= ПЕТРОЛОГИЯ, ГЕОХИМИЯ

ПЕТРОГЕОХИМИЯ МЕТАСОМАТИТОВ САПОВСКОЙ СУБВУЛКАНИЧЕСКОЙ ДЕПРЕССИИ (СРЕДНИЙ УРАЛ)

© 2012 г. А. И. Грабежев, А. В. Коровко*, Н. В. Чередниченко, Д. В. Киселева

Саповская вулкано-субвулканическая депрессия площадью около 170 км² находится в Пышминско-Петрокаменской структуре – восточном обрамлении среднеуральской части Тагильской вулканогенной зоны. Краткая геологическая характеристика дана в [1, 3, 4]. Депрессия сложена породами базальт-андезит-дацитовой формации при преобладании субвулканических и экструзивнх образований основного и среднего состава. Широко развиты секущие дайки плагиоклазовых базокварцевых диоритовых порфиритов гипабиссально-субвулканической фации. Стратиграфический возраст формации – средний девон. В западном обрамлении депрессии, в ее придонной части, находятся нечетко зональные габбродиорит-гранодиорит-гранитовые Петрокаменский и Шумихинский массивы петрокаменского комплекса, которые рассматриваются как комагматы вулканогенной формации. Изучение большого числа шлифов позволило нам составить схему региональной метасоматической зональности депрессии [2], породы которой повсеместно подверглись сильному преобразованию.

Наиболее ранние изменения представлены пропилитами хлорит-эпидот-альбитовой фации. Широко распространены деанортитизация и соссюритизация плагиоклаза. Зерна эпидота, сформировавшиеся, по-видимому, по амфиболу или пироксену, почти всегда замещаются по периферии полупрозрачной каймой, состоящей из продуктов разложения эпидота. Более чем на половине площади ореола пропилиты содержат 1-3 мас. % пирита. Интенсивность эпидотизации и соссюритизации резко усиливается в локальных зонах мощностью от нескольких до 50-150 м. Эти процессы сопровождаются формированием двух типов рудно-метасоматических тел. Наибольший практический интерес представляют [3] хлорит-магнетитэпидотовые и хлорит-магнетит-эпидот-гранатовые скарны (скарноиды), находящиеся вне интрузивных тел (Медный рудник, Старо-Саповское и Старо-Паньшинское месторождения, два первых отрабатывались в XIX веке).

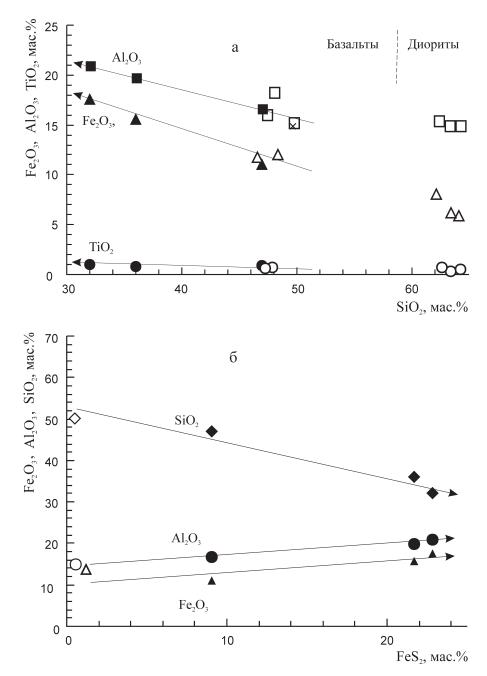
Исключительно интересен другой — обогащенный пиритом (4–25 мас. %) хлорит-эпидотальбитовый тип апобазальтоидных метасоматитов (пример — Верхнее-Саповское пиритовое проявление, породы которого детально и рассматриваются в настоящей статье). Вертикальное протяжение тела с густовкрапленным пиритом превышает 200 м. На пропилиты накладывается третий наиболее поздний тип изменений — зоны слабой серицитизации (серицит-хлоритовая, кварц-серицит-карбонат-хлоритовая ассоциации), имеющие горизонтальную мощность от нескольких до 20—300 м [2]. Эти изменения наиболее распространены в северной и центральной частях ореола. По одной из скважин их вертикальная мощность достигает 500 м, ниже они сменяются бескарбонатной кварцсерицит-хлоритовой ассоциацией. В пропилитах юго-западной части ореола наблюдаются участки мелкочешуйчатого биотита.

