МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЙ 🛛 💳

СТРУКТУРА И СВОЙСТВА РАДИАЦИОННЫХ ДЕФЕКТОВ В МАТРИЦЕ ЦИРКОНА ПО ДАННЫМ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

© 2012 г. Д. А. Замятин, А. В. Поротников, Ю. В. Щапова, С. Л. Вотяков

Синтетический аналог минерала циркона рассматривается в качестве перспективной матрицы для утилизации радиоактивных отходов; при их распаде происходит значительное радиационное повреждение структуры материала вейст-формы (ее метамиктизация) с образованием за счет пробега высокоэнергетических α-частиц вакансионных точечных дефектов высокой плотности и прямая аморфизация структуры в каскадах атомных смещений за счет пробега тяжелых ядер отдачи. Указанные процессы вызывают снижение основных эксплуатационных характеристик матрицы – ее химической стабильности и механической прочности.

В последние годы общие закономерности радиационного повреждения матрицы циркона достаточно подробно исследованы экспериментально методами рентгенографии, просвечивающей электронной миркоскопии, твердотельной спектроскопии, предложена стадийная модель нарушения дальнего порядка; разработаны методики экспериментальных оценок степени радиационного повреждения циркона на основе данных спектроскопии (см., например, [2, 13, 22]).

Известно, что основным типом стабильных радиационных дефектов в силикатах являются пары вакансия+междоузельный атом (дефекты по Френкелю), которые образуются после выбивания атома из положения равновесия α-частицей (ядром отдачи), смещения его на некоторое расстояние в междоузлие решетки и последующей структурной релаксации атомов кристалла. При миграции междоузельного атома на поверхность кристалла оставшаяся вакансия формирует дефект по Шоттки. В цирконе наиболее распространены моно- и дивакансии атомов О; различия их свойств и термической стабильности обусловлены различными вариантами их локальной (нелокальной) зарядовой компенсации примесными атомами РЗЭ, Y, вакансиями Zr и др. [1, 5, 6, 10, 15, 17, 27].

Ранее [8, 11, 19, 23, 24, 30, 31] проводилось моделирование дефектов и степени радиационного повреждения циркона методом полуэмпирического атомистического моделирования, методом Монте-Карло, молекулярной динамики, неэмпирическими методами квантовой химии. Тем не менее, структурные повреждения на уровне ближнего порядка изучены недостаточно; модели строения точечных дефектов в литературе практически отсутствуют; противоречива информация об энергии образования дефектов и пороговой энергии смещения атомов E_{d_3} важнейшей характеристике радиационного повреждения, необходимой для расчета концентрации радиационных дефектов. В этой связи актуально развитие подходов к расчету локальных структурных и энергетических характеристик поврежденной матрицы циркона и построение на этой основе микромоделей ее радиационного разупорядочения. Ранее нами [3, 7] исследована локальная структура и свойства примесных дефектов в цирконе и твердых растворах циркон-коффинит методом полуэмпирического структурного моделирования, реализованным в программе GULP [14]; в настоящей работе указанный метод применен для исследования структуры радиационных дефектов в цирконе.

Цель работы – полуэмпирическое атомистическое моделирование радиационных дефектов в цирконе; анализ закономерностей структурной релаксации решетки при образовании вакансий; расчет энергии образования радиационных дефектов; определение значений пороговой энергии смещения атомов при радиационном повреждении циркона.

Методика расчета. Для расчетов равновесных структур матрицы циркона использована программа GULP, в основе которой лежат представления о кристалле как совокупности точечных ионов, участвующих в дальнодействующих электростатических (кулоновских) и короткодействующих взаимодействиях в форме потенциала Букингема (короткодействующее отталкивание атомов и Ван-дер-Ваальсово притяжение) (табл. 1). Заряды ионов Zr и О приняты равными +4e и -2e, соответственно. Для учета эффектов поляризации использована оболочечная модель, в которой ионы О представлены суперпозицией заряженных "остова" и "оболочки", связанных друг с другом квадратичным потенциалом взаимодействия и способных смещаться на расстояние г относительно друг друга, создавая локальные дипольные моменты в соответствии с симметрией электростатического поля катионов. Для имитации направленности связей использован трехчастичный угловой деформационный потенциал. Параметры расчетных потенциалов для ионов Si, О согласно работе [9], для Zr – согласно [18]. В процессе расчета суммарная энергия межатомных взаимодействий минимизируется варьированием атомных координат и параметров элементарной ячейки.

