МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЙ 🛛 💳

АТОМИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАДИАЦИОННОГО И ХИМИЧЕСКОГО РАЗУПОРЯДОЧЕНИЯ СТРУКТУРЫ МОНАЦИТА

© 2012 г. Н. С. Виноградова, А. В. Поротников, Ю. В. Щапова, С. Л. Вотяков

В последние годы активно развивается метод химического (неизотопного) микрозондового датирования U-Th-минералов (см. например, [8, 10, 11]). Метод корректен при условии, что содержание нерадиогенного Pb в минерале пренебрежимо мало, и его U-Th-Pb-система закрытая. Наиболее часто датируются монациты: в них содержание нерадиогенного Pb менее 1 ppm, а потери радиогенного реализуются лишь в отдельных случаях. Несмотря на широкий опыт использования метода, остается нерешенным ряд вопросов, касающихся исследования в нем особенностей кристаллохимии и изоморфизма ионов U, Th, Pb, а также физики радиационных эффектов и поиска на этой основе материаловедческих критериев замкнуто-

Таблица 1. Параметры межатомного потенциала Букингема для расчета структуры монацита

Пара-	Взаимодействующие атомы						
метр	Р–О	Ce–O	0–0	U–O	Th–O	Ca–O	
А, эВ	877.34	3096.1	22764.0	1055.0	1144.6	1227.7	
ρ, Å	0.3594	0.31761	0.149	0.3949	0.3949	0.3372	
С, эВ·Å	0	0	27.879	0	0	0	

Таблица 2. Расчетные и экспериментальные характеристики монацита

Vanautenuetura	Значение					
Ларактеристика	расчет	эксперимент*	δ**,%			
<i>a</i> , Å	6.716	6.788	-1.1			
<i>b</i> , Å	6.924	7.0164	-1.3			
<i>c</i> , Å	6.517	6.465	0.8			
β,°	105.5	103.4	2.0			
Объем V, Å ³	299.5	299.49	0.0			
Плотность г/см ³	5.21	5.21	0.0			
P–O _i , Å	1.521 (01)	1.530	-0.9			
	1.558 (O2)	1.546	1.2			
	1.532 (O3)	1.539	-0.7			
	1.518 (O4)	1.535	-1.7			
Ce–O _i , Å	2.460 (O1)	2.452	0.8			
	2.527 (01')	2.534	-0.7			
	2.573 (O2)	2.563	1.0			
	2.644 (O2')	2.646	-0.2			
	2.776 (O2")	2.783	-0.7			
	2.481 (O3)	2.467	1.4			
	2.685 (O3')	2.684	0.1			
	2.455 (O4)	2.446	0.9			
	2.526 (04')	2.524	0.2			

Примечание. * –данные [9]; ** – $\delta = [(M_{pacu} - M_{scc})/M_{scc}] \times 100\% - отклонение расчетных параметров от экспериментальных значений.$

сти его U-Th-Pb-системы. Сложность большинства реальных физико-химических процессов при радиационном разрушении минералов не позволяет решить описанные проблемы исключительно экспериментальным путем. Представляется перспективным использовать для решения этого вопроса расчетные методы полуэмпирического структурного моделирования.

Цель работы – компьютерное моделирование идеальной структуры и оптимизация на этой основе параметров потенциалов межатомного взаимодействия в монаците; моделирование примесных и собственных дефектов структуры монацита – одиночных изоморфных примесей U⁴⁺, Th⁴⁺, Ca²⁺ в структурной позиции Ce³⁺, а также Si⁴⁺ в позиции P⁵⁺, парных дефектов U⁴⁺(Th⁴⁺)/Ca²⁺ и U⁴⁺(Th⁴⁺)/Si⁴⁺, одиночных вакансий атомов Ce, P и O и сложных (двойных) дефектов–вакансия катиона/вакансия кислорода; расчет пороговых энергий смещения атомов в радиационных процессах; оценка химического и радиационного факторов в разупорядочении структуры минерала.

