РЕГИОНАЛЬНАЯ ГЕОЛОГИЯ

РАННЕДЕВОНСКИЙ КУРМАНСКИЙ ГАББРО-ГРАНИТОИДНЫЙ МАССИВ НА СРЕДНЕМ УРАЛЕ

© 2013 г. Г. Б. Ферштатер, Н. С. Бородина, Ф. Беа*, П. Монтеро*, В. В. Холоднов, С. В. Прибавкин

Курманский габбро-трондьемитовый массив расположен непосредственно к югу от Каменского (рис. 1) и ранее рассматривался нами как часть последнего [2]. Новые данные по возрасту пород свидетельствуют о принадлежности пород, вскрытых в Курманском карьере в одноименном поселке, к самостоятельному эпизоду магматизма. Массив плохо обнажен и доступен для изучения только в карьере. Эта часть массива сложена преимущественно трондьемитами (табл. 1, ан. 1, 2), местами переходящими в гранодиориты, которые содержат блоки - ксенолиты мигматизированных роговообманковых габброидов и диоритов и прорваны дайками габбро и диоритов такого же состава (табл. 1, ан. 3-6). Трондьемиты представлены среднезернистыми биотитовыми разностями с первичным эпидотом, акцессорные минералы – сфен и апатит. Типоморфным для структуры этих пород и всех гранитоидов является наличие межзернового мелкозернистого аллотриоморфного кварцполевошпатового агрегата. По составу плагиоклаз крупных таблиц и межзернового агрегата сходен и отвечает олигоклазу, в обоих случаях его характеризует зональность, прямая и ритмическая. Появление такого кварц-полевошпатового агрегата обусловлено анатексисом, процессом частичного плавления породы, в которой он находится.

Мигматитовая текстура в гранитоидах выражена слабо, и это означает, что расплав, образованный при частичном плавлении, в основном, сохранился in situ. Скопление флюида в верхней части массива привело к интенсивной гидротермальной переработке пород, которые по зонам трещиноватости сильно пиритизированы (совместно с пиритом развивается висмутин, молибденит, блеклые руды, галенит), альбитизированы, эпидотизированы, скарнированы (состав скарнов – эпидот, амфибол, пренит, изредка гранат), цеолитизированы.

Макроскопические обособления анатектического расплава наблюдаются только в блоках габброидов и диоритов, а также в дайках. Наиболее сильно частичному плавлению подвержены породы диоритового состава, превращающиеся в своеобразные мигматиты с включениями мелкозернистых габбровых и диоритовых реститов. Такие гетерогенные породы, как и трондьемиты, прорваны дайками микродиоритов и роговообманкового микрогаббро, которые мигматитизированы не столь интенсивно. Но даже слабо мигматизированные дайки габброидов характеризуются неустойчивой микрострукту-

1 – метаморфические породы с возрастом более 1600 млн. лет; 2 – S-D вулканогенно-осадочные породы; 3 – серпентиниты; 4 – раннедевонские габброиды, трондьемиты, гранодиориты; 5 – позднекаменноугольные мигматизированные тоналиты, гранодиориты и граниты; 6 – двуслюдяные микроклин-ортоклазовые граниты, предположительно кристаллизовавшиеся из магмы, образованной при мигматизации Каменского и других ГТГГ массивов (мурзинский комплекс); 7 – биотитовые граниты антипертитовые, существенно ортоклазовые с магнетитом, образованные за счет частичного плавления древних метаморфических толщ (ватихский комплекс); 8 – озерная гранодиорит-гранитная серия. Массивы: Мурзинский (I), Адуйский (II), Каменский (III), Курманский (IV).

^{*} Университет г. Гранада, Испания

Таблица 1. Содержание петрогенных (мас. %) и редких (г/т) элементов в породах Курманского массива