Структуру и свойства дефектов рассчитывали в модели "вложенных сфер" Мотта-Литтлтона [20],

ЗАМЯТИН и др.

Потенциал Букингема	Атом 1	Атом 2	А, эВ		ρ, Å	С, эВ·Å ⁶	R _{min} , Å	R _{max} , Å
$V_{ij}^{\text{kop}}(r_{ij}) = A_{ij} \exp(-\frac{r_{ij}}{\rho_{ij}}) - C_{ij} r_{ij}^{-6}$	Si	0	1283.9073		0.3205	10.6616	0	10
	Zr	Ο	1453.8		0.35	0.0	0	10
	0	0	22764.0 0.1490		27.89	0	10	
Трехчастичный потенциал	Атом 1	Атом 2	Атом 3	k _B	, эВ∙рад⁻²	Θ°	R _{min} , Å	R _{max} , Å
$V_{ijk}^{mpex}(\theta) = \frac{1}{2} k_B (\theta - \theta_0)^2$	Si	0	0	2.09724		109.47	0	1.9 (Si-O)
							0	3.5 (0-0)
05	Атом 1			1	D Å -?	Заряд, е		
Осолочечная модель	остов	оболочка		к, эр. А		остов оболо		оболочка
$V^{ofonov}(r) = \frac{1}{2}kr^2$	0	0			74.92 0.86902		2	-2.86902

Таблица 1. Параметры потенциалов межатомных взаимодействий для Si, Zr и O

Примечание. R_{min}, R_{max} – радиусы действия потенциала Букингема и трехчастичного потенциала.

в которой кристалл с дефектом условно делится на три области двумя концентрическими сферами так, что дефекты внутри первой сферы равноудалены от ее поверхности; только одна из этих областей – центральная – участвует в процедуре минимизации энергии всех перечисленных взаимодействий; промежуточная область играет роль экранирующего слоя; внешняя область, где влияние дефекта ничтожно, рассматривается как поляризуемый диэлектрический континуум. Радиусы сфер были определены специальными расчетами и составили 10 и 14 Å для одиночных дефектов (что соответствует 630 атомам в центральной сфере и 1150 атомов в промежуточной области); 12 и 16 Å для двойных дефектов (1112 атомов атомов в центральной сфере, 1505 атомов в промежуточной области).

Рис. 1. Фрагмент структуры циркона с нумерацией атомов, использованной при взаимной ориентации компонентов парных вакансий.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Атомная структура вакансионных дефектов. Выполнены расчеты радиационно-стимулированных дефектов в матрице циркона – заряженных вакансий атомов Zr, Ši, O ($V_{Zr}^{**}, V_{Si}^{**}, V_O^{**}$), меж-доузельных атомов $Zr_i^{**}, Si_i^{**}, O_i^{*}$, а также парных вакансий (дивакансий) атомов О $(V_{Oi}^{\bullet\bullet}/V_{Oj}^{\bullet\bullet})$ и парных вакансий атомов Zr и О $(V_{Oi}^{\bullet\bullet}/V_{Zrj}^{\bullet\bullet})$, здесь i, ј – номера атомов с различной взаимной ориентацией компонентов дивавкансий (рис. 1). Все перечисленные дефекты, обозначенные в соответствии с [16], моделировались в ионном приближении: вакансии Zr и Si имели избыточный отрицательный заряд –4е, вакансия О – избыточный положительный заряд +2е по сравнению с бездефектным узлом; заряд междоузельных ионов равен их формальному ионному заряду. Для дефекта $V_{Oi}^{\bullet \bullet} V_{Oj}^{\bullet \bullet}$, локализованного в одном кремнекислородном тетраэдре, рассмотрены два варианта взаимного расположения вакансий атомов О: на общем ребре полиэдров SiO₄ и ZrO₈ в смешанных цепях (V_{O1}^{**}/V_{O2}^{**}) и ребре тетраэдра SiO₄, не являющимся общим с полиэдром ZrO₈, $(V_{O1}^{\bullet\bullet}/V_{O3}^{\bullet\bullet})$. Для дефекта $V_{Oi}^{\bullet\bullet}/V_{Zri}$ рассмотрены шесть вариантов взаимного расположения вакансий атомов О и Zr ($V_{04}^{\bullet,i}/V_{Zr15}^{\bullet,i}, V_{04}^{\bullet,i}/V_{Zr25}^{\bullet,i}, V_{04}^{\bullet,i}/V_{Zr25}^{\bullet,i}, V_{04}^{\bullet,i}/V_{Zr25}^{\bullet,i}$)

