= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ГЕОХИМИЯ УГЛЕРОДИСТЫХ ГИПЕРБАЗИТОВ ОСПИНСКО-КИТОЙСКОГО ОФИОЛИТОВОГО МАССИВА (ВОСТОЧНЫЕ САЯНЫ)

© 2013 г. В. В. Мурзин, Б. Б. Дамдинов*, О. Б. Азовскова, Л. Б. Дамдинова*

Некоторые массивы офиолитовых гипербазитов Восточного Саяна, в частности, наиболее крупный – Оспинско-Китойский, характеризуются присутствием в них уникальных образований - углеродистых метасоматитов, концентрирующих в себе благородные металлы (Au, Pt, Pd и Ag) в количествах до 1-2 г/т [6, 7, 8, 10 и др.]. Эти образования слагают тела жильной и штокверкоподобной морфологии преимущественно в серпентинитах, изредка во вторичных оливинитах и альбититах, а также в гранитоидах из ближайшего окружения массивов гипербазитов. Различные аспекты минералогии, геохимии, металлогенической специализации и условий формирования этих образований рассмотрены в ряде публикаций М.Ф. Шестопалова, Г.В. Пинуса, В.Б. Савельевой, Ф.А. Летникова, Ю.В. Даниловой, Э.М. Галимова, С.М. Жмодика, Б.Б. Дамдинова и др. и наиболее полно освещены в монографической работе [7]. На происхождение углеродистого вещества и чаще всего связываемой с ним благороднометальной минерализации описываемых образований высказываются различные взгляды. Среди них развиваются представления как об участии биогенного углерода черных сланцев и битуминозных известняков, широко распространенных на площадях локализации массивов гипербазитов, так и глубинного привноса углерода в составе восстановленных флюидов. Эти взгляды сочетаются в модели, предполагающей происхождение углеродизации в результате воздействия горячей точки, продуцирующей поток углеродсодержащего мантийного флюида, на субдуцирующую океаническую кору, содержащую углеродистые отложения [7, 10].

В последнее время на Урале также установлены проявления углеродизированных гипербазитов – в пределах Восточно-Тагильского гипербазитового массива в северном сегменте зоны Серовско-Маукского разлома [1]. Углеродизация сопряжена с низкотемпературным метасоматозом аргиллизитового типа молодого мезо-кайнозойского возраста и затрагивает не только серпентиниты и апосерпентинитовые метасоматиты массива, но и породы его обрамления, в том числе гранитоиды. Для этого процесса характерно присутствие в корах выветривания "свежих" пирита и других сульфидов, а также сульфосолей, теллуридов, самородных металлов, в том числе самородного золота.

Для получения более глубоких знаний о природе относительно высокотемпературных флюидогенных углеродистых систем В. Саян нами проводится минералого-геохимическое исследование 10 наиболее типичных образцов из жилообразных тел углеродистых метасоматитов в Оспинско-Китойском офиолитовом массиве в междуречье рр. Хуша-Гол – Зеленый (рис. 1). В данной статье приводятся результаты исследования образцов методами оптической микроскопии, термического, ренгенофазового анализов, а также определения микроэлементного состава методом ICP-MS и благородных металлов - методом количественного экстракционно-атомно-абсорбционного анализа. Термический анализ выполнен В.Г. Петрищевой (ИГГ УрО РАН) на термическом анализаторе Diamond TG-DTA фирмы Perkin Elmer, рентгенофазовый анализ проведен Т.Я. Гуляевой (ИГГ УрО РАН) на дифрактометре XRD-7000 фирмы Shimadzu, ICP-MS выполнен в ЦКП "Геоаналитик" на приборе ELAN 9000 фирмы PerkinElmer. Изотопный состав углерода исследовался нами совместно с В.И. Силаевым в изотопной лаборатории ИГ КомиНЦ УрО РАН.

