= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

О ПОВЕДЕНИИ ЦИНКА В ТЕХНОГЕННЫХ СИСТЕМАХ

© 2013 г. А. Л. Котельникова, В. Ф. Рябинин, Б. Д. Халезов*

Медеплавильные шлаки, заскладированные в отвалах в районах деятельности медеплавильных комбинатов на Среднем и Южном Урале, представляют собой серьезную опасность для окружающей среды, прежде всего — в результате неконтролируемой эмиссии потенциально опасных химических элементов: As, Cd, Cu, Zn, Pb. В особенно значительных количествах рассеивается цинк. Извлечение его из потоков миграции представляет собой актуальную задачу.

Решение данной задачи включает, в том числе, определение физико-химических условий и кинетики растворимости цинксодержащих минералов, форм нахождения цинка, как в твердых фазах, так и в водных растворах, условий образования вторичных цинксодержащих минералов, сорбционных и десорбционных особенностей поведения цинка.

Установлено, что медеплавильные шлаки Среднеуральского медеплавильного завода (СУМЗ) представляют собой сложные минеральные комплексы, отличающиеся повышенным содержанием цинка (около 3.4–3.9%) с соотношением Zn/Cu = 7.5 (табл. 1), состоящие из фаялитовых (основной объем) и купритовых шлаков. Данные шлаки близки к вулканическим образованиям, но по минеральному и химическому составу не имеют природных аналогов [3].

Температура образования шлаков СУМЗа оценивается примерно в 1200°С, причем в процессе плав-

Таблица 1. Данные химического анализа "песка", мас. %

Элемент	СУМ3	ИГГ УрО РАН ИМЕТ УрО РА	
SiO ₂	42.77		31.90
Al_2O_3	1.73	3.72	4.94
Fe_2O_3	17.46		7.7
FeO	27.0		40.5
MnO	0.09	0.05	0.09
CaO	4.97	2.86	4.16
MgO	1.25	1.02	1.22
K ₂ O	0.66	1.76	
Na ₂ O	0.68	1.03	
P_2O_5	0.15	0.07	0.09
Cu	0.45	0.30	0.51
Zn	3.42	2.08	3.94
Pb	0.14	0.20	0.18
Sb	0.03		
Fe _{мет}			0.14
Fe _{общ}		33.57	37.0
Сумма	100.8	46.66	95.37

^{*} Институт металлургии УрО РАН

ления руды температура достигает 1400°С, а в момент вывала шлаков она резко падает от 1000°С и ниже (по данным Среднеуральского медеплавильного завода, www.sumz.umn.ru), что способствует формированию стекловатой массы и скелетной (типа "спинифекс") структуры минералов.

По данным минералогического анализа [3], основными породообразующими соединениями фаялитовых шлаков являются цинксодержащие фаялит, магнетит и стекло. В стекловатую фазу фаялитовых шлаков входит комплексный цинксодержащий пирротиновый сульфид.

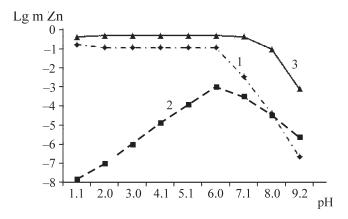
На СУМЗе ведется переработка отвальных литых медеплавильных шлаков в качестве вторичного источника меди. Технология заключается в дроблении шлака с последующим флотационным извлечением медного концентрата. При этом в качестве отхода накапливаются тонкодисперсный материал размерности 0.05 мм, так называемый "песок". В результате этих операций увеличивается площадь поверхности зерен "песка", происходит активация поверхности минералов, образование высокоподвижных металлорганических комплексов [1], хорошо растворимых сульфатов [4]. Отход вторичной переработки медеплавильного шлака после флотационного извлечения меди дополнительно обогащается цинком. В накопленных объемах данного отхода (более 10 млн. т) сконцентрировано около 340 тыс. т цинка.

Рентгенофазовый анализ "песка" свидетельствуют о значительном содержании в шлаках феррита цинка и меди (8–14, 8%), сфалерита (3.2%), цинкита (4.4%). Минералогический анализ "песка" не проводился.

