МИНЕРАЛОГИЯ

СЕРА В АПАТИТАХ ГРАНИТОВ ШАРТАШСКОГО МАССИВА И БЕРЕЗОВСКОГО ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ

© 2012 г. Е. В. Коновалова, С. В. Прибавкин, Д. А. Замятин, В. В. Холоднов

Пространственная связь Берёзовского золоторудного месторождения с внедрением интрузии Шарташских гранитов позволяет проводить широкий круг исследований состава минералов и пород для уточнения связи гранитного магматизма и рудообразования. Для изучения флюидного режима на магматическом и постмагматическом рудообразующем этапе выбран сквозной информативный гидроксилсодержащий минерал – апатит. Исследован состав летучей фазы (F, Cl, S) этого минерала из гранитов Шарташского массива, из даек гранит-

Праниты Шарташский массив

Дайки гранит-порфиров и березиты по ним

Рис. 1. Содержания серы в апатитах пород Шарташского массива и Березовского золоторудного месторождения.

порфиров как самого массива, так и Березовского золоторудного месторождения, а также из березитов, образующихся по этим дайкам. Исследования проводились в полированных шлифах по образцам С.В. Прибавкина (аналитик Д.А. Замятин).

Методика. Элементный анализ, BSE-изображения, SE-изображения и элементное картирование выполнены на электронно-зондовом микроанализаторе САМЕСА SX100 при ускоряющем напряжении 15 кВ, токе на зонде 20 нА, размере пучка 5 мкм. В качестве эталонов для измерения содержаний элементов в апатитах использовались синтетические и природные образцы: апатит (F, Ca, P), галит (Cl), жадеит (Na, Al), диопсид (Mg, Si), родонит (Mn), пирит (S), CePO₄ (Ce), GdPO₄ (Gd), LaPO₄ (La), SrSO₄ (Sr), YbPO₄ (Yb), REE1* (Dy, Y). Учтены наложения линий Ce L_n на La L_a , Mn K_β на Dy L_a Sr $L_{\beta3}$ на Y L_{a} . Стандартные образцы, использованные для определения содержания элементов в силикатах: апатит (F), галит (Cl), жадеит (Na, Al), диопсид (Mg, Ca, Si), родонит (Mn), гематит (Fe), рутил (Ti), оксид хрома (Cr), ортоклаз (K). Время накопления импульсов в пике каждой линии 10 с; интенсивность фона линии F K_a измерялась с одной стороны, в остальных случаях с двух сторон. BSE изображения были оптимизированы для получения наилучшего композиционного контраста.

Проанализированные апатиты – исключительно фтористые (F – 2.8–4.5 мас. %), с содержанием P_2O_541-42 и CaO ~ 55, с повышенными содержаниями SrO (0–0.37), SiO₂ (0.10–0.41), Na₂O (0–0.38), MnO (0–0.15) (табл. 1).

Особого внимания заслуживает впервые выявленное в апатитах Шарташско-Березовской рудномагматической ассоциации повышенное содержание серы, изоморфной по отношению к фосфору (рис. 1). Характер распределения серы как в отдельных изученных сечениях кристаллов апатита, так и в целом в апатитах всей исследованной выборки несет определенную информативную нагрузку. Наличие серы в апатитах отражает окислительный режим процессов магматизма и рудогенеза, и эволюцию режима самих флюидов, в частности, соотношение элементов-минерализаторов: F, СІ и S при становлении продуктивного Шарташского гранитного массива и при формировании золотого оруденения на Березовском золоторудном месторождении.

Полученные данные свидетельствуют об увеличении содержания серы в апатитах, в процес-

