МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЙ

АНАЛИТИЧЕСКИЙ КОМПЛЕКС НА БАЗЕ TIMS TRITON PLUS И MC SF ICP-MS NEPTUNE PLUS В ИНСТИТУТЕ ГЕОЛОГИИ И ГЕОХИМИИ УРО РАН

С. Л. Вотяков, Ю. Л. Ронкин, О. П. Лепихина, Г. А. Лепихина, М. В. Стрелецкая, Н. Г. Солошенко

Изотопная геология, как самостоятельное научное направление в науках о Земле, формирует основу для решения многих фундаментальных и прикладных геологических проблем, в том числе исследований ранней аккреции Земли и ее последующей эволюции (формирования коры, дифференциации мантии, эволюции системы кора-мантия и так далее). Развитие этого научного направления предполагает эволюцию как теоретического (интуитивного) подхода при интерпретации изотопных данных применительно к геологическим парадигмам, так и совершенствование аналитических методик на основе использования новейшей аппаратуры; необходимым условием получения значимых результатов в изотопной геологии является наличие современной приборной аналитической базы. Основной инструмент экспериментальной изотопной геологии - прецизионный масс-спектрометр, совмещенный со средой пробоподготовки для анализа (суперчистой химией). Заметим, что стоимость организации последней может быть сопоставимой или даже превышать стоимость масс-спектрометра.

В ИГГ УрО РАН изотопная геология и геохимия как самостоятельное научное направление развивалась с семидесятых годов ХХ века на основе использования ряда отечественных масс-спектрометров (типа МИ-13-05, -09, -11, -20 и МИ-12-01), сменяющих друг друга по мере их модернизации. Однако известно, что и в то время характеристики этих приборов значительно уступали своим зарубежным аналогам. В девяностые годы работы по изотопии строились на основе кооперации с зарубежными коллегами и с лабораториями ВПК, в которых были развернуты современные зарубежные масс-спектрометры Element-2, Axiom, МАТ-262 и Triton. В 2010 г. Институтом были получены, а затем проведены работы по физическому пуску двух прецизионных масс-спектрометров TIMS Triton Plus и MC FS ICP/MS Neptune Plus. Эти приборы являются последними разработками фирмы Thermo Fisher Scientific [7]. Заметим, что оба прибора – первые, установленные в российских аналитических подразделениях, работающих в области наук о Земле. Масс-спектрометры размещены в специализированных помещениях, оборудованных системами кондиционирования воздуха, газо- и электроснабжения для их эксплуатации, пространственно совмещенных с производственным стерильным помещением высокого класса чистоты, предназначенным для пробоподготовки геологического материала, в единый изотопный модуль. В настоящем информационном сообщении приводится ряд характеристик данного модуля.

ИЗОТОПНЫЙ МОДУЛЬ

Общая площадь модуля около 120 м² (рис. 1); по степени чистоты рабочей атмосферы, помещения ранжированы на три зоны: черную (коридор), серую (тамбуры к. 119, 121Б) и белую (к. 117, 119, 121А). Macc-спектрометры TIMS Triton Plus и MC FS ICP/MS Neptune Plus размещены в к. 119, 117 площадью 20 и 17 м², соответственно. Основания полов в комнатах - "плавающие", несоприкасающиеся со стенами по периметру; покрытие полов полированный керамогранит с герметизацией швов полимерным составом, представляющим собой легко моющееся твердое покрытие, что особенно важно на этапе монтажа и установки приборов. Уровень вибраций оснований, который контролировался соответствующими измерениями, менее 10 мкм. Стены – оштукатуренные с укреплением специальными составами и покрытием алкидной эмалью ПФ115. Потолок – гладкое потолочное покрытие из пластиковых сандвич-панелей. Двери из алюминиевого профиля с остеклением. Окна – двойной стеклопакет из полированного стекла. Приточная вентиляция для TIMS Triton Plus – через фильтры Н14 типа (НЕРА) из к. 117, в межпотолочном пространстве которой расположена основная приточная установка на базе модульной системы Breezart. Поддержание постоянной температуры около 21°С осуществляется с помощью кондиционеров, оборудованных зимними комплектами, что обеспечивает бесперебойное функционирование вне зависимости от сезона. Для работ, связанных с нанесением вещества на ленту ионного источника TIMS Triton Plus, используется шкаф LamSystems с вертикальным нисходящим потоком воздуха, дополнительно очищенного с использованием двухступенчатой системы фильтрации (фильтры G4, НЕРА Н14). В к. 119 имеется тамбур, в пределах которого расположена установка для охлаждения электромагнита и турбонасоса, а также компрессор для питания шлюза и установка для тренировки катодов. Оборудование для очистки приточного воздуха в к. 117

ВОТЯКОВ и др.

