ГЕОХРОНОЛОГИЯ

О ВОЗРАСТЕ ГРАНИТОИДОВ НЯЛИНСКОЙ ПЛОЩАДИ ФУНДАМЕНТА ЗАПАДНОЙ СИБИРИ

© 2012 г. К. С. Иванов, Ю. В. Ерохин, Ю. Н. Федоров*

Существует ряд схем районирования фундамента Западной Сибири [2, 4, 6-8, 11-13 и др.] и продолжения в пределы Западной Сибири палеозойских складчатых поясов, окружающих плиту, и их структурно-формационных зон. Фундаментом западной части Западно-Сибирской плиты являются структурные зоны восточного сектора Урала, а фундаментом востока плиты служат комплексы Сибирской платформы и ее складчатого обрамления. Также общей чертой схем районирования фундамента Западно-Сибирской плиты является наличие непосредственно восточнее уралид крупного блока алтаид (казахстанид), постепенно выклинивающегося к северу. Эти главные мегазоны разделены крупными офиолитовыми сутурами – Валериановской и Чарской. В данной работе мы приводим первые сведения о гранитоидах, предположительно отнесенных нами к алтаидам. Они обнаружены на Нялинской нефтегазопромысловой площади, расположеннной в 40-45 км северо-восточнее г. Ханты-Мансийск на северном (правом) берегу реки Обь. На площади пробурено несколько скважин, одна из которых вошла в кристаллический доюрский фундамент. Скважина № 13 на глубине 3040 м вскрыла (и в них была остановлена) сплошные средне-крупнозернистые гранитоиды белого и слабо-розового цвета. Породы местами сильно трещиноваты, легко разрушаются, то есть подверглись влиянию процессов выветривания и/или других вторичных изменений.

В шлифах гранитоиды сложены агрегатом кварца, плагиоклаза, карбоната и слюды. Никаких реликтов калиевого полевого шпата не сохранилось. Плагиоклаз, по данным микрозондового анализа, относится к чистому альбиту (табл. 1, ан. 1-3) и содержит небольшую примесь кальция (CaO до 0.4 мас. %) и калия (K₂O до 0.12 мас. %). В матрице полевого шпата наблюдается большое количество мелких (до 0.02 мм) вростков белой слюды явно вторичного генезиса, и скопления белесого карбоната. По данным химического анализа, карбонат относится к железистому доломиту (табл. 1, ан. 4–5) с содержанием анкеритового минала до 31%. Некоторая часть доломита ассоциирует с коричневым карбонатом, который как поздний минерал выполняет открытые трещины и полости в породе. По данным микрозондового анализа, он относится к сидериту (табл. 1, ан. 6-7) с присутствием миналов магнезита (до 24%) и кальцита (до 5%). Слюда, кроме включений в плагиоклазе, встречается и в виде крупных лейст, размером до 1-1.5 см в длину. В этих чешуях отмечаются скопления зерен рутила и пластинок вторичных гидроксилов железа. Вероятно, данные лейсты ранее являлись биотитом. По химическому составу белая слюда из матрицы плагиоклаза (табл. 1, ан. 8-9) практически не отличается от своего аналога из крупных чешуй (табл. 1, ан. 10-12) и относится к мусковиту. В отдельных случаях в минерале появляется существенная доля минала парагонита (до 18%, см. ан. 12). В целом слюда имеет вторичный генезис, лишена фтора, титана и железа; в лейстах развивалась по первичному биотиту, а в плагиоклазе за счет его очищения от примесей

