ПЕТРОЛОГИЯ, ГЕОХИМИЯ

К ГЕОХИМИИ КИСЛЫХ ВУЛКАНОГЕННЫХ ПОРОД РАЙОНА Р. БОБРОВКА (ВОСТОЧНЫЙ СКЛОН СРЕДНЕГО УРАЛА)

© 2012 г. Е. Н. Волчек

На востоке Среднего Урала, на правобережье р. Бобровка вблизи села Покровское, развиты ультракалиевые порфировые риолиты и трахириолиты. Они слагают здесь неккоподобные и дайкообразные тела мощностью 20-120 м протяженностью до 7 км при ширине до 1 км, прорывающие вулканогенноосадочные толщи средне-позднедевонского возраста. В краевых частях тел иногда появляются автомагматические брекчии [2]. Ранее эти образования относились к липаритовой формации турнейсковизейского возраста, который был принят на том основании, что липаритовые порфиры и туфы несогласно залегают на дислоцированной поверхности эйфельских известняков и прорываются раннекаменноугольными плагиогранитами, а дайки риолитов имеют интрузивные контакты с карбонатными осадками эйфеля и франа [3]. Другими исследователями кислые вулканиты были включены в состав покровского комплекса ультракалиевых риолитов, появление которых возможно в областях с мощной сиалической корой платформенного типа [2]. Описанные в составе комплекса риолиты обладают порфировой структурой и содержат бипирамидальные, часто корродированные вкрапленники кварца размером 0.5–6 мм, короткопризматические зерна альбита размером 0.5–8 мм и пластинки биотита размером 0.3–2 мм. Количество вкрапленников обычно составляет 10–30, иногда достигает 50 %. Основная масса имеет микрофельзитовую, сферолитовую или трахитовую структуру и состоит из кварца, калиевого полевого шпата и альбита [2]. В более поздних работах [5] по ряду признаков ультракалиевые риолиты окрестностей с. Покровское были отнесены к ассоциации шошонит-латитового типа, формирование которой происходило на завершающей стадии развития девонской палеоостроводужной структуры.

Нами были отобраны и изучены образцы кислых пород из дайкоподобного тела мощностью 1–1.5 м вблизи моста через р. Бобровка у первых домов, а также из стенки карьера. Это розовато-светлосерые тонкозернистые породы массивной текстуры. В них наблюдаются редкие вкрапленники кварца. Под микроскопом различимы отдельные зерна альбита,

№ зак.	Покр-1/07	Покр/карьер	№ зак.	Покр-1/07	Покр/карьер	№ зак.	Покр-1/07	Покр/карьер
SiO ₂	71.33	69.97	Ni	1.827	4.876	Pr	2.027	1.314
TiO ₂	0.06	0.065	Cu	4.954	6.279	Nd	7.331	4.849
Al_2O_3	16.41	16.94	Zn	30.469	27.874	Sm	1.402	0.764
Fe	1.95	2.2	Ga	17.062	18.476	Eu	0.343	0.204
MnO	0.025	0.112	Ge	1.122	1.087	Gd	0.928	0.526
MgO	0.36	0.26	Rb	120.766	133.968	Tb	0.143	0.080
CaO	0.29	0.25	Sr	94.956	80.377	Dy	0.966	0.507
Na ₂ O	3.9	5.2	Y	6.577	3.733	Ho	0.194	0.109
K ₂ O	4.27	4.56	Zr	76.316	99.787	Er	0.609	0.350
P_2O_5	0.01	0.01	Nb	10.549	12.145	Tm	0.108	0.062
ΠΠΠ	1.4	0.7	Mo	0.329	0.945	Yb	0.743	0.531
Сумма	100.00	100.26	Ag	0.260	0.331	Lu	0.119	0.079
Li	8.725	7.151	Cď	0.012	0.013	Hf	3.523	4.193
Be	3.870	3.000	Sn	0.765	0.969	Та	0.604	0.674
Na	41975.775	53891.722	Sb	0.248	0.552	W	3.251	2.843
Sc	0.635	0.626	Те	н/о	н/о	T1	0.829	0.944
Ti	301.796	342.945	Cs	1.744	1.549	Pb	80.811	134.686
V	7.194	8.698	Ba	150.476	237.468	Bi	1.359	0.318
Cr	2.957	9.415	La	8.065	6.180	Th	14.935	10.928
Mn	46.488	600.773	Ce	18.242	10.279	U	1.381	2.093
Co	0.656	0.969						