N₂	Номер пробы	F	P ₂ O ₅	CaO	SiO ₂	SO ₂		MnO	Na ₂ O	SrO	Y ₂ O ₂	Сумма
	- I F		2 - 5		2	x	±Λ				2 - 3	
1	PS-403 1-1	4 52	42.09	55 77	0.15	0.25	0.075	0.10	0.10	0	0	103.01
2	PS-403_1-2	3 64	42.41	55.28	0.15	0.15	0.050	0	0.09	0	Ő	101 73
3	PS-403_1-3	3 76	41.62	54 64	0.31	0.26	0.075	0	0	Ő	Ő	100.57
4	PS-403_3-1	3.80	42.64	55.63	0.09	0.14	0.050	0.08	0.07	0.08	Ő	102.53
5	PS-403_4-1	3 74	42.10	55 78	0.10	0.15	0.050	0.08	0	0.10	Ő	102.05
6	PS-403_4-2	3.68	42.26	56.05	0.16	0.10	0.050	0.09	0.08	0	Ő	102.41
7	PS-403 4-3	3.90	41.95	55.05	0.25	0.20	0.075	0.08	0.03	0	0	101.47
8	PS-406 ¹⁻¹ c	3.36	41.40	54.84	0.28	0.74	0.100	0.06	0.23	0	0	100.88
9	PS-406 ¹ -1k	2.89	42.27	55.16	0.11	0.10	0.050	0	0	0.19	0	100.72
10	PS-406 ¹ -2	2.98	41.53	54.78	0.28	0.70	0.100	0	0.18	0.14	0	100.59
11	PS-406 ¹ -2+	3.20	41.82	54.42	0.24	0.31	0.075	0	0.07	0.16	0	100.23
12	PS-406 ¹ -2k	3.63	42.20	54.47	0.16	0.19	0.075	0	0.03	0.21	0	100.89
13	PS-406 ¹⁻³	4.09	42.48	55.44	0.18	0.19	0.075	0.09	0.08	0.12	0	102.67
14	PS-406 ¹ -4	3.14	41.49	54.90	0.23	0.43	0.100	0	0.13	0.14	0	100.46
15	PS-56 1-2	3.56	41.94	54.58	0.21	0.56	0.100	0	0.14	0	0	100.99
16	PS-56_1-2c	3.58	40.97	54.89	0.25	0.76	0.100	0	0.27	0.07	0	100.44
17	PS-56 1-2k	3.39	41.60	55.38	0.07	0.09	0.050	0	0	0	0	100.54
18	PS-56_1-2c+	3.15	41.56	55.27	0.22	0.61	0.100	0	0.25	0	0	101.05
19	PS-56_1-2k+	3.51	42.31	55.30	0.10	0.11	0.050	0	0	0.10	0	101.43
20	PS-56v_1-3	3.60	42.14	55.35	0.12	0.45	0.075	0	0.22	0.07	0	101.95
21	PS-56_1-4	3.22	42.32	54.63	0.10	0.26	0.075	0.09	0.06	0.10	0	100.78
22	PS-56_1-5	3.51	42.18	55.04	0.17	0.29	0.075	0	0.06	0	0	101.24
23	PS-56_1-6	3.81	42.25	55.10	0.06	0.16	0.075	0	0	0.08	0	101.46
24	PS-56_1-7	4.07	42.60	55.03	0.16	0.13	0.050	0	0.06	0	0	102.05
25	PS-56_2-1	3.79	41.35	54.78	0.12	0.65	0.100	0	0.24	0.08	0	101.01
26	PS-56_2-1c	3.73	41.42	55.38	0.18	0.61	0.100	0	0.26	0.09	0	101.66
27	PS-56_2-2k	3.73	41.98	55.64	0.18	0.16	0.075	0	0	0.07	0	101.75
28	PS-393_1-2c	3.69	41.44	54.44	0.12	0.26	0.075	0.15	0.13	0.10	0.14	100.47
29	PS-393_1-2k	3.85	41.45	54.90	0.03	0.16	0.075	0.11	0.19	0.37	0.10	101.05
30	PS-393_1-1+	4.33	42.77	55.42	0.00	0.03	0.050	0	0	0.24	0	102.79
31	PS-393_1-3	4.18	42.07	55.36	0.10	0.19	0.075	0.10	0.10	0	0	102.10
32	PS-393_1-2	4.16	40.82	54.22	0.18	0.98	0.125	0.14	0.36	0.14	0	101.00
33	PS-393_1-2+	3.77	41.02	54.76	0.20	1.08	0.125	0.15	0.38	0.13	0	101.49
34	PS-393_1-4	3.72	42.24	55.13	0.10	0.20	0.075	0.11	0.06	0	0	101.55
35	PS-396_1-1	3.91	42.58	56.86	0.09	0.13	0.050	0	0.06	0	0	103.63
36	PS-396_1-2	4.08	41.61	55.59	0.14	0.44	0.100	0.08	0.16	0	0	102.11
37	PS-396_1-3	4.52	40.93	55.08	0.41	0.17	0.050	0	0.08	0.08	0	101.20
38	PS-396_1-4	4.13	42.28	55.93	0.11	0.15	0.050	0	0	0.10	0	102.71
39	PS-396_1-2-1	3.28	42.38	55.15	0.25	0.15	0.075	0.11	0.09	0.10	0	101.51
40	PS-396_1-2-2	3.68	41.31	54.47	0.20	0.79	0.100	0.08	0.33	0.23	0	101.09
41	PS-396 1-2-4	4.24	41.23	54.03	0.24	1.05	0.125	0.09	0.20	0.17	0	101.25