Несколько повышенные содержания Си (до 0.01– 0.03 мас. %), Zn (до 0.01 мас. %), Pb (до 30–70 г/т) нередко наблюдаются во всех типах метасоматитов по базальтоидам и диоритовым порфиритам. Абсолютно преобладают слабо контрастные мультипликативные ореолы Zn, Pb, гораздо реже наблюдаются низкоаномальные ореолы Си. Ореолы с содержаниями меди 0.05-0.1% весьма редки, и их мощность не превышает 100-300 м, они быстро выклиниваются по простиранию. Участки с содержаниями меди 0.2-0.7% (до 2%) единичны и имеют мощность не более 1-5 м. Наиболее контрастные геохимические ореолы меди и молибдена проявлены в центральной части Саповской структуры, где максимально развита серицитизация. Значительный привнос рудных элементов наиболее характерен для продуктов кислотного выщелачивания в скарнах. В биотитсодержащих пропилитах югозападной части ореола также встречены мелкие рудные тела с содержанием меди 0.1-0.2 мас. %. Серицитизация часто сопровождается, судя по нашим нейтронно-активационным анализам, привносом золота. Из 26 проб близкларковые или несколько повышенные содержания золота $(3.6 \pm 2.0 \text{ мг/т})$ встречены в 12 пробах, гораздо более высокие содержания $(21.2 \pm 9.3 \text{ мг/т})$ в 9 пробах и очень высокие (92-390 мг/т) в 5 пробах. Рудные минералы (пирит, халькопирит, сфалерит) представлены исключительно вкрапленностью. Рудные прожилки, а также гематит-пирит-кварцевые, карбонатэпидотовые, карбонат-кварц-эпидотовые прожилки встречаются весьма редко. Все метасоматические и геохимические зоны измененных пород обычно вытянуты в субмеридиональном направлении, их

^{*}Среднеуральская геолого-разведочная экспедиция, г. В. Пышма Свердловской области

протяженность сильно варьирует — от первых десятков метров до нескольких километров. Приведенные данные свидетельствуют о субвулканическом срезе молибден—медно—порфировой колонны, основная рудная часть которой должна находиться на более глубоком уровне.

Остановимся на характеристике недавно фрагментарно разбуренного Верхне-Саповского сульфидного (пиритового) проявления, западной частью охватывающего северную периферию Старо-Саповского рудного поля на широте Медного (Федьковского) рудника. В западной части профиля в районе Медного Рудника пройдена скважина № 3 (глубина 110.0 м). Здесь содержание пирита в неравномерно скарнированных породах основного и среднего состава, залегающих в надинтрузивной позиции в юго-восточном экзоконтакте Петрокаменского массива, за исключением мелкомасштабных сульфидно-магнетитовых рудных тел, невелико: <1-3 мас. %. По мере продвижения на восток количество пирита, судя по данным электроразведочных работ (метод ВП-СГ), постепенно увеличивается, достигая максимума (η_k = 6%) в 460 м к востоку от скважины № 3. Во вскрытых пройденной здесь скважиной № 10 (глубина 179.0 м) породах постоянно фиксируется пирит в количестве 4-6 (и более) мас. %. Далее на восток интенсивность электрического поля несколько снижается, но через 650 м к востоку от скважины 10 достигает очень высоких значений ($\eta_k = 15-20\%$). Здесь, в осевой части депрессии, несколько севернее её центральной части, откартирована аномалия поляризуемости ($\eta_k > 3\%$) размером 5×1 км субмеридионального простирания. В западной части этой аномалии в


550 м к востоку от скважины № 10 пройдена скважина № 5 глубиной 155 м. В вулканитах, вскрытых скважиной № 5 (собственно Верхнее-Саповское пиритовое проявление), постоянно наблюдается обильная вкрапленность пирита. Его содержание очень сильно варьирует, 5–26 мас. %, редко опускаясь до 1–3 мас. %. Крайне неравномерное распределение пирита доказывается также данными электрокаротажа ствола скважины № 5 (методы КС, ПС, ВП). Необходимо подчеркнуть, что в дайках субвулканических припилитизированных базокварцевых диоритовых порфиритов количество пирита не превышает 0.5–2 мас. %. (табл. 1).