N⁰	1	2	3	4	5	6	7	8
SiO ₂	71.50	72.55	50.95	50.69	59.68	50.40	51.14	64.85
TiO ₂	0.36	0.287	0.663	0.70	0.48	0.73	0.67	0.44
$Al_2 \tilde{O}_3$	14.03	13.18	16.37	16.97	16.59	16.37	17.21	16.13
Fe ₂ O ₃		3.02	8.80					
FeO	3.13	0.50	4.60	11.77	7.40	12.33	11.32	5.67
MnO	0.08	0.04	0.156	0.13	0.09	0.17	0.16	0.07
MgO	1.01	1.44	4.51	4.70	2.57	6.04	5.20	2.10
CaO	2.78	2.88	8.62	10.03	613	7 03	8.51	5 44
Na ₂ O	39	4 78	3 36	23	37	2.6	2.6	4 0
K ₂ O	1 14	0.71	0.42	0.60	0.73	1 76	1.05	0.84
P ₂ O _c	0.07	0.07	0.15	0.23	0.15	0 17	0.11	0.11
ппп	0.24	0.50	1 10	0.54	1.06	0.74	0.28	0.25
Li	9.90	13 40	10.04	14 84	6.88	22 01	9.55	21.85
Rh	13 10	10.46	9 46	9.60	18 23	23.68	13 35	40 71
Cs	0.21	0.40	1 28	0.98	1 65	2 87	0.61	1 53
Be	0.62	0.10	0.54	0.71	0.60	0.61	0.78	3 23
Sr	177 2	246.6	504 7	727 1	573 6	5124	532 1	2370
Ra	1170	515.0	202.6	5103	335.6	730 7	576.0	2351
Sc	7 46	5 25	202.0	32 22	16 11	23 05	26.20	53 01
V	34 44	14 28	285 4	364.0	161 7	23.05	20.20	5564
Cr	1 91	6 56	8 97	60 66	101.7	5 95	35 90	40.67
	3.83	5.05	30.50	20 07	0 72	26 60	16.06	11 12
Ni	1 00	0.00	2 38	18 10	1 10	20.09	128 7	+1.+2 -2.22
Cu	20.60	21 15	60.30	55 /1	20.04	28 12	120.7	22.22
Cu Zn	20.00	15 56	10 70	56 34	22 22	70.00	50.0/	118 00
Ga	12 52	13.50	16 20	18 72	14 56	17 10	10 10	68 17
V V	12.55	10.62	15 21	26.06	17 14	18 72	21.06	50 51
Nh	2 67	2.06	0.00	1 00	1 66	1 51	2 37	7 51
Ta	0.12	0.13	0.99	0.11	0.10	0.06	0.10	0.63
$\frac{1a}{7r}$	24 64	22 53	11 15	21 71	15 66	14 12	8.62	245.80
Z1 Цf	0 77	0.03	0.50	0.78	0.50	1 1 5	0.02	6 10
Mo	0.17	0.95	0.30	0.78	0.30	0.15	0.44	0.10
Sn	0.12	0.20	1.03	1 15	0.55	1 1 3	1.00	3.48
Ph	1 16	1 13	1.05 2.20	1.13 2.04	3.67	5 15	3 17	16 50
II	0.08	1.08	0.73	1 17	0.08	3 75	2.77 2.13	502
Th	251	1.00 2.24	1 20	1.17	2.70	5.75	2.13 2.24	13 70
I II I a	13.02	13 11	0.20	1/ 67	831	15 60	12.24	15.70
	30.61	26 18	23 55	14.07	10.54	10.09	36 55	111 00
Dr	3 20	20.10	3 51	6 11	2 57	40.00	1 52	12 /1
Nd	12.20	11 60	15.06	30.06	11 16	20.22	$\frac{4.32}{20.01}$	51 57
Sm	2 50	2 40	13.90	7 15	2.64	1 24	20.01	10.62
Fu	0.74	0.76	1 21	2.01	0.80	1.07	1 1 8	3 35
Gd	2 23	1.64	1.21 3.45	6.47	2 50	3 36	1.10	0.27
Th	0.35	0.26	0.47	0.47	0.42	0.52	4.05	1.54
Dv	2.55	1 0/	2 0/	1 0.05	2 05	3 27	4 70	10 47
Но	0/0	0.30	0.58	0.02	0.62	0.68	1.00	2 2 2
Fr	1 20	1 20	1 67	2/12	1.84	1 01	2 02	6 11
Tm	0.20	0.17	0.22	0.22	0.20	0.20	2.95	0.44
Vb	1 25	1 1 2	1 55	2 00	1.82	1 78	3.04	6 3 1
	0.20	0.21	0.22	0.30	1.02 0.27	0.26	0.45	0.51
Lu	0.40	0.41	0.44	0.50	0.41	0.40	0.70	0.77

Примечание. 1, 2 – трондьемит 412 и 428; 3, 4 – блокиксенолиты габбро 427 и 413; 5 – кварцевый диорит 492; 6 – дайка микрогаббро 401; 7, 8 – меланосома 407 и лейкосома 408 в блоке габбро.