Методика расчета. Для расчетов равновесных структур монацита использована программа GULP [5–7]; детали расчетной процедуры описаны в [2].

Моделирование идеальной структуры монацита и оптимизация параметров потенциалов межатомного взаимодействия

Моделирование структуры монацита проведено в ионном приближении; использованы кулоновский потенциал притяжения-отталкивания и короткодействующий потенциала Букингема; для учета эффектов поляризации применена оболочечная модель атома кислорода [2]. Численные параметры, входящие в выражения для потенциалов, были определены путем итерационного сближения ("подгонки") расчетных и экспериментальных значений структурных и физических характеристик монацита; использованные значения указаны в табл. 1. Заряды ионов были приняты равными формальным валентностям; заряд "оболочки" атома кислорода составлял –2.8690е; параметр взаимодействия "остов"-"оболочка" был равен 74.92 эВ·Å² [4]. Результаты расчета структурных характеристик бездефектного монацита и их сопоставление с экспериментальными данными представлены в табл. 2; наблюдается удовлетворительное совпадение результатов расчета и эксперимента; в частности, отклонение расчетных постоянных решетки от экспериментальных данных [9] составляет не более 3%. Таким образом, значения параметров потенциалов достаточно корректно воспроизводят структуру и могут быть использованы и при анализе дефектов примесной и собственной природы.

Моделирование дефектной структуры монацита с одиночными изоморфными примесями U⁴⁺, Th⁴⁺, Ca²⁺ и Si⁴⁺в структурных позициях Ce³⁺ и P⁵⁺, с двойными дефектами U⁴⁺(Th⁴⁺)/Ca²⁺ и U⁴⁺(Th⁴⁺)/Si⁴⁺

Фрагмент структуры монацита, иллюстрирующий особенности его ближнего порядка, представлен на рис. 1. В монаците катионы РЗЭ, U, Th, Ca и др. координированы неправильным полиэдром из 9 атомов О; длины всех связей Ме-О различны (2.446-2.783 Å для CePO₄); в структуре имеется четыре типа неэквивалентных атомов О1-О4. Изолированные искаженные тетраэдры РО₄ (длины связей 1.530–1.546 Å для CePO₄) связывают полиэдры в смешанные цепи в направлении оси с. Низкая симметрия структуры (моноклинная сингония, пространственная группа P2₁/n) и нерегулярность межатомных расстояний создают предпосылки для "подстраивания" (релаксации) позиций к особенностям примесных катионов - их размеру, заряду, электронному строению, что приводит к высокой изоморфной емкости монацита [3]. Вхождение в структуру гетеровалентных примесей Th⁴⁺ и U⁴⁺ требует компенсации их избыточного заряда, что осуществляется ионами Si⁴⁺ и (или) Ca²⁺ при изоморфизме хаттонитового $LREE^{3+}+P^{5+} \leftrightarrow Th^{4+}(U^{4+})+Si^{4+}$ и (или) чералитового $2LREE^{3+} \leftrightarrow Th^{4+}(U^{4+}) + Ca^{2+}$ типов. Нами рассмотрен случай как одиночных гетеровалентных примесей U^{4+} , Th⁴⁺, Ca²⁺ и Si⁴⁺ с нелокальной зарядовой компенсацией при изоморфизме чералитового и хаттонитового типа, так и случай парных дефектов U⁴⁺(Th⁴⁺)/Ca²⁺ и U⁴⁺(Th⁴⁺)/Si⁴⁺ с локальной зарядовой компенсацией при расположении примесей в полиэдрах, соединенных между собой общими ребрами.