На петрохимических диаграммах (рис. 1) анализы диоритовых порфиритов образуют единый тренд (с разрывом) с первичными и сильно пиритизированными базальтами, что свидетельствует о вероятном их генетическом единстве. В базальтоидах и диоритовых порфиритах постоянно присутствуют вкрапленники деанортитизированного (редко слабо серицитизированного) плагиоклаза в количестве 15-25 мас. %. Первичный темноцветный минерал замещен хлорит-эпидотовой массой, изредка наблюдается актинолит. Размеры зерен микролейстовой, иногда аллотриоморфнозернистой цементирующей массы сильно варьируют в различных образцах от 0.005 до 0.1-0.2 мм, что указывает на преимущественно субвулканический тип магматизма. В целом, метасоматиты необходимо отнести к фации пирит-хлорит-эпидот-альбитовых пропилитов. Широко распространены мелкие тела эпидозитов. Встречаются единичные участки эпидотгранатовых и гранатовых скарнов мощностью до 1-3 м, в различной мере замещенных сульфидно-

Таблица 1. Химический состав пород Саповской структуры, мас. % (Rb и Sr в г/т)

L'angravaver.	1	2	3	4	5	6	7
Компоненты	4-51	5-33.2	5-40.8	5-51.8	5-95	5-107	10-87.8
SiO ₂	49.66	47.00	32.00	36.00	64.12	63.47	62.29
TiO ₂	0.77	0.91	0.96	0.84	0.46	0.47	0.57
Al_2O_3	14.82	16.68	21.00	19.81	15.09	15.13	15.26
Fe ₂ O ₃ *	14.47	4.96	2.25	1.03	5.71	4.83	8.05
MnO	0.19	0.19	0.13	0.16	0.13	0.13	0.10
MgO	4.60	5.67	5.17	4.92	3.45	3.21	2.99
CaO	9.63	7.57	5.73	6.01	4.34	4.21	5.07
Na ₂ O	2.0	2.5	1.9	2.0	3.3	3.5	2.9
K ₂ O	1.78	0.04	0.76	0.64	0.40	0.41	0.30
P_2O_5	0.22	0.27	0.34	0.26	0.16	0.16	0.18
FeS ₂	0.06	9.08	22.86	21.69	0.79	2.58	0.18
H ₂ O	2.55	4.10	4.02	3.90	2.26	3.14	2.25
Сумма	100.75	98.97	97.02	97.26	100.21	101.24	100.14
Fe ₂ O ₃ **	14.50	11.06	17.59	15.58	6.23	6.55	8.19
Rb	34.8	0.8	10.5	8.7	5.9	5.8	4.2
Sr	304	258	371	365	248	200	351

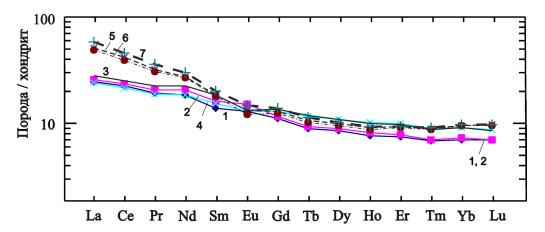
Примечание. 1 — темно-серый плагиоклазовый базальт-диабаз пироксеновый (?) субвулканического типа умеренно гидросерицитизированный и соссюритизированный; 2 — светло-серый субвулканический плагиоклазовый базальт-диабаз, сильно эпидотизированный и пиритизированный; 3, 4 — то же, очень сильно пиритизированные и местами слабо гидросерицитизированные; 5—7 — серые плагиоклазовые диоритовые порфириты, сильно эпидотизированные и хлоритизированные, местами содержат небольшое количество пирита. $Fe_2O_3^*$ — силикатное железо, $Fe_2O_3^*$ — все железо.

Рис. 1. Корреляция между содержаниями кремнезема и других компонентов в базальтах и диоритовых порфиритах (а), между пиритом и другими компонентами (б) в базальтах Саповского пиритового проявления. Минимально пиритизированные породы показаны незачерненными знаками (в "а" приведены анализы авторов и [4]). Направление тренда указывает на усиление степени пиритизиации базальта.