Результаты расчета локальной структуры вакансий атомов О представлены в табл. 2. Видно, что во всех случаях введение вакансии атомов О приводит к значительной структурной релаксации, состоящей в смещении ближайшего атома Si по направлению к плоскости трех оставшихся атомов О с образованием практически плоской пирамиды SiO₃ высотой h с межатомными расстояниями Si– O_i (рис. 2a). Полученный результат близок к известной модели асимметричной релаксации вакансии атомов О в кварце [25], согласно которой при отсутствии электронов на вакансии атом Si смещается в плоскость трех атомов О; при захвате дефектным комплексом одного или двух электронов атом Si релаксирует в обратную сторону. Аналогичные

<u>Фланицани</u>	Параметры структуры							
структуры	Si–O _i , Å	h*, Å	Si–O _д **, Å	Si ₁ –Si ₂ , Si ₃ –Si ₄ , Å	$Zr_1 - Zr_2$, $Zr_3 - Zr_4$, Å	Zr ₅ –Zr ₆ , Å	S _{Si-O} , Å	
Фрагмент	1.633	0.519	-	6.488	6.488	6.184	0	
регулярной	1.633			6.488	6.488			
структуры	1.633							
$V^{\bullet \bullet}$	1.568	-0.171	-	6.385	6.569	6.403	0.014	
V 04	1.568			6.467	6.812			
	1.546							
$V_{04}^{\bullet \bullet} V_{71}^{''''}$	1.646	-0.351	1.863 (1)	6.373	_	6.298	0.048	
$(U^{\bullet \bullet}, U^{""})$	1.541			6.376	6.794			
(V_{O4}/V_{Zr2})	1.590							
$V_{04} V_{7r3}^{**}$	1.653	-0.644	-	6.401	6.423	6.258	0.018	
	1.653			6.418	_			
	1.537							
$V_{O4}^{\bullet \bullet} / V_{Zr4}^{""}$	1.652	0.641	-	6.398	6.437	6.267	0.018	
	1.652			6.419	-			
	1.538							
V_{O4}/V_{Zr5}	1.590	0.011	-	6.467	6.570	-	0.030	
	1.590			6.669	6.504			
	1.485							
V_{O4}/V_{Zr6}	1.570	-0.535	1.685 (1)	6.363	6.179	-	0.038	
	1.570			6.587	6.747			
	1.748			< 110	<	< 10 -	0.051	
V_{01}/V_{02}	1.575	—	1.718 (2)	6.418	6.937	6.407	0.051	
	1.575			5.422	6.600	<		
V_{01}/V_{03}	1.530	-	-	5.775	6.824	6.402	0.053	
	1.530			5.775	6.824	6.000		
V_{Zr}	-	-	-	6.066	6.689	6.209	0.049	
				6.066	6.689			

Таблица 2. Параметры регулярной и релаксированной дефектной структуры циркона с вакансиями и дивакансиями атомов

Примечание. * знак минус перед величиной h означает смещение атома Si за плоскость трех O; ** число в скобках – количество атомов O на данном расстоянии от атома Si.

Рис. 2. Фрагменты структуры циркона с дефектами $V_{O4}^{\bullet\bullet}(a)$, $V_{O4}^{\bullet\bullet}(b)$ и $V_{O1}^{\bullet\bullet}/V_{O2}^{\bullet\bullet}(b)$. Овалы демонстрируют сближение атомов Si из дефектного и соседних тетраэдров с образованием мостиковых связей Si₃–O–Si (b) и Si₃–O–Si₄ (b).

изменения структуры зафиксированы и в расчетной работе по циркону [24].

Для одиночной вакансии атомов О получено, что атом Si смещается дальше плоскости трех кислородов, т.е. высота пирамиды h принимает знак минус (табл. 2). Кроме того, происходит увеличение расстояния Zr–Zr между катионами, разделенными дефектной SiO₃-группировкой на оси *c*, и изменение расстояний Zr–Zr и Si–Si между катионами соседних цепей вдоль осей *a* и *b* (см. табл. 2). Отмеченные особенности возникают из-за недостатка отрицательного заряда и изменения кулоновского поля в области дефекта. С ростом концентрации вакансий следует ожидать увеличения постоянных решетки

вследствие структурной релаксации, что согласуется с экспериментальным фактом радиационного расширения циркона на ранних стадиях его радиационной деструкции [21, 26, 29].