Для всех случаев изоморфных замещений в монаците установлены значительные искажения размеров и формы полиэдров MeO_9 (табл. 3); наибольшие искажения катионной позиции наблюдаются при замещениях $U^{4+} \rightarrow Ce^{3+}$: в них значения среднеквадратичных отклонений межатомных расстояний S_{Me-O} от таковых в беспримесном кристалле максимальные. Замещения $Si^{4+} \rightarrow P^{5+}$ приводят к существенному (на 0.1 Å) увеличению размеров соответствующего тетраэдра. При этом изменяются и постоянные решетки минерала: в монаците с примесями $Th^{4+}(Ca^{2+})$ все они увеличиваются, в монаците с $U^{4+}(Si^{4+})$ часть из них увеличивается, а часть – уменьшается (см. табл. 3). Для парно-

Рис. 1. Фрагмент структуры монацита. РО₄ показаны в виде полиэдров, CeO₉ – в виде атомов со связями. О1–О4 – структурно неэквивалентные атомы кислорода в монаците.

го дефекта U⁴⁺(Th⁴⁺)/Ca²⁺ степень искажения полиэдров несколько ниже, а для U⁴⁺(Th⁴⁺)/Si⁴⁺ несколько выше, чем для одиночных примесей U⁴⁺(Th⁴⁺) и Ca²⁺ (см. табл. 3). Энергии связи компонентов парных дефектов U⁴⁺/Ca²⁺, Th⁴⁺/Ca²⁺ и U⁴⁺/Si⁴⁺ составляют 0.5, 0.6 и 0.8 эВ.

Наличие примесных ионов приводит к искажению длин связей Р-О в тетраэдрах в окружении примеси и к значительному разупорядочению фосфоркислородной подрешетки монацита; степень этого разупорядочения можно количественно характеризовать среднеквадратичным отклонением S_{P-Oi} межатомных расстояний от таковых в беспримесном кристалле (см. табл. 3). Наибольшие значения S_{P-Oi} фиксируются для связи P-O2, то есть эта связь испытывает максимальную релаксацию при введении примесей, что может быть связано с особенностями координации атомов О2 атомом Р и тремя атомами Се по сравнению с атомами О1, ОЗ и О4, которые окружены Р и двумя атомами Се. Установлено, что искажения структуры фосфоркислородной подрешетки вокруг примесных ионов U⁴⁺(Th⁴⁺) в монаците превышают таковые для кремнекислородной подрешетки в цирконе, в частности, для U^{4+} в цирконе $S_{Si-O} = 0.007$ Å [1], а в монаците S_{P-O} = 0.011-0.046 Å; представляется, что это связано с различным характером изоморфизма этих примесей - гетеровалентным в монаците и изовалент-

ВИНОГРАДОВА и др.