магнетит-кварц-карбонатной (\pm актинолит, хлорит) ассоциацией. Изредка наблюдается сильная перекристаллизация пропилитов с образованием эпидот-альбитовых метасоматитов. Около жилы с пористым пиритом встречен олигоклазит, сохранивший структуру порфировой породы. Очень хорошо выражена прямая линейная зависимость между Ті и Р для всех пород проявления (r = 0.95, n = 7). Тренд для базальтоидов выходит на диаграмме очень далеко от нуля координат, то есть пиритизация происхо-

дила в условиях примерно постоянного геометрического объема при сильной миграции компонентов. Наблюдается значительный привнос Al, Fe и вынос Si, а также частично Ca. В результате образуется хлорит-эпидот-пиритовая ассоциация и сохраняется деанортитизированный плагиоклаз.

В пропилитизированных базальтах Верхнее-Саповского пиритового проявления фиксируются очень низкие, обычно близкларковые, содержания рудных элементов, как по производственно-


Таблица 2. Содержание микроэлементов в породах Саповской структуры, г/т

Элемент	Скважина, глубина									
	4-51	5-33.2	5-40.8	5-51.8	5-95	5-107	10-87.8			
	1	2	3	4	5	6	7			
Cu	207.1	42.0	29.5	17.7	10.1	10.4	45.0			
Zn	56.1	31.7	32.6	39.3	25.4	26.1	41.1			
Pb	2.74	2.03	2.78	7.37	3.29	2.71	4.81			
Mo	0.72	0.13	2.85	0.16	0.37	1.37	0.77			
Pd	1.24	1.31	2.20	1.24	3.50	3.57	3.77			
Pt	0.02	0.02	0.03	0.03	0.04	0.04	0.05			
Rh	0.01	0.01	0.01	0.01	0.01	0.01	0.01			
Ir	0.01	0.01	0.01	0.01	0.02	0.01	0.02			
Au	0.03	н/о	н/о	H/O	н/о	н/о	0.04			
Ag	0.20	0.06	0.12	0.07	0.17	0.27	0.24			
Cd	0.07	0.04	н/о	0.05	0.10	0.08	0.10			
As	6.57	3.58	6.35	3.02	2.40	3.09	4.24			
Sb	0.35	0.52	0.33	0.53	0.36	0.30	0.82			
Te	0.03	0.80	2.52	1.24	0.06	0.24	0.01			
Se	0.70	2.43	4.30	5.25	0.63	0.82	0.63			
T1	0.80	0.25	0.28	0.35	1.48	0.23	0.31			
Bi	0.05	1.45	4.01	3.70	0.28	0.26	0.11			
Sn	0.72	1.64	1.37	1.99	1.13	1.01	0.97			
W	0.89	0.36	0.62	0.95	0.86	1.54	0.69			
Ti	2912	3514	4444	3912	2053	2129	2323			
V	245	209	254	168	84	74	99			
Cr	90	84	30	57	40	51	50			
Mn	849	807	591	761	538	550	385			
Co	37.2	21.7	51.4	26.5	9.4	18.5	10.0			
Ni	26.3	17.8	17.0	25.8	6.2	7.2	6.2			
Li	1.95	1.51	4.11	3.57	1.65	1.75	2.18			
Be	0.25	0.36	0.69	0.60	0.69	0.69	0.71			
Sc	25.0	23.8	18.7	23.0	11.8	10.7	12.2			
Ga	12.6	14.8	18.8	15.9	13.2	11.7	13.3			
Ge	1.29	1.22	0.87	0.95	1.11	0.86	1.28			
Rb	34.8	0.8	10.5	8.7	5.9	5.8	4.2			
Cs	0.81	0.13	1.06	0.79	0.47	0.36	0.24			
Sr	304	258	371	365	248	200	351			
Ba	234	25	133	96	150	135	189			
Y	12.7	15.6	19.6	19.5	16.9	17.0	16.0			
Zr	33.5	44.2	73.4	44.5	115.2	120.1	114.0			
Hf	1.11	1.24	2.05	1.32	3.31	3.29	3.31			
Nb	1.27	1.44	2.22	1.61	5.12	5.13	4.81			
Ta	0.19	0.19	0.27	0.22	0.79	0.73	3.92			
Th	1.12	1.53	2.35	1.57	5.30	5.04	5.50			
U	0.71	1.35	1.03	0.82	2.72	2.43	2.77			
La	8.66	9.03	9.78	8.46	17.26	16.48	19.51			
Ce	20.76	21.61	23.06	19.87	37.08	35.04	40.93			
Pr	2.68	2.91	3.15	2.65	4.38	4.17	4.83			
Nd	12.55	14.07	15.14	12.55	18.44	17.82	20.00			
Sm	3.09	3.55	4.07	3.46	4.07	3.97	4.36			
Eu	1.11	1.28	1.12	1.10	1.13	1.03	1.26			
Gd	3.42	3.55	4.15	3.90	3.90	3.75	4.24			
Гь	0.50	0.52	0.65	0.64	0.59	0.57	0.62			
Dy	3.26	3.41	4.12	4.18	3.77	3.64	3.89			
Но	0.67	0.70	0.85	0.87	0.78	0.76	0.80			
Er	1.90	2.00	2.45	2.51	2.36	2.32	2.36			
					1	l				
Гт	0.27	0.28	0.35	0.35	0.35	0.35	0.36			
Yb	1.75	1.82	2.25	2.25	2.36	2.34	2.42			
Lu	0.27	0.27	0.33	0.33	0.37	0.36	0.37			
	0.03	4.8	12.2	11.5	0.4	l	0.1			
Ѕ, мас. %	0.03	4.0	12.2	11.3	U.4	1.4	U.1			