Релаксация структуры приводит также к разбросу длин связей Si-O в окружающих дефект тетраэдрах; этот эффект можно охарактеризовать среднеквадратичным отклонением межатомных расстоя-

ний от регулярного значения $S_{Si-O} = \sqrt{\frac{\sum_{i} (x_i - r_o)^2}{n}}$ (здесь r_0 и x_i – регулярное межатомное расстояние Si-O и расстояния Si-O в окружении дефекта, соответственно, *n* – количество таких расстояний в ближайшем окружении дефекта) (табл. 2). Для одиночной вакансии нами учитывалось ее влияние на искажения четырех тетраэдров в сфере радиусом 5.5 Å (n = 16); для вакансии Zr – шести тетраэдров в сфере радиусом 4.5 Å (n = 24).

Релаксация структуры вакансии атомов О изменяется при появлении вакансии атома Zr в полиэдрах ZrO₈, ближайших к дефектной группировке SiO₃; при этом релаксация существенно зависит от взаимного расположения дефектов $V_{Zr}^{''''}$ и V₀. Локальный избыток отрицательного заряда на дефекте V_{Zr}^{m} приводит к значительным сдвигам ближайших катионов по направлению к нему. Форма пирамидальной группировки SiO₃ меняется от почти совпадающей с таковой в регулярном тетраэдре (для $V_{04}^{(*)}/V_{Zr4}^{(*)}$) до практически пло-ской (для $V_{04}^{(*)}/V_{Zr5}^{(*)}$) или "вывернутой" в обрат-ную сторону (для $V_{04}^{(*)}/V_{Zr3}^{(*)}$, $V_{04}^{(*)}/V_{Zr6}^{(*)}$). Некоторые конфигурации парного дефекта $V_{0i}/V_{Zri}^{(*)}$ вызывают снижение эффекта расширения элементарной ячейки; очевидно, это происходит за счет частичной компенсации напряжений сжатия и растяжения. Сравнение значений среднеквадратичных отклонений S_{Si-O} показывает, что одиночные вакансии атомов О искажают кремнекислородное окружение в меньшей степени ($S_{Si-O} = 0.014$ Å), чем парные вакансии (S_{Si-O}= 0.018-0.053 Å); наибольшие искажения вносят парные вакансии V_{O4}/V_{Zr1} и $V_{O4}^{(m)}/V_{Zr2}^{(m)}$ а также дивакансии атомов О. Отметим, что в целом влияние вакансий на разупорядочение кремнекислородной подрешетки циркона значительно сильнее, чем в случае изовалентных замещений в катионной подрешетке в твердых растворах циркон-коффинит [3]; например, для окружения изолированного замещения $U^{4+} \rightarrow Zr^{4+}$ получено $S_{Si-O} = 0.007$ Å. Можно предполагать, что в колебательных спектрах урансодержащих природных цирконов вклад вакансионных дефектов в неоднородное уширение колебательных мод SiO₄тетраэдров более значителен, чем вклад структурного разупорядочения за счет формировании твердых растворов.

В ряде случаев $(V_{O4}^{\bullet\bullet}/V_{Zrb}^{'''}, V_{O4}^{\bullet\bullet}/V_{Zr2}^{''''}, V_{O4}^{\bullet\bullet}/V_{Zr6}^{''''})$ релаксация окружения парного дефекта $V_{Oi}^{\bullet\bullet}/V_{Zri}^{''''}$ со-

провождается смещением пирамидальной группировки SiO₃ как целого, сближением ее с другим тетраэдром и возникновением в ней дополнительной связи Si-O_л с длиной, несколько превышающей регулярное межатомное расстояние в тетраэдрах (см. табл. 2 и рис. 2); в результате этого координация дефектного атома Si вновь становится близкой к 4, а координация одного из атомов О вблизи вакансии Zr приобретает вид $-s_{i}^{s_{i}} - o_{z_{r}}^{s_{i}}$ вместо $-s_{i}^{s_{i}} - o_{z_{r}}^{z_{r}}$ в регулярной структуре. В случае $V_{O4}^{\bullet \bullet}/V_{Zr1}^{""}$ ($V_{O4}^{\bullet \bullet}/V_{Zr2}^{""}$) наблюдается сближение дефектного атома Si с атомом Si₃, а в случае $V_{O1}^{\bullet,\bullet}/V_{O2}^{\bullet,\bullet}$ – с атомом Si₃ и Si₄ (рис. 2). Таким образом, результатом возникновения вакансий атомов О и Zr может быть соединение между собой кремнекислородных тетраэдров, изолированных в регулярной структуре; создание вакансий $V_{Oi}^{(i)}/V_{Zri}$ можно считать начальным этапом полимеризации кремнекислородной сетки, характерной для метамиктного циркона.