		Расчетные параметры структуры							
N	TT 1	G * Å	~~~ *	~ *	~++ 8	S _{P-Oi} ***, Å			
N Тип дефекта	S_{Me-O}^* , A	<i>ā</i> **, A	<i>b**</i> , A	<i>C</i> **, A	01	02	03	04	
			Одиночные	примесные де	ефекты				
1	U ⁴⁺	0.1291	6.732 (-)	6.871 (-)	6.675 (+)	0.021	0.046	0.011	0.026
2	Th^{4+}	0.0882	6.773 (+)	6.915 (+)	6.712 (+)	0.020	0.046	0.019	0.028
3	Ca ²⁺	0.1155	6.776 (+)	6.918 (+)	6.694 (+)	0.016	0.040	0.015	0.023
4	Si ⁴⁺	_	6.812 (+)	6.469 (-)	6.623 (-)	0.013	0.034	0.006	0.020
	Двойные примесные дефекты								
5	U^{4+}/Ca^{2+}	0.109/0.098	6.776 (+)	6.873 (-)	6.689 (+)	0.015	0.043	0.011	0.028
6	Th^{4+}/Ca^{2+}	0.070/0.100	6.779 (+)	6.916 (+)	6.696 (+)	0.015	0.043	0.011	0.028
7	U^{4+}/Si^{4+}	0.136	6.924 (+)	6.658 (+)	6.766 (+)	0.016	0.044	0.013	0.025
	Одиночные вакансии								
8	V _{O1}	_	6.969(+)	7.084(+)	7.012(+)	0.045	0.030	0.025	0.021
9	V _{O2}	_	6.984(+)	7.043(+)	7.002(+)	0.045	0.027	0.024	0.024
10	$V_{O3}^{\bullet \bullet}$	-	7.014(+)	7.060(+)	7.021(+)	0.046	0.038	0.021	0.026
11	$V_{O4}^{\bullet \bullet}$	—	6.962(+)	7.090(+)	7.013(+)	0.045	0.026	0.025	0.023
12	V _{Ce}	_	6.897(+)	7.021 (+)	6.779(+)	0.023	0.068	0.040	0.035
13	$V_P^{\prime\prime\prime\prime\prime\prime}$	_	6.609(-)	6.684(-)	6.283(-)	0.033	0.048	0.032	0.032
	I	I	Двойные вака	нсии катион/в	сислород	I	I	I	I
14	$V_{Ce/V_{01}(2.460)}^{""}$	_	6.768(-)	6.704(+)	6.941(-)	0.005	0.012	0.017	0.023
15	$V_{Ce}^{''''} V_{O1}^{\bullet \bullet} (2.527)$	—	6.838(+)	6.963(+)	6.701(-)	0.010	0.012	0.006	0.032
16	$V_{Ce}^{''''} V_{O2}^{\bullet \bullet} (2.573)$	_	6.894(+)	6.724(+)	6.740(-)	0.015	0.036	0.002	0.028
17	$V_{Ce}^{''''} V_{O2}^{\bullet \bullet} (2.644)$	—	6.998(+)	6.945(-)	6.750(+)	0.019	0.047	0.013	0.026
18	$V_{Ce}^{''''} V_{O2}^{\bullet \bullet} (2.776)$	_	6.746(-)	6.973(-)	6.297(Ц)	0.015	0.035	0.013	0.027
19	$V_{Ce}^{''''} V_{O3}^{\bullet \bullet}(2.481)$	—	6.879(+)	6.880(-)	6.882(+)	0.013	0.013	0.015	0.032
20	$V_{Ce}^{''''} V_{O3}^{\bullet \bullet}(2.585)$	_	6.835(+)	6.961(-)	6.709(+)	0.016	0.009	0.007	0.019
21	$V_{Ce}^{''''} V_{O4}^{\bullet \bullet} (2.455)$	_	6.474(-)	7.003(-)	6.650(+)	0.019	0.015	0.008	0.009
22	$V_{Ce}^{''''}V_{O4}^{\bullet\bullet}(2.526)$	_	6.872(+)	6.940(-)	6.807(+)	0.018	0.010	0.010	0.004

Таблица 3. Расчетные параметры структуры монацита с примесями U⁴⁺, Th⁴⁺, Ca²⁺, Si⁴⁺ и вакансиями (V) атомов Ce, P и O1-O4

Примечание. * $S_{Me-O} = \sqrt{\frac{\sum_{i} (\Delta R_{Me}^{i})^{2}}{9}}$ – усредненное среднеквадратичное значение отклонения расстояния Me–O_i от регулярного значения Ce–Q_i, где Me – примесный катион в позиции Ce и $\Delta R_{Me} = R(Me - O_{i}) - R(Ce - O_{i})$; **знак + (–) означает увеличение (уменьшение) \tilde{a} , \tilde{b} , \tilde{c} – межатомных расстояний в сравнении с идеальными, совпадающих в идеальной решетке с векторами элементарных трансляций; *** $S_{(P-O_{j})} = \sqrt{\frac{\sum_{i} (n_{i} - r_{0})^{2}}{n}}$ – среднеквадратичные отклонения расстояний P–O_j (j = 1–4) в окружении дефекта от регулярных значений в решетке (здесь r_{0} и x_{i} – регулярное межатомное расстояние P–O_j (j = 1–4) и расстояния P–O_j в ближайших к дефекту PO₄-тетраэдрах, соответственно; n – количество таких расстояний в ближайшем окружении дефекта).

ным в цирконе. Полученные модельные результаты позволяют интерпретировать природу значительного уширения рамановских спектров монацита [1] со сложным химическим составом.

