МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ =

К ВОПРОСУ О ГЕНЕЗИСЕ ЗОНЫ ОКИСЛЕНИЯ ГАЙСКОГО МЕДНОКОЛЧЕДАННОГО МЕСТОРОЖДЕНИЯ

А. И. Малышев

По мнению В.В. Зайкова и Н.Б. Сергеева [3], зональный профиль измененных пород, обнажающихся в карьере 3 Гайского месторождения полностью соответствует классической схеме [8]. В соответствии с этой схемой зона гипергенеза Гайского месторождения начала формироваться в обстановке общего воздымания территории. Общая последовательность гипергенных преобразований сульфидных руд определяется связанным с темпами эрозии постепенным и одновременным "наступлением" границ гидрогеологических зон и, соответственно, фронта выветривания на рудное тело. В соответствие с этим "наступлением" при образовании зонального профиля "...верхние зоны наследуют особенности геологического строения и вещественного состава нижних зон. В зоне гипергенеза серноколчеданной залежи пирит переходит в серу самородную, затем образуются ярозит, гематит и так далее. Изменяются и текстуры руд: вверх по профилю массивные сульфидные руды сначала сменяются дезинтегрированными остаточными образованиями, затем - тонкослоистыми "сыпучками", которые в свою очередь постепенно теряют слоистость и приобретают массивный облик с развитием вертикальной трещиноватости" [3, с. 329]. Эти признаки, по мнению исследователей, свидетельствуют об образовании верхних зон профиля за счет нижних.

Однако все эти выводы ставит под большой вопрос небольшая деталь, о которой неоднократно упоминают сами исследователи – присутствие в разрезе измененных пород моноклинной модификации самородной серы. Как установлено исследованиями Н.П. Юшкина [1, с. 182-197; 10], ключевым признаком кристалломорфологических отличий вулканогенной и экзогенной серы является присутствие в вулканогенных образованиях моноклинной серы или наличие псевдоморфоз ромбической серы по моноклинной. Этот факт легко объясняется условиями образования серы: ромбическая сера может кристаллизоваться из паров серы во всем диапазоне температур ниже температуры кристаллизации, тогда как первоначально бесконечно-линейные цепи моноклинной серы образуются лишь при кристаллизации ее полимерного расплава и способны существовать только в условиях довольно высоких температур, так как при температурах ниже 95.6°C устойчивой становится ромбическая модификация. Помимо этого часть из признаков, свидетельствовавших, по мнению исследователей [3], об образовании верхних зон профиля за счет нижних, не получила подтверждения при собственных полевых исследованиях автора этих строк, проведенных в 2000-2001 и 2008 гг. В частности, не находит подтверждения вышеприведенный тезис о постепенном приобретении тонкослосоистыми "сыпучками" массивного облика с одновременными потерей слоистости и приобретением трещинноватости. Напротив, распространены контакты "внедрения" сернокварцевых сыпучек в вышележащие брекчированные кварциты. Более того, во всех изученных разрезах измененных пород, обнаженных в бортах карьера, имеются хорошо выраженные полосы постепенных переходов от вмещающих сульфидизированных кварцитов к брекчированным кварцитам зон измененных пород. Следовательно, есть все основания считать, что брекчированные кварциты, перекрывающие горизонт серно-кварцевых сыпучек в зонах измененных пород, представляют собой вмещающие первоначально сульфидизированные кварциты, подвергнувшиеся интенсивному динамическому воздействию и метасоматическим изменениям. Одного этого обстоятельства вполне достаточно для того, чтобы полностью исключить вероятность реализации схемы В.В. Зайкова и Н.Б. Сергеева - экзогенные процессы не способны обеспечить возникновение на месте ранее якобы существовавшего рудного тела достаточно мощный горизонт вмещающих кварцитов, пусть даже брекчированных и метасоматически измененных.

Эти обстоятельства делают необходимой иную генетическую интерпретацию зональности разреза измененных пород, вскрытых в бортах карьера 3 Гайского месторождения. А именно: вся совокупность вышеизложенных данных соответствует закономерной эволюции РТ-условий в эндогенном рудообразующем флюиде при его переходе из РТ-области сульфидообразования через РТ-линию барьера водной нейтрализации в РТ-область повышенной кислотности водных растворов и, далее, в РТ-область преимущественно нейтрализованных водных растворов.