Разработка научных основ гидрометаллургического способа извлечения цинка из данного вида медеплавильных шлаков предполагает экспериментальное исследование миграционных особенностей поведения Zn в водных растворах. Ранее [4, 5 и др.] с помощью лабораторных экспериментов была показана повышенная подвижность цинка при выщелачивании "песка" в слабокислых сульфатных растворах, в присутствии аммонийно-ацетатного раствора (1M), в растворе HNO₃ (5M), в воде при отрицательных температурах. С помощью кинетических исследований [7] выявлено увеличение растворимости цинкита и сфалерита в растворах серной кислоты.

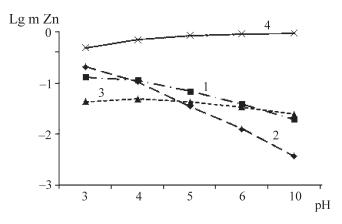
В данной работе использовались методы компьютерного моделирования.

Термодинамические расчеты были проведены с использованием программного комплекса "Селектор-W", разработанного И.К. Карповым и В.К. Чудненко (ИГ СО РАН, г. Иркутск), основанного на методе минимизации термодинамических потенциалов и принципе частичного равновесия [6, 8]. В расчетах, в основном, использовалась термодинамическая база данных SUPCRT92 [9].


Предыдущие расчеты [4] в системе, которая включала 17 независимых компонентов: Al, As, C, Ca, Fe, K, Mg, Mn, Cu, N, Na, S, Si, Zn, Pb, H, O, при температуре 25° C при различных давлениях кислорода и углекислого газа и pH от 4.7 до 6.1 по-казали, что общая концентрация цинка в растворе при этих условиях не превышает $\lg m_{Zn} = -5$. Сравнение данных термодинамических расчетов при $P_{O_2} = 2.1 \cdot 10^{-1}$ бар, $P_{CO_2} = 4 \cdot 10^{-4}$ бар с данными лабораторных исследований, проводившихся при тех же условиях, показало превышение концентрации Zn в водном растворе примерно на два порядка [5].

В настоящем исследовании нами была рассмотрена более простая система, включающая 8 независимых компонентов Zn–Fe–Na–O–H–C–N–Cl. В результате расчетов была определена зависимость концентрации и форм нахождения цинка в водном растворе от рН и присутствия ионов хлора.

Общая концентрация цинка в диапазоне pH от 1 до 7 в присутствии хлора превышает $\lg m_{Zn} = -1$. Основной вклад вносят хлоридные комплексы вида $ZnCl_n^{(2-n)}$, которые являются определяющими до pH 11. В щелочной области при pH > 11 преобладающими частицами в растворе будут ZnO_2^{-2} , $Zn(OH)_3^-$, $HZnO_2^-$, В кислых и близнейтральных растворах в диапазоне pH от 1 до 7 в значимых концентрациях $-6 < \lg m_{Zn} < -1$ будут присутствовать Zn^{+2} и $ZnOH^+$ (рис. 1). Увеличение концентрации хлора в системе при постоянном pH приводит к заметному увеличению концентрации $ZnCl_4^{-2}$ при снижении концентрации других хлоридных комплексов цинка (рис. 2).


Влияние давления и температуры изучалось в системе, включающей 6 независимых компонентов Zn–Fe–O–H–C–N (табл. 2). Установлено, что увеличение давления приводит к увеличению концентрации цинка в растворе в форме Zn⁺² и ZnOH⁺ на полтора порядка, тогда как повышение температуры не будет способствовать переходу цинка в раствор из твердой фазы.

В результате компьютерных экспериментов установлена повышенная миграционная активность цинка в присутствии хлорид-иона, выявлена зависимость форм нахождения цинка и концентрации этих форм от величины рН раствора, обнаружено увеличение подвижности цинка в водном растворе при повышении давления в системе, а также некоторое снижение его подвижности при повышении температуры. Поскольку в расчетах не учитывалось кристаллическое состояние растворяемых

Рис. 1. Зависимость форм нахождения цинка в растворе при изменении рН в присутствии хлоридиона (3 m), где m моляльность, в моль/кг H₂O.

$$1 - Zn^{+2}$$
, $2 - ZnOH^{+}$, $3 - ZnCl_n^{(2-n)}$.