Таблица 1. Химический состав (мас. %) и содержание микроэлементов (г/т) в кислых вулканитах р. Бобровка

Примечание. Все аналитические исследования были выполнены в лаборатории физических и химических методов исследования ИГГ УрО РАН рентгено-спектральным методом на СРМ-18, рентгенофлюоресцентным методом на EDX-900 HS (Na₂O) и методом ICP-MS. Аналитики – Горбунова Н.П., Татаринова Л.А., Власов В.П., Неупокоева Г.С., Киселева Д.В.

Рис. 1. Распределение редкоземельных элементов в кислых вулканитах р. Бобровки. Содержания РЗЭ нормированы к составу хондрита [8].

Рис. 2. Спайдерграммы кислых вулканитов р. Бобровки (Покр-1/07; Покр/карьер) и кислых вулканитов Йеллоустоуна (Уе-2-1; Уе-4-1) [1].

Содержания элементов-примесей нормированы по MORB [6]

изометричные кварцевые зерна, чешуйки биотита, тонкочешуйчатый хлорит.

В табл. 1 приведены химические составы этих пород. На классификационной диаграмме ($K_2O + Na_2O$)—SiO₂ они соответствуют трахидацитам щелочной серии ($K_2O + Na_2O$) — 8.17; 9.76% калиево-натриевого типа (Na_2O/K_2O) — 1.09; 0.88 [4]. Спектры распределения РЗЭ в исследуемых образцах характеризуются преобладанием лантаноидов над тяжелыми редкими землями (La/Lu)_n = 6.98–8.02 и отсутствием Еu-аномалии

(рис. 1). Из других геохимических особенностей можно отметить низкие содержания Sr и высокие – Nb (табл. 1). Нормированные по MORB спектры распределения микроэлементов в исследуемых образцах сходны по конфигурации с мультиэлементными спектрами кремнекислых породах Йеллоустоунского парка, различаясь по абсолютным концентрациям некоторых элементов (рис. 2). Для трахидацитов р. Бобровки характерно пониженное содержание Zr, Nb, Y по сравнению с образованиями континентальной горячей точки.

ЕЖЕГОДНИК-2011, Тр. ИГГ УрО РАН, вып. 159, 2012

Судя по диаграмме Rb–Sr [7] их формирование происходило при мощности коры 20–30 км.

Работа выполнена при финансовой поддержке программ УрО РАН (проект 12-П-5-2015 и проект 12-У-5-1041).

СПИСОК ЛИТЕРАТУРЫ

- Богданова Е.И., Волчек Е.Н., Березнер О.С. Вулканические породы из Йеллоустоунской горячей точки // 10-е Всеросс. Научн. чтения памяти В.О. Полякова. Миасс: ИМин УрО РАН, 2009. С. 94–100.
- Иванов К.С. Ультракалиевые липаритовые порфиры на Урале // Докл. АН СССР. 1979. Т. 247, № 4. С. 908–912.
- 3. Коротеев В.А., Дианова Т.В., Кабанова Л.Я. Среднепалеозойский вулканизм Восточной зоны Урала.

Л.: Наука, 1979. 129 с.

- Петрографический кодекс. Магматические и метаморфические образования. СПб.: ВСЕГЕИ, 1995. 126 с.
- Смирнов В.Н., Коровко А.В. Палеозойский вулканизм восточной зоны Среднего Урала // Геодинамика, магматизм, метаморфизм и рудообразование. Екатеринбург: ИГГ УрО РАН, 2007. С. 395–420.
 Bevins R.E., Kokelaar B.P., Dunkley P.N. Petrology and
- Bevins R.E., Kokelaar B.P., Dunkley P.N. Petrology and geochemistry of lower to middel Ordovican igneous rocks in Wales: a volcanic arc to marginal basin transition // Proc. Geol. Ass. 1984. V. 95. P. 337–347.
- Condie K. C. Archean magmatism and crustal thickeness // Geol. Soc. Amer. Bull., 1979. V. 84. № 9. P. 2981–2992.
- Sun S.-s., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes // Magmatism in the Oceanic Basins / A.D. Saunders and M.J. Norry (Eds.). Blacrwell. Oxford, 1989. P. 313–345.