Моделирование дефектной структуры монацита с вакансиями

Радиационное повреждение структуры монацита моделировали вакансиями $V_{O1-}^{\bullet\bullet}V_{O4}^{\bullet\bullet}$ атомов кислорода O1-O4 (рис. 2), вакансиями $V_{Ce}^{""}$ и $V_{P}^{""}$ атомов Се и Р, а также двойными вакансионными дефектами $V_{Ce}^{(n)}/V_{O1}^{(n)}(r_i) - V_{Ce}^{(n)}/V_{O4}^{(n)}(r_i)$, различающихся взаимным расположением компонентов двойного дефекта в пределах одного полиэдра (r_i – расстояние между ионами Ce³⁺ и O²⁻ в исходном бездефектном полиэдре CeO₉). Релаксация структуры вокруг кислородной вакансии в монаците приводит к смещению центрального атома фосфора в тетраэдре PO₄, содержащем вакансию, по направлению к плоскости трех оставшихся атомов O с образованием пирамиды PO₃; аналогичный ре-

зультат получен нами для кислородной вакансии в цирконе [2]. Структура дефекта PO₃ зависит от типа атома кислорода, который формирует вакансию; минимальный сдвиг атома Р из регулярной позиции наблюдается при образовании вакансии атома О2, вероятно, вследствие особенностей его координации. Показано, что вакансии всех структурных типов атомов О1-О4 могут приводить к увеличению постоянных решетки (см. табл. 3), причем это увеличение более значимо, чем в монаците с изоморфными примесями U⁴⁺, Th⁴⁺, Ca²⁺. Степень искажения фосфоркислородной подрешетки за счет вакансий различных типов атомов О практически одинакова и близка к таковой при наличии примесей; основной вклад в разупорядочение во всех случаях вносят связи Р-О1 (Р-О2). Искажения подрешетки монацита в окружении вакансий атомов О превышают таковые для вакансии О в цирконе: значение $S_{P-Oj} = 0.021 - 0.046$ Å в монаците, а в цирконе – $S_{Si-O} = 0.014$ Å [1].

При наличии катионных вакансий расстояния между атомами кислорода в дефектных полиэдрах увеличиваются; при этом возможно как увеличение постоянных решетки монацита (случай вакансии Се), так и их уменьшение (случай вакансии Р). Установлено, что образование вакансий атомов Р и Се приводит к заметному искажению РО₄тетраэдров в их ближайшем окружении, причем в наибольшей степени релаксируют связи Р-О2, что характерно и для случая примесных атомов. Значения энергии образования пар невзаимодействующих дефектов вида "вакансия + междоузельный атом" (дефектов по Френкелю), рассчитанные аналогично случаю подобных дефектов в цирконе [2], составляют 8.2, 16.3 и 5.0 эВ для Ce, P и O, соответственно. Вероятность образования вакансий атомов О получена наибольшей, вакансий Р – наименьшей; этот результат согласуется с представлениями о доминирующей роли кислородных вакансий в фосфатах и силикатах.

Анализ релаксации окружения сложных (двойных) дефектов вакансия катиона/вакансия кислорода $V_{Ce}^{m}/V_{O1}^{oo}(\mathbf{r}_i)$ показал значительную перестройку структуры ближайшего окружения таких дефектов и выявил ряд особенностей матрицы монацита по сравнению с цирконом. Так, образование двойного дефекта $V_{Ce}^{\bullet\bullet}/V_{O1}^{\bullet\bullet}$ (2.527Å), согласно расчету, не является энергетически выгодным; в процессе расчета вакансия кислородного атома О1 "рекомбинирует" с ионом кислорода из позиции ОЗ с образованием стабильного дефекта V_{Ce}/V_{O3}. Кроме того, в отличие от циркона, в котором релаксация структуры окружения двойных вакансионных дефектов приводит к образованию в решетке новых связей Si-O-Si (отсутствующих в бездефектном кристалле) и "полимеризации" тетраэдров [2], в монаците не зафиксировано какого-либо образования фосфорно-кислородных "мостиков" между

ЕЖЕГОДНИК-2011, Тр. ИГГ УрО РАН, вып. 159, 2012

Рис. 2. Фрагмент структуры монацита с вакансией атома О4.