рой, образованной частичным плавлением: участки магматического облика (таблицы плагиоклаза, переполненные мелкими включениями темноцвет-

Рис. 2. Фотографии участка блока мигматизированного роговообманкового габбро 427 с трондьемитовой лейкосомой 428 и обозначения мест, откуда взяты соответствующие пробы (Курманский карьер).

ных минералов и соссюрита, и идиоморфные выделения амфибола и биотита, кварц) цементируются мелкозернистым кварц-полевошпатовым агрегатом такого же минерального состава и структуры, как в трондьемитах. Второстепенные и акцессорные минералы в породах – эпидот, апатит, сульфиды.

Меланократовые участки мигматитов определяются как меланосома, более лейкократовые – как лейкосома. Те и другие обособляются в виде полосчатых или неправильной формы участков в матрице, которая обычно близка по составу к меланосоме. И меланосома, и лейкосома сложены одними и теми же минералами (роговая обманка, плагиоклаз, эпидот, кварц, биотит, иногда калишпат), но в разных количественных соотношениях. Структура неравномерная – среднезернистые участки сцементированы мелкозернистым кварцполевошпатовым агрегатом.

Из блока среднезернистого роговообманкового габбро и лейкократовых обособлений в нем (участок показан на рис. 2) были отобраны пробы габбро 427 и трондьемита 428, из которых сотрудником лаборатории петрологии А. Мукатовой был выделен циркон, проанализированный в лаборатории IBERSIMS университета г. Гранада на приборе SHRIMP-II. Результаты представлены на рис. 3 и в табл. 2.

В обоих пробах цирконы представлены призматическими зональными зернами магматического облика. Расчетный ²³⁸U/²⁰⁶Pb возраст габбро с поправкой на ²⁰⁴Pb составляет 411 ± 2 млн. лет (²³⁵U/²⁰⁷Pb = 407 ± 2 млн. лет), а трондьемита 405 ± 4 млн. лет (²³⁵U/²⁰⁷Pb = 411 ± 8 млн. лет). Получен-