N⁰	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	CaO	MgO	Na ₂ O	K ₂ O	F	Сумма
1	67.51	0.02	19.33	0.01	0.13	0.09	0.40	-	12.00	0.12	-	99.61
2	67.97	_	19.44	0.03	_	0.04	0.25	-	11.90	0.11	-	99.74
3	68.60	0.03	19.28	0.03	_	-	0.32	0.01	12.29	0.05	-	100.60
4	0.08	0.01	0.03	0.02	10.31	0.47	31.45	10.55	0.01	_	-	52.94
5	0.09	0.04	0.05	0.01	10.67	0.49	31.65	9.81	_	_	-	52.80
6	0.06	_	0.04	0.08	44.35	1.21	2.58	8.52	0.02	0.01	-	56.87
7	0.33	0.03	0.22	0.02	46.32	1.01	2.76	7.99	_	0.03	-	58.71
8	48.06	-	28.37	0.49	1.89	0.05	0.02	1.50	0.16	9.50	0.15	90.21
9	48.77	0.02	29.39	0.11	2.29	0.01	0.02	1.74	0.19	10.21	0.11	92.84
10	47.41	0.04	31.79	0.04	3.51	-	0.17	1.04	0.09	8.19	0.13	92.42
11	49.68	0.06	32.62	0.46	2.11	0.07	0.25	0.94	0.08	8.45	0.13	94.85
12	48.00	0.08	32.89	0.01	1.00	-	0.06	0.30	1.21	9.67	0.16	93.36

Таблица 1. Химический состав (мас. %) минералов из гранитоида Нялинской площади

Примечание. Ан. 1–3 – альбит, ан. 4–5 – доломит, ан. 6–7 – сидерит, ан. 8–12 – мусковит. Лаборатория ФХМИ ИГГ УрО РАН, микроанализатор Сатеса SX 100, аналитик В.В. Хиллер.

* ООО "КогалымНИПИнефть", г. Тюмень

Нялинская 13/3042 цирконы 100 мкм 100 мкм

Рис. 1. Катодолюминесцентное изображение цирконов из гранитоидов (Нял 13/3042 м).

калия и, вероятно, полного разложения первичного калишпата. Из акцессорных минералов диагностируются цирконы и апатиты, оба минерала образуют хорошо ограненные призматические кристаллы. Апатит, по данным микрозондового анализа, чисто кальциевый и практически не содержит каких-либо примесей, при этом количество фтора в минерале достигает 3.1 мас. % и, по всей видимости, он относится к фторапатиту. Из других минералов можно упомянуть барит, который образует небольшие скопления в поздних карбонатных прожилках, а также самородное серебро, местами отмечающееся по всей матрице поролы в виде мелких (до 5 мкм) зерен. Таким образом, порода подверглась процессу пропилитизации с интенсивным развитием вторичных минералов (альбита, серицита и карбоната). Подобные изменения широко проявлены в фундаменте Западной Сибири, особенно на контакте доюрских комплексов с водонасыщенным чехлом более молодых вышележащих осадочных пород. Учитывая низкотемпературный характер изменения гранитоидов, мы полагаем, что цирконы и апатиты как устойчивые акцессорные минералы, не подверглись вторичным изменениям и сохранили свой первичный состав.

Вещественный состав гранитоида Нялинской площади приведен в табл. 2. По петрохимическому типу порода относится к обычным гранитам нормально-щелочного ряда. Повышенное содержание потерь при прокаливании (до 5%) указывает на то, что порода подверглась вторичным преобразованиям. На диаграммах Дж. Пирса гранитоид попадает в область гранитов вулканических дуг (что отвечает также гранитоидам активной континентальной окраины и океанических дуг); это позволяет относить их к гранитам І-типа. По распределению редких земель (в них идет постепенное нарастание легких лантаноидов и отсутствуют какие-либо аномалии) проба Нялинской площади практически подобна своим аналогам из Северо-Нялинской, а также гранитоидам Шаимского гранито-сланцевого пояса [5, 9 и др.].

Цирконы из пробы Нял13/3040 характеризуются размерами от 100 до 150 мкм, редко – до 250 мкм. Они имеют ритмично-зональное внутреннее строение, нередко с секториальностью. Кристаллы хорошо огранены, имеют короткопризматический до изометричного габитус, обычно с развитием двух дипирамид (рис. 1). Определение U-Pb возраста по цирконам было выполнено на ионном микрозонде SHRIMP-II в ЦИИ ВСЕГЕИ, в соответствии с методикой, описанной в работе [15]. Было проанализировано 9 кристаллов циркона. Все полученные датировки легли на конкордию в область 430–470 млн. лет (рис. 2) и дают средний возраст 442.2 \pm 6.9 млн. лет, то есть попадают на границу силура и ордовика.