Рис. 1. Схема размещения оборудования в изотопном модуле института, объединяющего три комнаты (117, 119, 121) и коридор.

1 – вытяжные шкафы, 2 – шкаф с ламинарным потоком воздуха, 3 – стол лабораторный, 4 – стол весовой, 5 – весы аналитические, 6 – шкаф для посуды, 7 – мойка, 8 – компьютер, 9 – стол письменный, 10 – холодильник для хранения реактивов, 11 – стеллаж, 12 – место оператора, 13 – аппарат для приварки катодов, 14 – стол для пробоподготовки, 15 – откачной пост, 16 – холодильная установка, 17 – электрощит. Линейные размеры – в мм.

и 119 создает избыточное давление в помещениях при общем объеме вытяжки воздуха из к. 117 около 1320 м³/час, что определяется техническими требованиями для MC FS ICP/MS Neptune Plus.

Наиболее высокая степень очистки приточного воздуха реализована в пределах стерильного производственного помещения, предназначенного для прободготовки геологического материала с использованием его кислотного разложения (к. 121А, рис. 2). Помещение площадью 53 м², разделенное на две зоны – переходную (к. 121Б, площадью 9 м²) и основную (44 м²), представляет собой чистую комнату "clean room" [1–4, 6] класса 6 ИСО по ГОСТ 14644-1-2002. Реализация подобного уровня чистоты предполагает применение нескольких ступеней очистки приточного воздуха: предваритель-

Рис. 2. Общий вид специализированного помещения для пробоподготовки геологического материала.

Рис. 3. Принципиальные схемы масс-спектрометров TIMS Triton Plus (а) и MC SF ICP/MS Neptune Plus (б).

ной с помощью фильтров грубой очистки (G4) и окончательной тремя финишными фильтрами (типа HEPA) H14, локализованными в межпотолочном пространстве на базе соответствующей модульной системы. Удаление паров минеральных кислот из нескольких вытяжных шкафов осуществляется через две основные линии пластиковых трубопроводов диаметром 350 мм, смонтированных в межпотолочном пространстве в к. 121. Пол – полиуретановое бесшовное покрытие Элакор-ПУ. Стены шлифованные с покрытием ПФ115, стойким к воздействию воды, моющих растворов и индустриальных масел, устойчивым к изменению температуры от -50 до $+60^{\circ}$ С. Двери – из крашеного с использо-

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

ванием порошкового покрытия алюминиевого профиля с остеклением; окна – глухие с двойным стеклопакетом из полированного стекла.

MACC-CHEKTPOMETP TIMS TRITON PLUS

Принцип работы прибора (рис. 3а, 4а) основан на твердофазной (термоионной или поверхностной) ионизации исследуемого вещества, дальнейшего разделения ионных токов в зависимости от отношения заряд/масса в электромагнитных полях и соответствующей электрометрической регистрации. В настоящее время термоионизационная масс-спектрометрия является наиболее точ-

Рис. 4. Общий вид масс-спектрометров TIMS Triton Plus (a) и MC SF ICP/MS Neptune Plus (б).