тетраэдрами.

Рассчитанные значения ΔE разности структурной энергии решетки с дефектом и без него приведены в табл. 4. Рассчитанные на их основе значения энергии образования дефектов Се, О и Р по Френкелю составляют 8.2, 5.0 и 16.3 эВ соответственно; указанные значения типичны для оксидов и близки по порядку величины к таковым для циркона. Повышенное значение энергии образования дефекта Р по Френкелю согласуется с представлениями о малой вероятности образования вакансии этого атома в жесткой структурной единице фосфорнокислородном тетраэдре. С использованием значений ΔЕ рассчитаны также величины энергии связи компонентов сложных (двойных) дефектов; указанные энергии (1.7–3.2 эВ) несколько ниже значений энергии аналогичных дефектов в цирконе (3.5-5.2 эВ [2]). Из табл. 4 видно, что Е_{св} зависит от взаимного расположения компонентов; максимальной энергией связи компонентов характеризуется $V_{Ce}^{\bullet}/V_{O1}^{\bullet\bullet}$ (2.527Å), при образовании которого происходит значительная структурная перестройка ближайшего окружения, минимальной – V_{Ce}/V_{O2} (2.644). С использованием значений энергии образования дефектов $\Delta E_{\text{нерел}}$, вычисленных без релаксации ближайшего окружения, как описано в [2], нами впервые рассчитаны значения пороговых энергий смещения атомов Се, Р и О в монаците (35.3, 123.7 и 30.7 эВ, соответственно), которые являются важной характеристикой взаимодействия излу-

Таблица 4. Значения разности структурной энергии решетки без дефекта и с дефектом, вычисленные без релаксации ближайшего окружения ($\Delta E_{\text{нерел}}$) и с его релаксацией (ΔE), а также значения энергия связи ($E_{\text{св}}$) компонентов в двойных дефектах

N	Дефект	ΔΕ, эΒ	$\Delta E_{\text{нерел}}, \Im B$	Е _{св} , эВ
1	V _{Ce}	46.0	68.1	_
2	$V_P^{\prime\prime\prime\prime\prime}$	165.5	266.9	_
3	$V_{O1}^{\bullet\bullet}$	20.9	38.3	_
4	$V_{O2}^{\bullet \bullet}$	20.4	_	_
5	V _{O3}	20.5	_	_
6	$V_{O4}^{\bullet \bullet}$	20.5	_	_
7	$Ce_i^{\bullet\bullet\bullet\bullet}$	-29.6	2.5	_
8	$\mathbf{P}_{i}^{\bullet\bullet\bullet\bullet}$	-132.9	-19.5	_
9	O''_i	-10.1	23.0	_
10	$V_{Ce}^{''''}/V_{O1}^{\bullet\bullet}(2.460)$	64.2	_	2.70
11	$V_{Ce}^{(0)}/V_{O1}^{\bullet}(2.527)$	63.7	_	3.20
12	$V_{Ce}^{''''}/V_{O2}^{\bullet\bullet}(2.573)$	64.3	_	2.10
13	$V_{Ce}^{''''}/V_{O2}^{\bullet\bullet}(2.644)$	64.7	_	1.70
14	$V_{Ce}^{''''}/V_{O2}^{\bullet\bullet}(2.776)$	63.8	_	2.60
15	$V_{Ce}^{''''}/V_{O3}^{\bullet\bullet}(2.481)$	63.7	_	2.80
16	$V_{Ce}^{\bullet}/V_{O3}^{\bullet}(2.685)$	63.7	_	2.80
17	$V_{Ce}^{\bullet}/V_{O4}^{\bullet}(2.455)$	63.6	_	2.90
18	$V_{Ce}^{''''}/V_{O4}^{\bullet\bullet}(2.526)$	64.2	_	2.30

чения с веществом и позволяют проводить численные оценки концентрации дефектов, возникающих в минерале при облучении.