Таблица 1. Химический состав отдельных зерен апатитов из пород Шарташского гранитного массива и Березовского золоторудного поля (мас. %)

Примечание. 1–7 – гранит, 8–14 – м/з гнейсоватый тоналит, Шарташский массив; 15–27 – с/з гранит, карьер Изоплит; 28–34 – дайка гранит-порфира; 35–41 – березит, рудный склад, шахта "Центральная", Березовское рудное поле. Индексами -с, -к обозначены центр и край зерна, соответственно.

се становления Шарташского массива – от гранитов главной фазы к жильным сериям, завершающим его формирование, достигая наиболее высоких значений в апатитах даек синрудных гранитпорфиров Березовского месторождения и в апатитах березитов по ним (рис. 1). Так, в апатитах из среднезернистых гранитов Шарташского гранитного карьера содержание SO₃ составляет 0.15–0.26 мас. %, а из даек гранодиорита и мелкозернистого лейкократового гранита – 0.35 и 0.39 мас. %, соответственно.

среднезернистых гранитов карьера Изоплит, здесь же наблюдаются и максимальные вариации (от 0.13 до 0.76 мас. %). Аналогичный разброс в содержаниях SO₃ обнаруживают апатиты в дайке мелкозернистого гнейсовидного тоналита.
Содержания SO₃ нарастают в апатитах из синруд-

ных даек гранит-порфиров (0.26–1.08 мас. %) и метасоматитов (березитов) по ним (0.44–1.05 мас. %), отобранных на рудном складе шахты "Центральная" Березовского рудника.

Существенно выше содержания SO₃ в апатитах

Рис. 2. Карта распределения интенсивности характеристического излучения линии S Kα, апатит из среднезернистого гранита, карьер Изоплит.

Важная информация следует и из наличия зональности в распределении этого летучего элемента в составе отдельно взятых зерен апатита. Площадное картирование таких зональных зерен отчетливо выявляет наличие в них резко выраженных дискретных зон с повышенным содержанием серы. Это, как правило, центральные участки зональных кристаллов, на периферии сечений содержания SO₃ резко понижены.

Наиболее выразительное площадное картирование серы получено в апатите из среднезернистого шарташского гранита в карьере Изоплит, где отчетливо проявляется описанная выше зональность (рис. 2). В центре кристаллов здесь находятся сравнительно узкие стержневидные зоны с наиболее высоким содержанием SO₃. На верхнем рисунке в стержневидной центральной зоне одного из наиболее крупных по размерам кристаллов апатита содержание SO₃ составляет 0.79 мас. %, а в периферийной части кристалла оно падает до 0.10 мас. %, т.е. снижается практически на порядок. На нижнем рисунке в центральной стержневидной зоне мелкого кристалла апатита, образующего включение в биотите, содержание SO₃ составляет 0.61 мас. %, а в остальной части только 0.16 мас. %.

Близкая зональность в распределении серы, на фоне общего роста ее концентраций, наблюдается

и в апатитах из синрудных даек гранит-порфиров и в апатите березитов Березовского месторождения (пробы отобраны на шахте "Центральная"). Максимальные содержания серы в центральной части отдельных зёрен апатита в таких синрудных дайках гранит – порфиров могут достигать 1.08 мас. % (рис. 3). В апатите из березита проявляется аналогичная закономерность, возможно, отражающая унаследованную эволюцию состава флюидов: наиболее высокое содержание серы также наблюдается в центре зерен (в одном образце с содержаниями 0.79–1.05 мас. %, в другом 0.53–0.74 мас. %) на фоне ее содержаний 0.13-0.15 мас. % в краевых частях (рис. 4). В отличие от магматических апатитов, здесь обогащенная серой центральная зона в некоторых случаях не имеет четкой стержневидной формы, характеризуясь более широким площадным развитием, в других стержневидность вполне отчетлива.