Рис. 2. Формы нахождения цинка в растворе при рН 6 в зависимости от концентрации хлорид-иона.

$$1 - ZnCl_2^0$$
, $2 - ZnCl_1^+$, $3 - ZnCl_3^-$, $4 - ZnCl_4^{-2}$.

Таблица 2. Зависимость концентрации цинка (в $\lg m_{Zn}$) в водном растворе от давления и температуры

Формы Zn в водном	Давление, в Бар 25°C		Температура, в °С атмосферное давление		
растворе	1	1000	25	100	200
Zn ⁺²	-4.084	-2.572	-4.084	-6.516	-8.27
ZnO ⁰	-6.726	-6.558	-6.726	-6.133	-5.88
ZnO_2^{-2}	-13.952	-14.789	-13.952	-12.224	-11.9
ZnOH ⁺	-4.285	-3.609	-4.285	-4.479	-4.58
$Zn(OH)_3$	-9.507	-9.757	-9.507	-8.768	-8.94
HZnO ₂	-8.853	-9.248	-8.853	-8.047	-7.91

цинксодержащих фаз, полученные результаты могут быть использованы лишь, как некоторая основа для дальнейших лабораторных исследований.

На основе литературных [2] и лабораторных данных по миграционной активности цинка, полученных нами в ходе ранее проведенных лабораторных экспериментов, с учетом компьютерного моделирования можно говорить о достаточно высокой подвижности цинка в гипергенных условиях и воз-

можности его извлечения из медеплавильного шлака СУМЗ гидрометаллурическим способом с помощью кислых сульфатных, хлоридных растворов.

Благоприятно на извлечение цинка из медеплавильного шлака в водный раствор будет влиять повышение давления, присутствие органических соединений и бактерий в водном растворе, сезонные перепады температуры.

Основными поставщиками цинка в водный раствор будут цинксодержащие фазы: магнетит, фаялит и сульфиды. Растворимость цинковых минералов феррита цинка и виллемита требует изучения. Конечными продуктами преобразования медеплавильного шлака в кислых водных растворах в окислительных условиях будет очищенный от примесей магнетит, остаточный фаялит и алюмосиликатная фаза. Подбор рН условий позволит выделить обогащенную железом твердую фазу и цинксодержащий раствор.

Работа выполнена в рамках проекта № 12-П-35-2020 Программы № 27 ФИ Президиума РАН.

СПИСОК ЛИТЕРАТУРЫ

1. *Бачурин Б.А., Бабошко А.Ю*. О характере трансформации состава техногенно-минеральных образований горного производства в условиях гипергенеза // Горн. информ.-аналит. бюл. 2010. № 7. С. 336—342.

- 2. *Емлин Э.Ф., Рылова А.П.* Геохимическая миграция цинка и кадмия при промышленном освоении колчеданных месторождений. Свердловск: Изд. НТО горное, 1986. 63 с.
- 3. *Ерохин Ю.В., Козлов П.С.* Фаялит из шлаков Среднеуральского медеплавильного завода (г. Ревда) // Минералогия техногенеза 2010. Миасс: ИМин УрО РАН, 2010. С. 32–40.
- 4. *Котельникова А.Л.* Исследование подвижности загрязняющих веществ при кислотном выщелачивании хвостов переработки медеплавильных шлаков // Инженерная экология. 2006. № 1. С. 54–62.
- 5. Котельникова А.Л. Потенциальные элементы-полютанты при взаимодействии хвостов переработки медеплавильных шлаков с водой (по данным компьютерного моделирования) // Ежегодник-2006. Екатеринбург: ИГГ УрО РАН, 2007. С. 280–2184.
- 6. *Карпов И.К.* Физико-химическое моделирование на ЭВМ в геохимии. Новосибирск: Наука, 1982. 247 с.
- 7. *Халезов Б.Д*. Кинетика растворения минералов меди и цинка // Горный информационно-аналитический бюллетень. № 2. М.: МГГУ, 1999. С. 63–72.
- 8. *Чудненко К.В.* Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск, 2010. 287 с.
- 9. Johnson J.W., Oelkers E.H., Helgeson H.C. SUP-CRT92: A software package for calculating the standart molal thermodynamic properties of mineral gases, aqueous species, and reacnions from 1 to 5000 bars and 0 to 1000°C // Comput. & Geosci. 1992. № 18. P. 899–947.