ным методом определения изотопных распространенностей элементов. Масс-спектрометр состоит из блока источника ионов, позволяющего оперативно загрузить сменный барабан для двадцати одного образца с автоматической настройкой по указаниям пользователя и возможностью пирометрирования от 700°С и выше. Обновленный (в сравнении с предыдущими разработками) анализатор содержит электронную юстировку фокусного расстояния; ламинированный быстрый магнит (810 мм дисперсия); Dynamic Zoom, обеспечивающий высокоточные динамические измерения; увеличенную щель магнита для высокой трансмиссии и понижения эффекта рассеяния ионов. Масс-спектрометр оборудован девятиколлекторным приемником ионов, приемные цилиндры которого изготовлены с применением новых материалов, кондиционированных для получения оптимальных долгосрочных характеристик и возможностью полностью автоматического управления их позиционированием. Новый измерительный тракт (герметизированный в электрически экранированный термостатируемый объем) позволяет регистрировать ионные интенсивности с максимальной нагрузкой до 50 В. Конструктивно содержит релейную матрицу усилителя для последовательного переключения всех усилителей к различным коллекторам Фарадея для исключения погрешностей при калибровке коэффициента усиления. Обновленная электроника масс-спектрометра, обеспечивающая соединение цифровых и аналоговых сетей оптоволоконными кабелями (для гарантирования полного отсутствия шумов) управляется с помощью существенно доработанного модульного программного обеспечения (OC Windows XP) представленного интуитивно понятным графическим интерфейсом с возможностью контроля (PCL – Process Control Language) прибора и оценки качества регистрируемых аналитических данных. Основные аналитические характеристики прибора представлены в табл. 1.

MACC-CIIEKTPOMETP MC FS ICP/MS NEPTUNE PLUS

В приборе (рис. 3б, 4б) используется плазменная ионизация исследуемого вещества с помощью соответствующего источника и дальнейшее разделение ионных токов в зависимости от отношения заряд/масса в электромагнитных полях с последующей электрометрической регистрацией на девятиколлекторном приемнике ионов. Аналитическая часть идентична таковой для масс-спектрометра Triton Plus, принципиально отличаясь интерфейсом ввода вещества в анализатор (плазменная горелка и ESA модуль).

Масс-спектрометр Triton Plus позволяет осуществлять анализ изотопов следующих основных элементов – Li, B (в виде окислов), Ca, Sr, Nd, Hf, W, Os (в виде окислов), Pb, Th, U; возможности масс-спектрометра MC FS ICP/MS Neptune Plus – более широкие: он допускает анализ Li, B, Mg, Si, Ca, Cr, Fe, Zn, Sr, Mo, Ag, Cd, Sn, Nd, Hf, W, Os, Hg, Pb, Th, U (табл. 2). Но при этом на первом приборе точность определения изотопных распространенностей элементов достигает единиц ppm (табл. 1), а на втором – погрешности несколько выше.

Результаты измерения изотопного состава некоторых элементов в стандартных образцах [5], полученные во время физического пуска массспектрометров в изотопном модуле института, приведены в табл. 3 и на рис. 5. Анализ данных однозначно свидетельствует о том, что их технические характеристики соответствуют заявленным паспортным данным. Таким образом, можно констатировать, что на Урале запущен в работу аналитический комплекс, обладающий уни-

N⁰	Характеристика	Значение
1	разрешение	>450 (на 10% уровне)
2	диапазон масс	3-310 а. е. м. (при ускоряющем напряжении 10 kB)
3	стабильность пика	±30 ppm в течении 30 мин
4	выход ионов	> %, на одиночной нити накала (катоде) для Sr
5	изотопическая чувствительность	лучше 2 ррт на массе 237 а. е. м. для урана
6	внешняя воспроизводимость	$(\pm 1\sigma)$ 2–5 ppm для Sr и Nd в статическом и мультидинами-
		ческом режимах соответственно
7	входное сопротивление электрометрических уси-	10 ¹¹ Ом
	лителей	
8	темновой шум	$<2.10^{-16}$ А при времени интегрирования 4 с,
		<5.10 ⁻¹⁷ А при времени интегрирования 64 с
9	спад сигнала усилителей	<10 ppm 3a 2 c
10	дрейф базовой линии	менее чем 10 ⁻¹⁶ А/ч
11	стабильность межканальной калибровки	<10 ppm за 24 ч
12	количество коллекторов	9
13	погрешность позиционирования коллекторов Фа-	<30 ррт между аксиальными коллекторами Фарадея
	радея в фокальной плоскости приемника ионов	<50 ррт между центральным и аксиальным коллекторами
		Фарадея