Динамическая активность флюидного потока обусловливает интенсивное брекчирование вмещающих кварцитов как на пути его преимущественного перемещения, так и в окаймлении флюидопроводящей зоны. Брекчирование вмещающих кварцитов, сопутствующее зонам измененных пород в ка-

Температура, °С	Давление насыщен- ных паров, Па	Среднее число ато- мов в молекуле га- зообразной серы			
0	4.7423E-06	8.00			
50	5.4671E-03	7.85			
100	8.3675E-01	7.70			
150	2.6842E+01	7.55			
200	2.8064E+02	7.40			
250	1.6463E+03	7.28			
300	6.4700E+03	7.15			
350	1.9430E+04	7.03			
400	4.9560E+04	6.90			
450	1.0932E+05	6.68			
500	2.1314E+05	6.45			
550	3.8275E+05	6.23			
600	6.4908E+05	6.00			
650	1.0629E+06	5.65			
700	1.6806E+06	5.30			
750	2.5841E+06	4.95			
800	3.8246E+06	4.60			
850	5.5460E+06	4.20			
900	7.8378E+06	3.80			
950	1.0880E+07	3.40			
1000	1.4626E+07	3.00			
1040	1.8200E+07	2.78			

Таблица 1. Давление насыщенных паров серы и среднее число атомов в молекуле ее газа в зависимости от температуры [5, 9, 12]

Примечание. В последней строке – критические параметры серы.

Таблица 2. Давление насыщенных паров селена [11]

T,°C	Р, Па	Источник данных
62.45	1E-07	[9, табл. 11.2]
79.65	1E-06	[9, табл. 11.2]
98.65	1E-05	[9, табл. 11.2]
119.85	1E-04	[9, табл. 11.2]
143.65	1E-03	[9, табл. 11.2]
170.45	1E-02	[9, табл. 11.2]
200.95	1E-01	[9, табл. 11.2]
235.95	1E+00	[9, табл. 11.2]
276.55	1E+01	[9, табл. 11.2]
339.75	1E+02	[9, табл. 11.2]
361.35	2E+02	[9, табл. 11.3]
392.35	5E+02	[9, табл. 11.3]
417.95	1E+03	[9, табл. 11.3]
445.55	2E+03	[9, табл. 11.3]
485.65	5E+03	[9, табл. 11.3]
519.15	1E+04	[9, табл. 11.3]
555.65	2E+04	[9, табл. 11.3]
609.35	5E+04	[9, табл. 11.3]
654.95	1E+05	[9, табл. 11.3]
1316.85	3.85E+07	[9, табл. 13.4]

Примечание. В последней строке – критические параметры селена.

рьере 3 Гайского месторождения, наглядно демонстрирует результат этой избыточности давления [7], необходимой для перемещения флюидов.

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

Условия формирования серно-селеновых отложений в рассматриваем разрезе представляют особый интерес, так как предоставляют возможность дать количественную оценку РТ-условий в момент формирования этих отложений. Селен по химическим и физическим свойствам близок к сере и обычно в незначительном количестве в виде примеси входит в состав сульфидных минералов колчеданных месторождений. Что касается отложений самородного селена, то столь значительные его скопления, скорее всего, обусловлены примерно теми же причинами, что и образование отложений самой самородной серы.

Устойчивое и одновременное сосуществование конденсата обоих веществ возможно лишь при том условии, что парциальные давления их паров соответствуют условиям насыщения для каждого из этих веществ. Теоретически совместная конденсация серы и селена возможна при всех температурах ниже минимальной из критических температур для этих веществ. Поскольку критическая температура селена – 1317°С, серы – 1040°С, то совместный конденсат может существовать при T < 1040°C. Концентрационные соотношения селена и серы в составе конденсатообразующей газовой смеси, необходимые при определенной температуре для одновременного образования конденсата обоих веществ, можно рассчитать на основании давлений их насыщенных паров и молекулярного состава этих веществ в газовой смеси. Из соотношения парциальных давлений, $p_{Se} / p_S = (m_{Se} / \mu_{Se}) : (m_S / \mu_S)$, следует искомое соотношение для масс $m_{se}/m_s = (\mu_{se}/\mu_s) \times (p_{se}/p_s)$, где *p* – парциальное давление, m – масса и µ – молекулярный вес, соответственно, селена и серы в газообразном состоянии. Давление насыщенных паров серы и среднее число атомов в молекуле газообразной серы в зависимости от температуры приведены в табл. 1, а сведения о давлении насыщенных паров селена – в табл. 2.