На Урале подобные надсубдукционные гранитоиды окраинно-континентального типа формировались гораздо позднее, примерно с позднего девона [14 и др.], поэтому мы предполагаем, что данные

Элементы	Нял13/3040	Элементы	Нял13/3040	Элементы	Нял13/3040	Элементы	Нял13/3040
SiO ₂	67.16	V	54.17	La	11.60	Yb	0.62
TiO ₂	0.34	Cr	6.08	Ce	24.02	Hf	0.24
Al ₂ O ₃	15.69	Co	6.37	Pr	3.11	Та	0.52
Fe ₂ O ₃	1.28	Ni	49.59	Nd	12.74	W	0.31
FeO	1.90	Cu	40.13	Sm	2.17	Re	0.001
MnO	0.09	Zn	67.05	Eu	0.57	T1	0.17
CaO	1.29	Ga	29.61	Tb	0.23	Pb	4.66
MgO	1.18	Ge	0.87	Gd	1.66	Bi	0.10
Na ₂ O	4.60	As	1.05	Dy	1.07	Th	2.00
K ₂ O	1.86	Se	0.70	Но	0.21	U	0.83
P_2O_5	0.12	Rb	41.72	Er	0.61	Y	5.71
П.п.п.	4.88	Sr	290.42	Tm	0.09	Zr	8.28
Li	4.72	Sc	6.60	Mo	0.11	Nb	5.64
Be	0.75	Cs	0.68	Ba	207.35	Cd	0.07

Таблица 2. Химический (вес. %) и микроэлементный (г/т) состав гранитоида Нялинской площади

Примечание. ИГГ УрО РАН, лаборатория ФХМИ (Н.П. Горбунова, Н.В. Чередниченко и др.).

Рис. 2. U-Pb (SHRIMP-II) данные для цирконов из гранитоидов скважины (Нял 13/3042 м).

граниты относятся к алтаидам. В раннепалеозойское время (кембрий-силур) Алтае-Саянская складчатая область была представлена островодужными системами, аккреционно-субдукционными зонами и окраинно-континентальными магматическими дугами [1 и др.]. В данном районе, по современным геотектоническим реконструкциям [3, 10 и др.], в позднем кембрии и ордовике происходила коллизия Кузнецко-Алтайской дуги с Сибирским кратоном. Она зафиксирована складчатостью, метаморфизмом и внедрением гранитоидов.

Таким образом, нами изучен вещественный состав и получены позднеордовикско-раннесилурийские датировки гранитоидов Нялинской площади фундамента Западно-Сибирского мегабассейна. Установлено, что породы подверглись метасоматическим преобразованиям, предположительно в виде процесса пропилитизации. Образование гранитоидов Нялинской площади происходило, скорей всего, в условиях активной континентальной окраины, то есть в надсубдукционной обстановке. Возраст гранитов, по результатам U-Pb-датирования цирконов, составляет 442.2 \pm 6.9 млн. лет, что доказывает развитие алтаид в фундаменте Западной Сибири восточнее г. Ханты-Мансийск.

Исследования проведены при частичной поддержке РФФИ (11-05-00098а), проекта УрО 11-5-07-НДР и интеграционного проекта СО-УрО "Геологическое строение... палеозоя Западно-Сибирской геосинеклизы и ее складчатого обрамления".