Примечание. Характеристика пород приведена в табл. 1. Жирным шрифтом выделены минимально-аномальные содержания элементов.

му опробованию, так и по нашим данным ICP-MS (табл. 2). Жильные диоритовые порфириты практически стерильны в отношении рудных элементов. Зато в них наблюдается, по сравнению с пропилитизированными базальтами, повышенные содержания соответственно (г/т): TR (97-106 и 61-71), Zr (115–120 и 35–73), Ta (0.7–3.9 и 0.2–0.3), U (2.4–2.8 и 0.7–1.4), Тh (5.0–5.5 и 1.1–2.4), Мо (0.4–1.4 и 0.1 в несерицитизированной породе), Nb (4.8-5.1 и 1.3-2.2). Это свидетельствует о принадлежности диоритовых порфиритов к наиболее поздним образованиям, отвечающим высокой степени дифференциации. Содержания V, Со, Ni по сравнению с базальтами заметно ниже. Генетическое единство базальтов и диоритовых порфиритов подтверждается и приуроченностью всех анализов к единому тренду на графиках Zr-Hf, Nb-Ta, U-Th, Rb-Cs (кроме ан. 1). Между Rb и Sr, Sr и Ва корреляция отсутствует. Диоритовые порфириты характеризуются большими содержаниями легких РЗЭ по сравнению с базальтами (рис. 2). Интенсивная пиритизация базальтов не сопровождается миграцией легких РЗЭ, в то время как тяжелые РЗЭ несколько привносятся.