Молекулярный состав газообразного селена и его критические параметры хорошо изучены [11]. В целом среднее число атомов в молекуле газообразного селена меняется аналогично сере, достигая в критической точке при температуре 1317°С значения 2.30 атомов в молекуле. С ростом температуры возрастает количество Se₂, с уменьшением - ведущую роль в молекулярном составе газообразно селена начинают играть шестиатомные молекулы Se₆. Поскольку имеющиеся данные представлены в графическом виде [11, fig. 2] и, в связи с этим, не очень удобны для практического использования в расчетах, то были выполнены 4 варианта пересчета соотношений давлений насыщенных паров селена и серы на соотношения массовых концентраций этих элементов, обусловливающих сосуществование конденсатов самородных серы и селена. Эти варианты определялись следующими предположениями о молекулярном составе селена: І - состав газообразного селена

Рис. 1. Расчетные зависимости (штрих-пунктирные линии) от температуры массовых отношений Se/S в газовом потоке, при которых возможно совместное образование и сосуществование конденсатов самородных серы и селена.

На общем виде зависимостей (слева) прямоугольником показан фрагмент зависимостей, в детальном виде приведенный на графике справа; римскими цифрами показан вариант пересчета (см. текст) для каждой зависимости; горизонтальными пунктирными линиями показаны имеющиеся данные по природным соотношениям масс Se/S, справа на каждой из этих линии показан порядковый номер соответствующего определения в табл. 3; черными кружками показаны пересчения расчетных концентраций с линиями природных соотношений Se/S, температурные показатели которых также приведены в табл. 3.

Таблица 3. Природные соотношения масс Se/S и соответствующие этим соотношениям расчетные температуры со
вместного сосуществования конденсатов селена и серы в газовом потоке

No	Currienung	Иотонник	So/S	Температура,°С			
ле Ситуация		источник	36/3	Ι	II	III	IV
1	1 месторождение Блява		2.971E-04	162.67	170.19	184.45	208.84
2	2 месторождение Блява		2.773E-04	160.38	167.86	181.97	206.62
3	3 месторождение Сафьяновка		2.114E-04	151.61	158.90	172.43	197.62
4	4 гранито-гнейсовый слой континентальной коры		1.333E-04	137.45	144.48	157.11	180.57
5	5 месторождение Гай, халькопиритовая фация		1.140E-04	132.12	139.75	152.13	175.04
6	6 верхняя часть континентальной коры		1.071E-04	130.00	137.92	150.21	172.90
7	7 месторождение Сафьяновка		9.375E-05	125.48	133.54	146.09	168.34
8	8 осадочный слой континентальной коры		7.742E-05	119.18	127.08	140.32	164.97
9	9 месторождение Блява		6.967E-05	115.81	123.59	137.19	161.53
10	месторождение Гай, халькопиритовая фация	[6]	6.086E-05	111.57	119.22	132.63	154.21
11	1 месторождение Гай, борнитовая фация		5.132E-05	106.35	113.87	126.89	148.88
12	2 месторождение Гай, борнитовая фация		4.041E-05	99.26	106.59	119.10	141.60
13	13 месторождение Гай, борнитовая фация		2.416E-05	84.93	91.83	103.37	124.90

меняется в зависимости от температуры аналогично составу газообразной серы, то есть рассматривались соотношения масс $Se_{x(T)}/S_{x(T)}$; II–IV – состав газообразного селена представлен исключительно шести-четырех-и двухатомными молекулами соответственно (рассматриваются соотношения масс $Se_6/S_{x(T)}$, $Se_4/S_{x(T)}$ и $Se_2/S_{x(T)}$).

Полученные зависимости от температуры массовых соотношений Se/S, при которых возможно совместное сосуществование конденсатов серы и селена в газовом потоке, приведены на рис. 1. Как можно видеть, диапазон изменения соотношений селена и серы, обеспечивающих одновременную устойчивость конденсатов обоих веществ, составляет около 8 порядков. В свою очередь, наблюдаемые в различных ситуациях реальные природные соотношения селена и серы (табл. 3) имеют разброс на порядок величины и, соответственно, могут обеспечить совместное сосуществование конденсатов серы и селена в сравнительно узком интервале температур – от 85 до 209°С (см. рис. 1, табл. 3).

