982. С. 403–450.
- 11. Сиваш В.Г., Перепелицин В.А., Митюшов Н.А. Плавленый периклаз. Екатеринбург: Уральский рабочий, 2001. 584 с.
- *12.* Фор Г. Основы изотопной геологии. М.: Мир, 1989. 590 с.
- 13. Хабаров Е.М., Пономарчук В.А, Морозова И.П., Травин А.В.. Изотопы углерода в рифейских карбонат-

ных породах Енисейского кряжа // Стратиграфия. Геол. корреляция. 1999. Т. 7, № 6. С. 20–40.

- Friedman I., O'Neil J.R. Compilation of stable isotope fractionation factors of geochemical interest // US. Geol. Surv. Prof. Paper. 1977. 440 p.
- 15. Kralik M., Aharon P., Schroll E., Zachmann V. Carbon and oxygen isotope systematics of magnesites in magnesite formation. Monograph Ser. Mineral Deposits. Magnesite. 1989. № 28. P. 207–224.
- Melezhik V.A., Fallick A.E., Medvedev P.V., Makarikhin V.V. Palaeproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments // Sedimentology. 2001. V. 48. P. 379–397.
- Schroll E. Genesis of magnesite deposits in the isotope geochemistry // Boletim Paranaense de Geociencias. Curitiba-Parana: Editira UFPR, 2002. V. 50. P. 59–68.