СПИСОК ЛИТЕРАТУРЫ

- Алабин Л.В. Генетическая природа и металлогения раннепалеозойской гранитоидной формации Алтае-Саянской складчатой области // Тез. докл. Всеросс. совещ., посвящ. 100-летию со дня рождения акад. Ю.А. Кузнецова. Новосибирск: Гео, 2003. С. 13–14.
- Бочкарев В.С., Нестеров И.И. (мл.), Брехунцов А.М. Тектоника фундамента Западно-Сибирской геосинеклизы // Фундамент, структуры обрамления Западно-Сибирского мезозойско-кайнозойского осадочного бассейна, их геодинамическая эволюция и проблемы нефтегазоносности: мат-лы Всеросс. науч. конф. Тюмень–Новосибирск: СибНАЦ, 2008. С. 26–28.
- 3. Добрецов Н.Л. Эволюция структур Урала, Казахстана, Тянь-Шаня и Алтае-Саянской области в Урало-Монгольском складчатом поясе // Геология и геофизика, 2003. Т. 44, № 1-2. С. 5–27.
- Елкин Е.А., Сенников Н.В., Бахарев Н.К. и др. Основные черты современной структуры и история формирования докембрийско-палеозойского Западно-Сибирского осадочного бассейна // Фундамент, структуры обрамления Западно-Сибирского мезозойскокайнозойского осадочного бассейна, их геодинамическая эволюция и проблемы нефтегазоносности: мат-лы Всеросс. науч. конф. Тюмень–Новосибирск: СИБНАЦ, 2008. С. 75–80.
- Иванов К.С., Ерохин Ю.В., Пономарев В.С. и др. Гранитоидные комплексы фундамента Западной Сибири // Состояние, тенденции и проблемы развития нефтегазового потенциала Западной Сибири. Тюмень: ЗапСибНИИГГ, 2007. С. 49–56.
- Иванов К.С., Коротеев В.А., Печеркин М.Ф. и др. История геологического развития и строение фундамента западной части Западно-Сибирского нефте-

газоносного мегабассейна // Геология и геофизика. 2009. № 4. С. 484–501.

- 7. Иванов К.С., Федоров Ю.Н., Коротеев В.А., Кормильцев В.В. Уралиды в структуре фундамента Западной Сибири // Горные ведомости. 2006. № 8(27). С. 16–29.
- Клец А.Г., Конторович В.А., Иванов К.С. и др. Геодинамическая модель доюрского основания – основа нефтегазогеологического районирования верхнедокембрийско-нижнетриасового структурного этажа Западно-Сибирской нефтегазоносной провинции // Пути реализации нефтегазового и рудного потенциала ХМАО. Т. 1. Ханты-Мансийск, 2007. С. 79–90.
- Пономарев В.С. Вещественный состав гранитоидов и их метаморфического обрамления из фундамента Приуральской части Западно-Сибирского мегабассейна. Автореф. дисс. ... канд. геол.-мин. наук. Екатеринбург: ИГГ УрО РАН, 2011. 22 с.
- Рязанцев А.В. Структурный план среднего и верхнего палеозоя Урало-Монгольского пояса, проблема поздних деформаций // Геология Казахстана и проблемы Урало-Монгольского складчатого пояса. М.:

МГУ, 2001. С. 51–65.

- Сурков В.С., Смирнов Л.В. Консолидированные блоки земной коры в фундаменте Западно-Сибирской плиты // Фундамент, структуры обрамления Западно-Сибирского мезозойско-кайнозойского осадочного бассейна, их геодинамическая эволюция и проблемы нефтегазоносности: мат-лы Всеросс. науч. конф. Тюмень–Новосибирск: СИБНАЦ, 2008. С. 207–210.
- 12. Сурков В.С., Трофимук А.А. Мегакомплексы и глубинная структура земной коры Западно-Сибирской плиты. М.: Недра, 1986. 149 с.
- Федоров Ю.Н., Иванов К.С., Садыков М.Р. и др. Строение и перспективы нефтегазоносности доюрского комплекса территории ХМАО: новые подходы и методы // Пути реализации нефтегазового потенциала ХМАО. Т. 1. Ханты-Мансийск, 2004. С. 79–90.
- 14. Ферштатер Г.Б. Гранитоидный магматизм и формирование континентальной земной коры в ходе развития Уральского орогена // Литосфера. 2001. № 1. С. 62–85.
- Williams I.S. Applications of microanalytical techniques to understanding mineralizing processes // Reviews in Economic Geology. 1998. V. 7. P. 1–35.