Эти температурные параметры процесса очень хорошо соответствуют геологическим наблюдениям и выводам о температурных условиях образования серно-селеновых отложений в разрезе зонально измененных пород Гайского месторождения. В этой связи напомним: 1) по данным [3], в составе серных отложений присутствует в качестве второ-

степенного минерала образующаяся из серного расплава моноклинная сера, что ограничивает снизу температуру образования соответствующих отложений температурой плавления моноклинной серы (119.3°С); 2) об этом же свидетельствуют признаки сплавления частиц серы между собой и их приплавления к обломочному кварцу вплоть до формирования плотных серно-селено-кварцевых отложений, в которых сера играет роль цемента; 3) однако невысокая частота встречаемости моноклинной серы и широкое распространение несплавленной мелкообломочной серы в серно-кварцевой сыпучке свидетельствует о незначительном превышении температуры плавления серы при образовании этих отложений; 4) полное отсутствие признаков сплавления в чисто селеновых порошкообразных агрегатах и, в связи с этим, их повышенная сыпучесть свидетельствуют о том, что температура образования серно-селеновых отложений была ниже температуры плавления селена (217°С по [9]). Среднее значение температуры по всем полученным и приведенным в табл. 3 ее значениям составляет 143.88°С. Ради определенности именно это значение и будет использоваться ниже в ходе рассуждений и расчетов.

При вышеуказанной температуре давление насыщения для паров серы составляет 15.49 Па при среднем числе атомов в молекуле 7.57, давление насыщенных паров селена – 1.022×10^{-3} Па. Данное соотношение давлений, в зависимости от используемых при расчете предположений о молекулярном составе селена дает 4 варианта весовых соотношений Se/S, соответствующих диапазону природных соотношений этих веществ: І – 1.6×10^{-4} , II – 1.3×10^{-4} , III – 8.6×10^{-5} , VI – 4.3×10^{-4} .

Однако из нашей модели следует, что в период формирования серно-селеновых отложений в разрезе измененных пород Гайского месторождения в состоянии насыщенных паров находились не только сера и селен, но и вода. Именно начало сброса водного конденсата обусловило выход состояния флюидного потока на РТ-барьер водной нейтрализации и, вследствие этого, обеспечило возможность существования серы и селена в нейтральной форме в виде самостоятельных веществ. Давление насыщенных паров воды [9, табл. 11.1] для рассматриваемой температуры составляет 4.028 × 10⁵ Па. Это более чем на 4 порядка превышает давление насыщения для паров серы при этой же температуре и в газовом потоке соответствует соотношению масс $S_{7,57}/H_2O = 0.0517\%$.

Тем не менее, давление водных паров в 4 атм является явно дифицитным относительно видимой части разреза измененных пород, составляющих по высоте около 70 м. На этой глубине одно только гидростатическое давление водного столба должно обеспечивать давление 7 атм (плюс 1 атм за счет атмосферного давления). Для литостатического давления в предположении о средней плотности пород в 2200 кг/м³ получаем давление около 15.4 атм, а для активного перемещения эндогенного флюидного потока требуется в среднем 5-кратное превышение литостатического давления, что для данного разреза около 77 атм. О том, что такое повышенное давление действительно имело место косвенно свидетельствует интенсивное брекчирование кварцитов в зонах измененных пород (на пути движения флюидного потока) и быстрое затухание брекчирования по бортам этих зон (по периферии флюидного потока).

Напомним, что ранее, при построении различных моделей сульфидного и оксидного рудообразования, мы исходили из предположения о том, что пары воды доминируют в составе высокотемпературных эндогенных флюидов. Однако это предположение справедливо для флюидов лишь в области температур, превышающих критическую температуру воды. Для более низких температур данное предположение теряет справедливость, так как существенная доля исходного водного потенциала может быть сброшена в конденсат в более высокобарических условиях.

Условия образования серно-селеновых отложений в разрезе измененных пород Гайского месторождения относятся именно к этому случаю. Исходя из рассматриваемой температуры процесса 143.88°С, при формировании РТ-условий барьера нейтрализации здесь проявляли геохимическую активность водные пары, ремобилизованные из более глубоких зон сброса водного конденсата. Точно также в более глубоких зонах по пути следования флюидного потока был сброшен и основной потенциал конденсата серы, что, собственно, следует из самого существовании колчеданных рудных тел месторождения.