Таблица 1. Основные аналитические характеристики масс-спектрометра Triton Plus

Масс-спектрометр		2	Коллектор приемника ионов								
Ι	II	Элемент	L4	L3	L2	L1	С	H1	H2	H3	H4
•	•	Li	6Li								⁷ Li
•	•	Li		⁶ Li						⁷ Li	
	•	В		^{10}B						^{11}B	
•		BO ₂ (нег)				$^{10}BO_{2}$	11 BO ₂				
	•	Mg		²⁴ Mg			²⁵ Mg			²⁶ Mg	
	•	Si		²⁸ Si			²⁹ Si				
	•	Ca, Ti	⁴² Ca		⁴³ Ca	⁴⁴ Ca		⁴⁶ Ca	⁴⁷ Ti	⁴⁸ Ca	
•		Ca, K	⁴⁰ Ca			⁴¹ K	⁴² Ca	⁴³ Ca	⁴⁴ Ca		⁴⁶ Ca
			⁴² Ca		1 0	⁴⁴ Ca					⁴⁸ Ca
	•	Cr, Ti, V, Fe		⁴⁹ Ti	⁵⁰ Cr	51V	⁵² Cr	⁵³ Cr	⁵⁴ Cr		⁵⁶ Fe
	•	Fe, Cr, Ni	⁵² Cr	0.7	⁵³ Cr	⁵⁴ Fe	⁵⁶ Fe	⁵⁷ Fe	⁵⁸ Fe		⁶⁰ Ni
	•	Zn, Cu	02	⁶³ Cu	⁶⁴ Zn	⁶⁵ Cu	⁶⁶ Zn	⁶ /Zn	⁶⁸ Zn		⁷⁰ Zn
	•	Sr, Kr, Rb	⁸² Kr	⁸³ Kr	⁸⁴ Sr	⁸⁵ Rb	⁸⁰ Sr	⁸⁷ Sr	⁸⁸ Sr	00 a	
•		Sr	0177	023.6	043.6	⁸⁴ Sr	⁸⁵ Rb	⁸⁰ Sr	⁸⁷ Sr	⁸⁸ Sr	1003 5
	•	Mo, Zr, Ru	⁹¹ Zr	⁹² Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	⁹⁹ Ru	¹⁰⁰ Mo
	•	Ag	1050 1		110 0 1	111.0.1	¹⁰⁷ Ag	112 0 1	¹⁰⁹ Ag	1160.1	1170
	•	Cd, Pd, Sn	¹⁰⁵ Pd		100 A		¹¹² Cd		¹¹⁴ Cd	¹¹⁶ Cd	¹¹⁷ Sn
	•	Cd, Ag, Sn	¹⁰⁷ Ag		¹⁰⁹ Ag	¹¹⁰ Cd		¹¹² Cd	114Cd	¹¹⁰ Cd	¹¹⁷ Sn
	•	Sn, Cd, Te	¹¹¹ Cd	1180	¹¹⁴ Sn	¹¹³ Sn	110Cd	¹¹⁷ Sn	110Sn	¹¹⁹ Sn	¹²⁰ Sn
			1423 T 1	143NT 1	144 N 1	¹²⁰ Sn	¹²² Sn	1470	¹²⁴ Sn	¹²⁵ Ie	150N T 1
•	•	Nd, Sm	¹⁴² INd	143Nd	143NL1	145Nd	145NL	146NL1	147 Nd	148NL1	¹³⁰ Nd
•	•	Na, Ce, Sm	172 VI	173N/L	17411C	175T	17611C	17711C	17811C	17911C	18011C
•	•	HI, YD, LU	172 Y D	175 Y D	17611C	177LU	178HI	17911C	18011C	181Te	182 W 7
	•	Π I, IU, LU, IU, W W IIf Ta Oa Da	10	17911£	181To	182117	183117	184117	П	186 W	188Oc
•	•	$W, \Pi j, \Pi u, OS, Re$	185 D o	1860a	187 O a	18800	189	19000		192 O a	- OS
	•	$OsO_{(uor)}$	Re	184OcO	185D o	1860c0	187OcO	1880.00	1890-0	190000	1920-0
•		$U_{3}(Hel)$	196 U a	198Ug	199Ug	200Lg	201Lg	202LLa	203T1	0503	0.050_3
		$\operatorname{Ph} H_{\alpha} T^{I}$	ng	202Hg	203T1	204 Ph	205T1	206 D b	207 Dh	208 Ph	
	-	Ph		ing	11	10	204 Dh	206 Ph	207 Dh	208 Ph	
		Ph					204 Ph	205 Ph	206 Ph	207 Ph	208 Ph
		Th					²³⁰ Th	10	²³² Th	10	10
		I					234U	235 T J	236	238 T I	

Примечание. I, II – масс-спектрометры TIMS Triton Plus и MC SF ICP/MS Neptune Plus; курсив – интерферирующие элементы; НЕГ – негативный режим измерения.