На Верхне-Саповском пиритовом проявлении небольшой привнос халькофильных элементов происходил преимущественно в локальных зонах слабой серицитизации (табл. 2). Серицитизированные базальты содержат 0.6–1.8 мас. % К₂О, 9-35 г/т Rb и 0.8-1 г/т Cs. Количество Cu в них может достигать 200-500 г/т, однако обычное содержание Си в пропилитизированных базальтах составляет 18-42 г/т. Для Zn эти значения отвечают соответственно 100 и 30–40 г/т, а Mo - 0.7-3.0и 0.1-0.2 г/т. В серицитизированных и сильно пиритизированных апобазальтовых пропилитах повышаются содержания и халькофильных микроэлементов (Γ/T): As – до 7, Te – до 30, Ce – до 6, Ві – до 4. Палладий резко преобладает над платиной. Для апатита из пород Саповской структуры характерно повышенное содержание S, по микрозондовому анализу оно составляет (0.05-0.08) \pm 0.01 мас. %. По анализу ICP-MS с хроматографической подготовкой сборный концентрат сульфидов (почти на 100% пирит, проба Сапа-1пи) из четырех образцов сильно пиритизированных пропилитизированных базальтов содержит (г/т): Pd -0.32, Pt – 0.06 Au – 3.6. Сульфидные концентраты из трех других проб пропилитов проанализированы без хроматографической подготовки. Концентрации рудных элементов возрастают в них от пропилитизированных к серицитизированному пропилиту, соответственно (г/т): Pd - 0.22, 0.52 и 1.42, Pt – H/o, H/o и 0.03, Au – 0.26, 0.23 и 0.50, Ag –0.21, 0.30 и 2.0, Tl – 9, 110 и 347, Cu – 45, 64 и 394, Mo - 0.5, 0.4 и 11. Таким образом, хотя сульфидные концентраты представлены почти на 100% пиритом, однако они явно обогащены платиноидами и золотом. Вероятно, привнос этих элементов происходил при пропилитизации. Возможно, существовало несколько стадий образования пирита. Так, пирит из прожилка мощностью 5 см, сопровождающегося каймой полной альбитизации диоритового порфирита, выделяется минимальным количеством (Γ/Γ) Cd (0.11), As (5.5), Te (2.3), Tl (9). Bi (1.0) при повышенном – Sn (2.1) и W (1.5). При наложении серицитизации на пропилиты происходит увеличение количества этих элементов, а также небольшой привнос Си и Мо. Содержания в пропилитах других халькофильных элементов находятся на кларковом уровне (Γ /т): Zn – 15–30, Pb – 6-9, Cd - 0.1-1.1, As - 6-26 и т.д. Количество Re не превышает 1–2 мг/т. Величина δ^{34} S в прожилковом и вкрапленном пирите по скв. № 5 и 13 весьма стабильна, составляя +1.1...+1.7‰ (9 ан.) за исключением одной пробы (+3.5‰). В скв. № 4 в небольшом интервале наблюдается значительное изменение изотопного состава анкерита. Прожилковый анкерит с гл. 78 м характеризуется обычным составом (‰) – δ^{13} C = –3.9, δ^{18} O = +11.2. На глубине 92.5 м анкерит из обособления размером 3 см

Рис. 2. Нормированное по хондриту распределение РЗЭ в породах Саповского пиритового рудопроявления. 1–7 – см. в табл. 1.

ЕЖЕГОДНИК-2011, Тр. ИГГ УрО РАН, вып. 159, 2012

переменного цвета (от серого до розового), включающего жеоду с мелкими серыми кристаллами, имеет состав (%): $\delta^{13}C = -3.5$, $\delta^{18}O = +1.9$.

Таким образом, сульфидно-метасоматические образования Саповской вулканической депрессии, и в том числе рассмотренное проявление густовкрапленного пирита, отвечают, скорее всего, верхней субвулканической части медно-порфировой колонны (пиритовый чехол). На современном эрозионном срезе в узких субмеридиональных тектонических структурах возможна локализация мелкомасштабных протяженных медно-порфировых рудных тел, их кор выветривания и эпитермального Zn-Au оруденения.

Авторы признательны В.Г. Крживицкой и другим коллегам за помощь в работе.

Исследования выполнены при финансовой поддержке РФФИ (проект 09-05-00289).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ведерников В.В. Эволюция магматизма Петрокаменской структурно-формационной зоны (Средний Урал). Автореф. дисс. ... канд. геол.-мин. наук. Свердловск: УрО АН СССР. 1988. 26 с.
- 2. *Грабежев А.Й., Белгородский Е.А.* Продуктивные гранитоиды и метасоматиты медно-порфировых месторождений (на примере Урала). Екатеринбург: УрО РАН, 1992. 199 с.
- 3. *Коровко А.В., Молошаг В.П.* Новые данные по рудоносности Петрокаменского рудного узла (Средний Урал) // Ежегодник-2007 ИГиГ УрО РАН. Екатеринбург, 2008. С. 316–320.
- 4. Смирнов В.Н., Ведерников В.В., Грабежев А.И. Особенности среднедевонских вулкано—плутонических ассоциаций Среднего Урала, сопровождающихся минерализацией медно—порфирового типа // Рудоносные и рудные формации Урала. Свердловск: УрО АН СССР, 1988. С. 13–22.