Структурная релаксация решетки вокруг дивакансий атомов О зависит от взаимного расположения вакансий атомов О – на общем ребре полиэдров SiO₄ и ZrO₈ в смешанных цепях ($V_{O1}^{\bullet\bullet}/V_{O2}^{\bullet\bullet}$) и на ребре тетраэдра SiO₄, не являющимся общим с полиэдром ZrO₈, $(V_{O1}^{\bullet\bullet}/V_{O3}^{\bullet\bullet})$. В первом случае в результате поворота и деформации дефектных додекаэдров ZrO₇ два соседних тетраэдра (с центральными атомами Si₃ и Si₄) приближаются к дефектной группировке, и между ними формируются две дополнительные связи Si-O_д длиной 1.718 Å; координация центрального атома Si приближается к тетраэдрической; при этом возникает мостиковый фрагмент Si₃-O-Si-O-Si₄ (рис. 2в). Таким образом, дивакансии атомов О также приводят к росту степени полимеризации кремнекислородной сетки в дефектных областях. Можно заключить, что создание мостиковых фрагментов Si-O-Si и полимеризация тетраэдров реализуются не только в процессах прямой аморфизации структуры в каскадах атомных смещений, как это обычно предполагается [13], но и в процессе создания точечных дефектов, то есть на самых ранних этапах радиационной деструкции циркона.

Пороговая энергия смещения атомов Е_d. Для определения энергии образования дефектов по Френкелю и по Шоттки, использовались слено Френкено и по поттки, использования см., например дующие реакции их образования (см., например [28]): $ZrSiO_4 \Leftrightarrow V_{Zr}^{iii} + Zr_{i}^{iiii}, ZrSiO_4 \Leftrightarrow V_{Si}^{iii} + Si_{i}^{iiii},$ $ZrSiO_4 \Leftrightarrow V_{O2}^{iii} + O_i^{i}$ и $ZrSiO_4 \Leftrightarrow V_{Zr}^{iiii} + 2V_{O}^{o} + ZrO_{2n}$ $ZrSiO_4 \Leftrightarrow V_{Si}^{iii} + 2V_{O}^{oi} + SiO_2, ZrSiO_4 \Leftrightarrow V_{Zr}^{iiii} + V_{Si}^{iii}$ $+ 4V_{O}^{oi} + ZrSiO_4$, соответственно. Энергия дефекта по Френкелю (вакансия атома Zr + междоузельный атом Zr) рассчитывалась по соотношению $E_{Zrop} = (\Delta E(V_{Zr}^{(m)}) + \Delta E(Zr_i^{(m)}))/2$, а по Шоттки $E_{u} = (\Delta E(V_{Zr}^{(m)}) + \Delta E(V_{Si}^{(m)}) + 4 \Delta E(V_{O}^{(m)}) + E_{ZrSiO4})/6$, где $\Delta E = E_1 - E_0$ - значения разности структурной энер-

гии решетки циркона с дефектом (E_l) и без дефекта (E_0) в релаксированных состояниях. Поскольку междоузельные атомы могут занимать несколько неэквивалентных позиций в решетке, расчеты энергии ΔE междоузельных атомов выполнялись нами для 1000 вариантов их "стартового" размещения в элементарной ячейке; в расчетах использовались значения ΔE , полученные для наиболее вероятных "релаксированных" позиций (последние получены с использованием оригинальной программы А.В. Поротникова).