В этих условиях в составе эндогенных газов начинает доминировать диоксид углерода. Как известно, этот газ, наряду с парами воды и газами группы серы, является основной составляющей вулканических и магматических эманаций. При рассматриваемой температуре 143.88°С этот газ находится в надкритическом состоянии ($T_{\kappa p} = 30.85^{\circ}C$), и его доля в составе эндогенных газов прогрессивно повышается по мере сброса в конденсат исходного потенциала серы и избыточных паров воды, достигая иногда 90 и более процентов [4]. Наряду с диоксидом углерода, парами воды, серы и селена в составе газового потока могут присутствовать сероводород (остаточный первичный и вновь образующийся в зоне кислотности при образовании серной кислоты), а также водород (первичный и образующийся в ходе реакций нейтрализации кислот).

В свою очередь дифицитность давления водных паров повышает однозначность высказанного выше предположения о том, что венчающие разрез отложения кварцитового галечника с гематитовым цементом, могли образоваться в результате деятельности поверхностного гидротермального выхода. Если полагать, что дефицит давления водных паров компенсировался преимущественно за счет диоксида углеводорода, то для 5-кратного превышения литостатического давления 70-метровой толщи перекрывающих пород требуется чтобы углекислый газ обеспечивал 94.7% от общего давления газовой смеси в 77 атм. В весовых соотношениях это составляет примерно 97.8 мас. %, что вполне соответствует наблюдениям за составом газовых выходов в природных обстановках [4].

Таким образом, образование серно-селеновых отложений в разрезе измененных пород произошло на углекислотной (мофетной) стадии затухания газогидротермального процесса, обусловившего образование всего Гайского медно-колчеданного месторождения. При этом мощность перекрывающих серно-селеновые отложения пород под воздействием поверхностной эрозии, судя по всему, изменилась незначительно. Естественно, что эти выводы ни коим образом не могут быть распространены на условия формирования месторождения в целом. В этом плане достаточно лишь указать, что сульфидизированные кварциты, являющиеся вмещающими породами для серноколчеданной залежи 2 и расположенных над нею серно-селеновых отложений, сами по себе являются метасоматитами. Их связь с рудообразующими процессами в пределах месторождения сомнений не вызывает, но по времени они сформировались на более ранних стадиях и верхняя часть их разреза могла быть уничтожена поверхностной эрозией до формирования серно-селеновых отложений.

Работа выполнена при поддержке по Программе № 2 ОНЗ РАН (проект № 09-Т-5-1011) и проекту 11-55-03-ИАП УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Вулканические серные месторождения и некоторые проблемы гидротермального рудообразования / ред. Г.М. Власов. М.: Наука, 1971. 360 с.
- Григорьев Н.А. Распределение химических элементов в верхней части континентальной коры. Екатеринбург: УрО РАН, 2009. 382 с.
- 3. Зайков В.В., Сергеев Н.Б. Зона гипергенеза серноколчеданной залежи Гайского месторождения (Южный Урал) // Геол. рудн. месторожд. 1993. Т. 35, № 4. С. 320–332.
- 4. *Макдональд Г.* Вулканы. М.: Мир, 1975. 431 с.
- 5. *Малышев А.И.* Сера в магматическом рудообразовании. Екатеринбург: ИГГ УрО РАН, 2004. 189 с.
- Молошаг В.П., Викентьев И.В. Благородные металлы в рудах колчеданных месторождений Урала // Геодинамика, магматизм, метаморфизм и рудообразование. Екатеринбург: ИГГ УрО РАН, 2007. С. 810–839.
- Наумов В.Б., Коваленко В.И., Дорофеева В.А. Магматические летучие и их участие в формировании рудообразующих флюидов // Геол. рудн. месторожд. 1997. Т. 39, № 6. С. 520–529.
- Смирнов С.С. Зона окисления сульфидных месторождений. М.–Л.: Изд-во АН СССР, 1955. 331 с.
- 9. Физические величины: справочник. М.: Энергоатомиздат, 1991. 1232 с.
- Юшкин Н.П. Минералогия и парагенезис самородной серы в экзогенных месторождениях. Л.: Наука, 1968. 187 с.
- Rau H. Vapour composition and critical constants of selenium // J. Chem. Thermodynamics. 1974. № 6. P. 525–535.
- 12. *Rau H., Kutty T.R.N., Guedes de Carvalho J.R.F.* High temperature saturated vapour pressure of sulphur and the estimation of its critical quantities // J. Chem. Thermodynamics. 1973. № 5. P. 291–302.