Наиболее значимой геохимической характеристикой породо- и рудообразующего флюидов для золотоносных окраинно-континентальных плутонов и связанных с ними золото-сульфидно-кварцевых месторождений является низкая хлороносность [2–4]. Об этом свидетельствует низкое содержание Cl в апатите и в сосуществующих гидроксилсодержащих силикатах (в амфиболе и биотите). Во всех

Рис. 3. Карта распределения интенсивности характеристического излучения линии S Kα, апатит из дайки гранит-порфира, шахта "Центральная" (рудный склад).

Рис. 4. Карта распределения интенсивности характеристического излучения линии S Kα, апатит из березита, шахта "Центральная"(рудный склад).

Рис. 5. Соотношение концентраций Cl в сосуществующих апатитах и биотитах (а), апатитах и амфиболах (б) как индикатор специализации надсубдукционных гранитоидов Урала на различное эндогенное оруденение.

Выделены поля: 1 – габбро-гранитные комплексы со скарново-магнетитовым оруденением, 2 – диорит-гранодиоритовые (андезитоидные) комплексы с Au-Cu порфировым и Au-Cu-Mo порфировым оруденением, 3 – тоналит-гранодиорит-гранитные комплексы окраинно-континентальных поясов с Au-сульфидно-кварцевым и Au-W оруденением.

ЕЖЕГОДНИК-2011, Тр. ИГГ УрО РАН, вып. 159, 2012

этих минералах содержание Cl не превышает 0.1– 0.2% (рис. 5, поле 3), а коэффициент распределения Cl ($K_{д}^{Cl}$) между апатитом и амфиболом (биотитом) имеет минимальные значения, близкие к 1.0.

Новые данные по содержанию серы в апатитах продуктивного Шарташского массива и породах Березовского месторождения существенно дополняют ранний вывод об особенностях флюидной специализации золотоносных плутонов [3].

Во-первых, эти данные свидетельствуют о важной роли серы в составе как магматического, так и рудообразующего флюида. Сера в золотоносных окраинно-континентальных плутонах становится ведущим элементом-минерализатором, и именно она определяет, в соответствии с экспериментальными данными [1], интенсивную экстракцию и перенос золота рудообразующим флюидом, при подчиненной роли здесь хлоридной формы его переноса.

Второй результат – это выявленный дискретный характер распределения серы в зональных кристаллах апатита. Он свидетельствует о том, что можно выделить два основных этапа в режиме серы – *на раннем* относительно кратковременном и более высокотемпературном этапе активность серы была максимальной с содержаниями до 0.80 мас. % в составе апатита и более, а затем *в процессе дальней*-*шей кристаллизации расплава* она резко дискретно понизилась (до 0.10% в апатите). Возможно, это было связано с ростом активности сероводорода на

поздне- и постмагматическом этапах, что сопровождалось массовой кристаллизацией золотоносных сульфидных минералов.

Исследования проведены по проекту УрО РАН, СО РАН и ДВО РАН № 12-С-5-1022 и № 12-С-5-1004, при финансовой поддержке программы Президиума РАН № 27 (проект 12-П-5-2015).

СПИСОК ЛИТЕРАТУРЫ:

- 1. Горбачев Н.С., Бругманн Г.Е., Налдретт А.Д. и др. Распределение Аи между флюидом, базальтом и сульфидом в магматических и постмагматических условиях (по экспериментальным данным) // Докл. АН. 1993. Т. 333. № 3. С. 356–359.
- Ферштатер Г.Б., Холоднов В.В., Кременецкий А.А. и др. Магматический контроль гидротермального золотого оруденения на Урале // Эндогенное оруденение в подвижных пояса: мат-лы XIII Чтений памяти А.Н. Заварицкого. Екатеринбург: ИГГ УрО РАН, 2007. С. 181–184.
- Ферштатер Г.Б., Холоднов В.В., Кременецкий А.А. и др. Золотоносные габбро-тоналит-гранодиоритгранитнын массивы Урала: возраст, геохимия, особенности магматической и рудной эволюции // Геология рудных месторождений. 2010. Т. 52, № 1. С. 65–84.
- 4. *Холоднов В.В., Бушляков И.Н.* Галогены в эндогенном рудообразовании. Екатеринбург: УрО РАН, 2002. 395 с.