По определению пороговая энергия смещения атомов E_d соответствует минимальной кинетической энергии, передаваемой атому вещества налетающей частицей для необратимого образования радиационного дефекта Френкеля; эта энергия затрачивается в термодинамически неравновесном быстром (порядка 10⁻¹⁴ с) процессе выбивания атома из решетки и смещения его в междоузельное пространство [4]; последующий более медленный процесс (более 10⁻¹³ с) релаксации структуры приводит к восстановлению термодинамического равновесия и освобождению части затраченной энергии в виде тепла. В связи с этим значения E_d обычно существенно превышают запасенную кристаллом энергию дефектов по Френкелю. Расчеты энергии E_d путем атомистического моделирования сталкиваются с рядом методических трудностей и необходимостью применения искусственных приемов для моделирования неравновесного процесса; так, в [30] для оценки Е_d предложено вычисление структурной энергии Е₁ для дефектного кристалла без учета структурной релаксации кристалла. Наибольшие трудности при этом связаны с заданием в расчете местоположения выбитого атома; в цитированной работе оно определялось с помощью пробных расчетов релаксации структуры при размещении дефекта внедрения на разных расстояниях и в различных направлениях от вакансии; полученные авторами усредненные величины E_d заметно отличаются от данных расчета методом молекулярной динамики.

В настоящей работе, по аналогии с [30], рассчитывались значения структурной энергии Е, без релаксации окружения дефектов, однако, в отличие от [30], местоположение междоузельных атомов принималось фиксированным, не зависящим от первоначального направления движения и соответствующим наиболее вероятному варианту их размещения в решетке; последний находили, как это описано выше, путем серии из 1000 пробных расчетов. В предположении невзаимодействующих вакансии и внедренного атома пороговая энергия смещения, например, атома Zr, рассчитывалась как $E_d(Zr) = (\Delta E_{\text{нерел}}(V_{Zr}^{\text{min}}) + \Delta E \text{нерел}(Zr_i^{\text{min}}))/2$, где $\Delta E_{\mu e p e \pi} = E_{1 \mu e p e \pi} - \dot{E}_0$ – разность структурной энергии кристалла с дефектом в неравновесном (нерелаксированном) состоянии (*E*_{1нерел}) и кристалла без дефекта (E_0).

В табл. З представлены полученные значения ΔE разности структурной энергии решетки с дефектом и без него; они позволяют определить энергию связи компонентов парного дефекта $E_{cs}(V_{Oi}^{\circ\prime}/V_{Zrj}^{\circ\prime\prime}) = \Delta E(V_{Oi}^{\circ\prime}) + \Delta E(V_{Zrj}^{\circ\prime\prime}) - \Delta E(V_{Oi}^{\circ\prime}/V_{Zrj}^{\circ\prime\prime})$. Установлено, что энергия связи компонентов в парных дефектах зависит от их взаимного расположения; наибольшая энергия связи вакансий атомов Zr и O (5.2 эB) характерна для $V_{O4}^{\circ\prime}/V_{Zr5}^{\circ\prime\prime\prime}$.

Энергии образования дефектов Zr, Si и O по Френкелю составляют, соответственно, 11.2, 10.9, 5.5 эВ; по Шоттки (с учетом рассчитанной структурной энергии решетки циркона –239.6 эВ) – 6.3 эВ. Полученные величины типичны для энергий формирования дефектов в оксидах; их значения укладываются в диапазон расчетных величин энергий образования дефектов в цирконе, полученных в работах [8, 11, 19, 23, 24, 31].

С использованием значений $\Delta E_{\text{нерел}}$ нами выполнена оценка пороговых энергий E_d смещения атомов в цирконе; результаты приведены в табл. 4 в со-

Таблица 3. Значения разности структурной энергии решетки без дефекта и с дефектом без релаксации ближайшего окружения ($\Delta E_{\text{нерел}}$) и при его релаксации (ΔE) и энергия связи ($E_{\text{св}}$) компонентов парных вакансий

Дефект	$\Delta E_{\text{нерел,}} \Im B$	ΔЕ, эВ	Е _{св} , эВ	
$V_{Zr}^{''''}$	130.6	84.3	_	
$V_{Si}^{''''}$	165.5	104.7	—	
$V_O^{\bullet\bullet}$	38.6	22.1	_	
$Zr_i^{\bullet\bullet\bullet\bullet}$	20.8	-62.0	—	
Si_i	-14.3	-82.9	_	
$O_i^{"}$	10.8	-11.1	—	
$V_{O4}^{\bullet \bullet} / V_{Zr1}^{''''}$	_	102.2	4.2	
$(V_{O4/}^{\bullet\bullet}V_{Zr2}^{""})$ $V_{V}^{\bullet\bullet}V^{""}$	_	101.8	4.6	
$V_{O4}^{\bullet\bullet}/V_{Zr3}^{\bullet\bullet}$	_	101.9	4.5	
$V_{O4}^{\bullet \bullet} / V_{Zr5}^{''''}$	—	102.9	3.5	
$V_{O4}^{\bullet\bullet}/V_{Zr6}^{''''}$	—	101.2	5.2	
$V_{O1}^{\bullet \bullet}/V_{O2}^{\bullet \bullet}$	—	47.1	-2.9	
$V_{O1}^{\bullet\bullet}/V_{O3}^{\bullet\bullet}$	_	46.8	-2.6	