Выводы. Определены параметры межатомных потенциалов, позволяющие выполнять численное моделирование дефектной структуры монацита. Установлено, что при образовании одиночных изоморфных примесных дефектов U⁴⁺, Th⁴⁺, Ca²⁺ в структурной позиции Ce³⁺, а также Si⁴⁺ в позиции P^{5+} , парных дефектов $U^{4+}(Th^{4+})/Ca^{2+}$ и U⁴⁺(Th⁴⁺)/Si⁴⁺, одиночных вакансий атомов Се, Р и О и сложных (двойных) дефектов-вакансия катиона/вакансия кислорода положение ионов первой и второй координационных сфер существенно изменяется по сравнению с идеальной решеткой. Выявлено влияние перечисленных дефектов на искажения полиэдров, содержащих примесный катион, и на разброс межатомных расстояний фосфорнокислородной подрешетки монацита в области окружения дефекта. Показано, что структурное разупорядочение фосфорно-кислородной подрешетки монацита в большинстве случаев изоморфизма превышает разупорядочение кремнекислородной подрешетки циркона. Структурные искажения, возникающие в монаците за счет примесных и собственных дефектов, близки по величине,

тогда как в цирконе роль вакансионных дефектов более значительна, чем примесных. В отличие от циркона, в монаците не зафиксированы какие-либо фосфорно-кислородные "мостики" между тетраэдрами при формировании двойных вакансионных дефектов. Рассчитаны энергии образования дефектов по Френкелю (8.2, 16.3 и 5.0 эВ для Се, Р и О, соответственно) и пороговые энергии смещения атомов в монаците (35.3, 123.7 и 30.7 эВ для Се, Р и О, соответственно).

Работа выполнена в рамках федеральной программы "Научные и научно-педагогические кадры инновационной России" (контракт № 02.740.11.0727), а также программы Президиума РАН 23 (проект № 12-П-5-1020), междисциплинарного проекта УрО РАН № 12-М-235-2063 и при поддержке гранта РФФИ № 11-05-00035.

СПИСОК ЛИТЕРАТУРЫ

- Вотяков С.Л., Щапова Ю.В., Хиллер В.В. Кристаллохимия и физика радиационно-термических эффектов в ряде U-Th-содержащих минералов как основа для их химического микрозондового датирования. Екатеринбург: УрО РАН, 2011 г. 336 с.
- Замятин Д.А., Поротников А.В., Щапова Ю.В., Вотяков С.Л., Структура и свойства радиационных дефектов в цирконе по данным компьютерного моделирования // Ежегодник-2011. Тр. ИГГ УрО РАН. Вып. 159. 2012. С. 229–235.
- Boatner L.A. Sinthesis, structure and properties of monazite, pretulite and xenotime // In: Phosphates. Reviews in Mineralogy and Geochemistry. 2003. V. 48. P. 87–122.
- Catlow C.R.A. Library: http://www.ri.ac.uk/DFRL/ research_pages/resources/ Potential_database /O/ index. html.
- Gale J.D. GULP: a computer program for the symmetry-adapted simulation of solids // J. Chem. Soc. Faraday Trans. 1997. V. 93 (4). P. 629–37.
- 6. *Gale J.D.* GULP: Capabilities and prospects // Z. Kristallogr. 2005. V. 220. P. 552–554.
- Gale J.D., Rohl A.L. The General Utility Lattice Program // Mol. Simul. 2003. V. 29. P. 291.
- Montel J.-M., Foret S., Veschambre M. et al. Electron microprobe dating of monazite // Chem. Geol. 1996. V. 131. P. 37–53.
- Ni Y., Hughes J.M., Mariano A.N. Crystal chemistry of the monazite and xenotime structures // Amer. Miner. 1995. V. 80. P. 21–26.
- Rhede D., Wendt I., Forster H.-J. A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals // Chem. Geol. 1996. V. 130. P. 247–253.
- Suzuki K., Adachi M. Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids // J. Metamorph. Geol. 1998. V. 16. P. 23–37.