	ppm			Отно	шения изото	ОПОВ	Возраст, млн. лет				
JN≌	U	Th	²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	206Pb/238U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U		
Габбро мз-427											
10.1	349.4	195.9	20.2	0.05429	0.06682	0.50023	373.9 ± 12	416.9 ± 1.1	410.3 ± 2.2		
11.1	245.8	112.8	13.9	0.05581	0.06549	0.50395	435.3 ± 27.2	408.8 ± 2.6	412.8 ± 4.9		
12.1	149.4	52.3	8.5	0.05412	0.06586	0.49146	286.7 ± 80.8	410.1 ± 4.2	392.1 ± 12.5		
13.1	386.7	119.6	21.8	0.05363	0.06509	0.48129	293.5 ± 45.6	405.8 ± 1.0	389.5 ± 6.8		
14.1	725.5	221.6	41.0	0.05391	0.06526	0.48504	337.9 ± 16.8	407.2 ± 2.6	397.0 ± 3.6		
14.2	1017	865.0	58.8	0.05313	0.06678	0.48914	310.5 ± 19.2	416.4 ± 0.3	400.6 ± 3.0		
15.1	591.7	300.9	33.8	0.05342	0.06599	0.48608	362.9 ± 56.2	412.2 ± 2.2	404.8 ± 8.8		
16.1	679.7	474.2	38.6	0.05484	0.06558	0.49582	369.7 ± 47.2	409.0 ± 4.4	403.2 ± 8.2		
17.1	168.9	57.9	9.5	0.05536	0.06490	0.49544	350.1 ± 145	404.5 ± 4.5	396.5 ± 22.6		
18.1	661 7	450.7	38.0	0.05402	0.06638	0 49442	305.3 ± 61.8	4135 ± 34	397.5 ± 9.6		
19.1	624.3	411 5	35.3	0.05395	0.06534	0.48601	3335 + 404	407.6 ± 1.6	3967 ± 62		
21	373.7	117.2	21.0	0.05471	0.06483	0.48908	308.1 + 29.0	403.9 ± 4.5	390.0 ± 5.7		
22.1	1124	1007	64.6	0.05435	0.06446	0.49900	337.9 ± 13.0	405.9 ± 4.3 414.2 ± 2.3	4028 + 30		
22.1	366.3	116.8	21.1	0.05290	0.06656	0.49548	3245 ± 226	414.2 ± 2.3 415.4 ± 3.9	402.8 ± 3.0 401.8 ± 4.7		
23.1	550.0	250.7	21.1	0.05290	0.00050	0.40540	324.3 ± 22.0 380.7 ± 17.2	413.4 ± 3.9 412.8 ± 3.4	401.0 ± 4.7 400.2 ± 4.1		
24.1	380.0	100 /	21.2	0.05445	0.06013	0.49048	369.7 ± 17.2 370.0 ± 40.8	412.0 ± 3.4 402.2 ± 2.3	409.3 ± 4.1 308.0 ± 7.8		
J.1 / 1	722.2	190.4	41.6	0.05452	0.00441	0.40410	379.9 ± 49.0 246.0 ± 15.6	402.2 ± 2.3 415.1 ± 1.9	390.9 ± 7.0 404.0 ± 2.0		
4.1	122.2	423.1	41.0	0.05379	0.00034	0.49334	340.9 ± 13.0	413.1 ± 1.0 412.1 ± 2.7	404.9 ± 3.0		
5.1	1221	266.1	09.8	0.03400	0.00005	0.49238	539.5 ± 21.0	412.1 ± 2.7	404.2 ± 4.0		
0.1	00/.1	220.0	38.4	0.05409	0.00045	0.49560	329.1 ± 24.4	414.2 ± 0.2	401.5 ± 5.7		
/.l	414.1	229.8	23.4	0.05429	0.06531	0.48882	303.7 ± 24.4	406.9 ± 1.8	391.8 ± 8.5		
8.1	304.5	142.7	1/.1	0.05664	0.0648/	U.3063/	238.7 ± 45.4	402.4 ± 0.3	$3/9.1 \pm 0.5$		
1 1	590 7	222.4	22.1	0.05599	о осло	0 40941	4475 + 15 2	404.1 + 1.7	4106 + 20		
	389.7	522.4	33.1	0.05388	0.00409	0.49841	447.3 ± 13.2	404.1 ± 1.7	410.0 ± 3.0 200.2 + 2.4		
10.1	730.8	083.0	40.5	0.03474	0.00383	0.48172	401.3 ± 10.4	398.9 ± 2.2	399.3 ± 3.4		
11.2	300.4	131./	31./	0.05775	0.00538	0.52040	519.5 ± 10.0	408.2 ± 0.1	423.4 ± 2.1		
12.1	118.4	33.8	0./	0.05128	0.06537	0.46220	253.5 ± 41	408.2 ± 2.9	385.8 ± 21.0		
13.1	109.1	32.0	6.1	0.05994	0.06493	0.53658	601.3 ± 89.2	405.5 ± 6.1	436.2 ± 16.2		
14.1	341.7	137.2	19.1	0.05170	0.06414	0.45725	$2/2.1 \pm /5.6$	400.8 ± 2.4	382.3 ± 11.0		
15.1	726.0	222.7	40.8	0.05584	0.06484	0.49921	446.1 ± 38.0	405.0 ± 3.5	411.2 ± 6.8		
17.1	288.8	104.4	16.0	0.05349	0.06359	0.46896	349.5 ± 81.8	397.4 ± 3.4	390.5 ± 12.5		
18.1	486.9	181.9	27.6	0.05148	0.06493	0.46087	262.3 ± 104	405.6 ± 2.6	384.9 ± 15.4		
19.1	228.6	94.0	12.5	0.05661	0.06291	0.49105	476.3 ± 17.8	393.3 ± 0.6	405.6 ± 3.0		
2.1	481.9	267.1	27.1	0.05696	0.06479	0.50886	489.9 ± 32.0	404.7 ± 1.8	417.7 ± 5.5		
2.2	564.4	285.7	32.4	0.05807	0.06621	0.53009	532.3 ± 8.0	413.3 ± 4.5	431.9 ± 4.4		
20.1	172.3	209.8	9.4	0.05640	0.06299	0.48980	468.1 ± 58.0	393.8 ± 2.6	404.8 ± 9.3		
21.1	219.4	114.8	12.2	0.05433	0.06417	0.48071	384.7 ± 33.0	400.9 ± 4.4	398.6 ± 6.4		
22.1	1026	809.3	61.2	0.05435	0.06874	0.51516	385.7 ± 33.0	428.6 ± 7.5	421.9 ± 8.2		
23.1	370.1	132.1	20.5	0.05560	0.06380	0.48913	436.5 ± 76.2	398.7 ± 5.6	404.3 ± 12.8		
4.1	128.0	32.0	7.0	0.05942	0.06278	0.51432	582.5 ± 66.6	392.5 ± 5.0	421.3 ± 11.8		
4.2	151.6	67.7	8.5	0.05950	0.06454	0.52950	585.5 ± 31.2	403.2 ± 4.3	431.5 ± 6.6		
5.2	592.5	257.5	33.2	0.05807	0.06468	0.51786	532.3 ± 17	404.0 ± 2.8	423.7 ± 3.9		
6.1	382.3	126.0	22.1	0.05787	0.06673	0.53243	524.9 ± 228	416.4 ± 3.1	433.4 ± 40.3		
8.2	101.7	29.3	5.8	0.05795	0.06598	0.52716	527.7 ± 54.8	411.9 ± 6.8	429.9 ± 10.9		
9.1	314.9	165.3	17.8	0.05249	0.06517	0.47164	306.9 ± 21.2	407.0 ± 5.8	392.3 ± 5.8		