Таблица 4. Пороговые энергии смещения E_d атомов в цирконе

4.701	Е _d , эВ по данным*							
AIOM	Ι	II	III	IV	V			
Zr	75.7	90.4	76	90	60			
Si	75.6	20.4	85	98	48			
0	24.7	53.4	38	32	23			

Примечание. ^{*}I – выполненых в настоящей работе; II – в работе [30]; III – [13]; IV – [11]; V – [23].

поставлении с данными работ [12, 13, 23, 30]. Видно, что наши результаты удовлетворительно согласуются с данными расчетов методами молекулярной динамики и дают разумное соотношение значений E_d для атомов Zr, Si и O.

Выводы. Отработана методика моделирования локальной структуры и энергетических характеристик элементарных и двойных вакансионных дефектов в цирконе. Установлено, что при образовании дефектов положение ионов первой и второй координационных сфер существенно изменяется по сравнению с идеальной решеткой. В случае элементарной вакансии кислорода происходит смещение атома Si дефектного тетраэдра за плоскость трех оставшихся атомов О. В случае двойных вакансий кислорода и циркония релаксация ближайшего окружения зависит от их взаимного расположения и в ряде случаев приводит к образованию мостиковых фрагментов Si-O-Si. Дивакансии кислорода могут приводить к образованию группировок Si-O-Si-O-Si. Таким образом, в процессе образования вакансионных дефектов на ранних стадиях радиационной деструкции циркона может происходить частичная полимеризация его кремнекислородных тетраэдров. На основании предложенного авторами подхода проведены оценки пороговых энергий смещения E_d для атомов Zr, Si и O в цирконе.

Работа выполнена в рамках федеральной программы "Научные и научно-педагогические кадры инновационной России" (контракт № 02.740.11.0727), а также программы Президиума РАН 23 (проект № 12-П-5-1020), междисциплинарного проекта УрО РАН № 12-М-235-2063 и при поддержке гранта РФФИ № 11-05-00035.

СПИСОК ЛИТЕРАТУРЫ

- Вотяков С.Л., Иванов И.П., Краснобаев А.А. и др. Спектроскопические и люминесцентные свойства ортосиликата циркония, выращенного гидротермальным методом // Неорг. матер., 1986. Т. 22. С. 281–286.
- Вотяков С.Л., Щапова Ю.В., Хиллер В.В. Кристаллохимия и физика радиационно-термических эффектов в ряде U-Th-содержащих минералов как основа для их химического микрозондового датирования. Екатеринбург: УрО РАН, 2012. 336 с.
- Замятин Д.А., Щапова Ю.В., Вотяков С.Л. и др. Структура и термодинамические свойства твердых растворов циркон – коффинит по данным полуэмпирического атомистического моделирования // Ежегодник-2008. Труды ИГГ УрО РАН, 2009. Вып. 156. С. 303–311.
- Келли Б. Радиационное повреждение твердых тел. М.: Атомиздат, 1970. 240 с.
- Краснобаев А.А., Вотяков С.Л., Крохалев В.Я. Спектроскопия цирконов (свойства, геологические приложения). М.: Наука, 1988. 150 с.