ЕЖЕГОДНИК-2010, Тр. ИГГ УрО РАН, вып. 158, 2011

Рис. 5. Результаты измерения на масс-спектрометре TIMS Triton Plus изотопного отношения ⁸⁷Sr/⁸⁶Sr в карбонате стронция – стандарте Всероссийского научного исследовательского института им. Д.И. Менделеева (С. Петербург). Все отношения нормализованы к ⁸⁶Sr/⁸⁸Sr = 0.1194.

 $Mean = 0.7080134 \pm 0.0000014 \ [0.00019\%] \ 95\% \ conf.$

Wtd by data-pt errs only, 0 of 14 rej MSWD = 0.24, probability = 0.997

кальными возможностями в области изотопной геологии.

Работа выполнена в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" (госконтракт № 02.740.11.0727), проектов по программам Президиума РАН № 23, 20, а также программы интеграционных исследований УрО РАН "Состав, структура и физика радиационно-термических эффектов в фосфатных и силикатных минералах и стеклах" и при поддержке гранта РФФИ № 11-05-00035.

Таблица 3. Результаты тестирования стандартных образцов на масс-спектрометре MC SF ICP/MS Neptune Plus

Элемент, стандарт, изотопное отноше- ние	Значение, довери- тельный интервал	Результаты тестирования
Стронций, NBS 987,	20 ppm (1 RSD)	9 ppm
⁸⁷ Sr/ ⁸⁶ Sr*	(0.71022-0.71030)*	0.710258
Гафний,	20 ppm (1 RSD)	6 ppm
¹⁷⁷ Hf/ ¹⁷⁶ Hf*	(0.282145 - 0.282175)	0.282161
Неодим,	20 ppm (1 RSD)	6 ppm
¹⁴³ Nd/ ¹⁴⁴ Nd*	(0.51171-0.51175)	0.511733
Свинец, NBS 981,	20 ppm (1 RSD)	5 ppm
²⁰⁷ Pb/ ²⁰⁶ Pb*	(0.9145-0.9146)	0.914515
Свинец, NBS 981,	100 ppm (1 RSD)	15 ppm
²⁰⁶ Pb/ ²⁰⁴ Pb*	(16.926–16.934)	16.9308

Примечание. NBS – National Bureau Standards (США); RSD – Relative Standard Deviation (относительное стандартное отклонение); * – нормализовано к значениям ⁸⁶Sr/⁸⁸Sr = 0.1194; ¹⁷⁹Hf/¹⁷⁷Hf = 0.7325; ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219; ²⁰³Tl/²⁰⁵Tl = 0.41892, соответственно.

СПИСОК ЛИТЕРАТУРЫ

- 1. Чистые помещения / И. Хаякава. М.: Мир, 1990. 456 с.
- Cleanroom Design / W. Whyte. Chichester: John Wiley & Sons, 1991. 357 p.
- Handbook of contamination control in microelectronics / D.L. Tolliver. Park Ridge (New Jersey): Noyes Publications, 1988. 488 p.
- 4. Handbook of cleanroom practice / Hauptmann-Hohmann. Landsberg: Ecomed Verlag, 1992. 262 p.
- 5. Jochum K.P., Brueckner S.M. Reference Materials in Geoanalytical and Environmental Research Review for 2006 and 2007 // Geostandards and Geoanalytical Research. V. 32, №4. 2008. P. 405–452.
- 6. *Liebermann A*. Contamination control and cleanrooms. New York: Van Nostrand Reinhold, 1992. 304 p.
- 7. Thermo Fisher Scientific http://www.thermoscientific. com/

0.708020

0.708018

0.708016

0.708014

0.708012

0.708010

0.708008

0.708006