Таблица 2. Изотопные характеристики циркона из габбро и трондьемита Курманского массива

ные значения возраста отвечают раннему девону (эмсу) и в пределах ошибки измерений очень близки для габбро (протолита) и продукта его частичного плавления – трондьемита. Эти значения отвечают времени внедрения богатого водой базитового расплава, его кристаллизации в виде роговообманкового габбро, парциального плавления (автомигматизации) габбро, образованию анатектического расплава трондьемитового состава и его кристаллизации в соответствии с ранее опубликованной моделью [1].

Ча- Урале раннедевонского этапа габбро-гранитоидного магматизма, который проявлен в Платиноносном поясе (серия г. Ермакова), в Тагильской вулканогенной зоне (ауэрбаховская серия), в палеоконтинентальной зоне северо-западного мегаблока (Курманский массив) и в самой восточной части обнаженного Урала в виде Хомутинского габбро-гранитного массива, прорывающего тоналиты Рефтинского массива и описанного В.Н. Смирновым [4].

Новые данные о возрасте Курманского массива

расширяют положение [3] о наличии на Среднем

Рис. 3. Возрастные диаграммы с конкордией и катодолюминисцентные изображения цирконов из мигматизированного амфиболового габбро 427 и продукта кристаллизации анатектического расплава троньемита 428.

Значения возраста приведены с учетом поправок на ²⁰⁴Pb. Анализы выполнены в лаборатории IBERSIMS университета г. Гранада (Испания) на приборе SHRIMP-II проф. П. Монтеро.

Работа выполнена при финансовой поддержке Программы Президиума РАН 12-П-5-1024, Совместного проекта УрО-СО-ДВО РАН 12-С-5-1022, грантов РФФИ (проект 12-05-00109-а; 12-05-00132-а) и частично поддержана испанским грантом CGL2008-02864. Это публикация IBERSIMS № 5.

СПИСОК ЛИТЕРАТУРЫ

- Феритатер Г.Б., Беа Ф., Монтеро П., Скэрроу Д. Роговообманковые габбро Урала: типизация, геохимические особенности и петрогенезис // Геохимия. 2004. № 7. С. 707–728.
- 2. Ферштатер Г.Б., Бородина Н.С., Холоднов В.В. Мигматизация в Каменском гранитоидном массиве как один из источников пермских гранитов // Еже-годник-2007. Екатеринбург: ИГГ УрО РАН, 2008. С. 164–168.
- 3. Ферштатер Г.Б., Краснобаев А.А., Беа Ф., Монтеро П., Бородина Н.С. Интрузивный магматизм ранних стадий развития уральского эпиокеанического орогена: U-Pb геохронология (LA ICP-MS, NORD-SIM, SHRIMP-II), геохимия, закономерности эволюции // Геохимия. 2009. № 2. С. 150–170.
- Эвгеосинклинальные габбро-гранитоидные серии // Ферштатер Г.Б., Малахова Л.В., Бородина Н.С. и др. М.: Наука, 1984. 264 с.

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013