- Солнцев В.П., Щербакова М.Я., Дворников Э.В. Радикалы SiO₂-, SiO₃- и SiO₄- в структуре ZrSiO₄ по данным ЭПР // ЖСХ, 1974. Т. 15. № 2. С. 217–221.
- Щапова Ю.В., Вотяков С.Л., Поротников А.В. Локальная структура примесных центров редкоземельных и радиоактивных элементов в цирконе по данным компьютерного моделирования // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 287–296.
- 8. *Akhtar M.J., Waseem S.* Atomistic simulation study of zircon // Chem. Phys. 2001. V. 274. P. 109–120.
- Catlow C.R.A. library: http://www.ri.ac.uk/DFRL/research_pages/resources/ Poten-tial_database /O/ index. html
- Claridge R.F.C., Lees N.S., Tennant W.C., Walsby C.J. Oxigening-hole centers in X-irradiated zircon: 10 K EPR studies // J. Phys.: Condens. Matter., 2000. V. 12. P. 1431–1440.
- Crocombette J.-P. Theoretical study of point defects in crystalline zircon // Phys. Chem. Miner. 1999. V. 27. P. 138–143.
- Crocombette J.-P., Ghaleb D. Molecular dynamics modeling of irradiation damage in pure and uranium-doped zircon // J. Nucl. Mater., 2001. V. 295. P. 167–178.
- 13. Ewing R.C., Meldrum A., Wang L. et al. Radiation effects in zircon // Zircon. Reviews in Mineralogy and Geochemistry / eds. J.M. Hanchar, P.W.O. Hoskin. 2003. V. 53. P. 387–425.
- 14. *Gale J.D., Rohl A.L.* The General Utility Lattice Program // Mol. Simul. 2003. *V.* 29. P. 291.
- Kempe U., Grunner T., Nasdala L., Wolf D. Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonians Granulite Complex, Germany // Cathodoluminescence in Geosciences. Springer, Berlin-Heidelberg, 2000. P. 415–455.
- Kroger F.A., Vink H.J. Relations between the concentration of imperfections in crystalline solids // Solid State Physics. 1956. V. 3. P. 307–435.
- Laruhin M.A., van Es H.J., Bulka G.R. et al. EPR study of radiation-induced defects in the thermoluminescence dating medium zircon (ZrSiO4) // J. Phys.: Condens. Matter. 2002. V. 14. P. 3813–3831.
- Lewis G.V., Catlow C.R.A. Potential models for ionic oxides // J. Phys. C: Solid State Phys., 1985. V. 18. P. 1149–1161.
- Meis C., Gale J.D. Computational study of tetravalent uraniun and plutonium lattice diffusion in zircon // Mat. Sci. Eng. B. 1998. V. 57. P. 52–61.
- Mott N.F., Littleton M.J. Conduction in polar crystals. i. electrolytic conduction in solid salts. // Trans. Faraday Soc. 1938. P.34
- Murakami T., Chakoumakos B.C., Ewing R.C. et al. Alpha-decay event damage in zircon // Amer. Miner., 1991. V. 76. № 9/10. P. 1510–1532.
- Nasdala L., Zhang M., Kempe U. et al. Spectroscopic methods applied to zircon // Zircon. Reviews in Mineralogy and Geochemistry / eds. J.M. Hanchar, P.W.O. Hoskin, 2003. V. 53. P. 427–467.
- Park B., Weber W.J., Corrales L.R. Molecular dynamics simulation study of threshold displacements and defect formation in zircon // Physical Review B. 2001. V. 64. P. 174108–174108.
- 24. Pruneda J.M., Artacho E. Energetics of intrinsic

point defects in $ZrSiO_4$ // Phys. Rev. B. 2005. V. 71. P. 94–113.

- Rudra J.K., Fowler W.B. Oxygen vacancy and the E1' center in crystalline SiO₂ // Phys. Rev. B. 1987. V. 35. P. 8223–8230.
- Salje E.K.H., Chrosch J., Ewing R.C. Is "metamictization" of zircon a phase transition? // Amer. Miner. 1999. V. 84. P. 1107–1116.
- Tennant W.C., Claridge R.F.C., Walsby C.J., Lees N.S. Point defects in crystalline zircon (zirconium silicate), ZrSiO₄: electron paramagnetic resonance studies // Phys. Chem. Minerals. 2004. V. 31. P. 203–223.
- Tilley R.J. D. Defects in solids. Inc. Hoboken, New Jersey, USA, 2008. 529 p.
- Weber W.J. Alpha-decay-induced amorphization in complex silicate structures // J. Amer. Ceram. Soc., 1993. V. 76. P. 1729–1738.
- Williford R.E., Devanathan R., Weber W.J. Computer simulation of displacement threshold energies for several ceramic materials // Nucl. Instr. Methods. 1998. V. 141. P. 98–103.
- Williford R.E., Weber W.J., Devanathan R., Cormack A.N. Native vacancy migrations in zircon // J. Nucl. Mater. 1999. V. 273. P. 164–170.