Петрографическое изучение пород Оспинско-Китойского массива показало, что углеродистые породы представлены антигоритовыми серпентинитами, не сохранившими структуру исходной породы, степень окраски которых (от почти черной до темно-зеленой) соотносится со степенью их углеродизации. Под микроскопом серпентиниты обнаруживают пластические деформации и довольно интенсивный кливаж, на некоторых участках выявляется брекчиевидность. В породах наблюдаются два морфотипа серпентина: 1) тонкомикрозернистый чешуйчатый, развитый по всей массе породы и подвергнувшийся интенсивным деформациям и 2) "метельчатые" агрегаты более крупнолистоватого слабо деформированного, развитого в субизометричных участках сложной формы. На краях выделений крупнолистоватого серпентина наблюдаются дугообразные цепочки мелких зерен реликтового хромшпинелида. Характерной особенностью тектонизированных серпентинитов является сеть разнонаправле-

^{*} БНЦ СО РАН, Улан Удэ

Рис. 1. Геологическая схема Оспинско-Китойского массива (по О. М. Глазунову, 1981).

1 – четвертичные отложения; 2 – горлыкская свита, известняки, доломиты, песчаники; 3 – боксонская свита, конгломераты, песчаники; 4 – иркутная свита, мраморы, углеродистые сланцы, эффузивы; 5 – неоген-четвертичные базальты; 6 – гранитоиды; 7 – перидотиты; 8 – дуниты; 9 – габброиды; 10 – серпентиниты; 11 – листвениты; 12 – гранито-гнейсы; 13 – тектонические нарушения (а – установленные, б – предполагаемые). Черными кружками показаны места отбора изученных образцов: 1- Ок-27, 29, 30 – левый борт среднего течения р. Хуша-Гол; 2 – Ок-36, 37, 38 – правый борт среднего течения р. Хуша-Гол; 3 – Ок-113 – водораздельный гребень рр. Хуша-Гол – Зеленый; 4 – Ок-121, 126 – там же, 800 м вниз по течению; 5 – Ок-244 – гребень ледникового кара в истоке р. Зеленый.

но ориентированных микротрещинок с тонкодисперсным углеродистым веществом. Реже наблюдаются пятнистое распределение УВ. Под оптическим микроскопом УВ наблюдается в двух основных формах: 1) рассеянная тонко- и ультратонкодисперсная вкрапленность частиц размером от 500 нм до 25 мкм, изредка образующая сгущения (пятна) размером до 50–100 мкм; 2) концентрированные выделения в трещинах кливажа и разрыва более крупного размера.

Содержание углерода в серпентинитах достигает 6 мас. %, по данным химического анализа и 7-8 мас. % – термического анализа (табл. 1). Эти

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

уровни содержания углерода практически совпадают с данными, приведенными для этих пород в литературе [4, 6] и в среднем близки к оценкам содержания углерода в ультрабазитах и апоультрабазитовых метасоматитах Джидинского офиолитового пояса [3]. Вторичные изменения серпентинитов проявлены в постоянном присутствии в них от 5 до 18–20 мас. % карбоната (магнезита, в меньших количествах доломита), талька и хлорита (менее 5%).

Другие углеродизированные породы представлены катаклазированными и рассланцованными лейкогранитами и альбититами. Структура пород линзовидная, линзовидно-полосчатая с элементами

N⁰	N⁰	Порода	Содержание карбонатов по	С ув по данным	С ув по данным	Сумма			
П.П.	образца	_	данным термич. анализа,	термич. анализа,	хим. анализа,	РЗЭ, г/т			
			мас. %	мас. %	мас. %				
1	Ок-121	серпентинит неуглероди-	магнезит 8–9, доломит – сл.	< 1		1.12			
		зированный							
2	Ок-27	углеродизированный анти-	магнезит 7-8, доломит - сл.	7–8		0.2			
		горитовый серпентинит							
3	Ок-29	то же	магнезит 7-8, доломит 2-3	5–6		0.26			
4	Ок-30	-''-	магнезит 18–20, доломит 3–5	7–8		0.16			
5	Ок-36	_''_	магнезит 4-5	4–5		2.63			
6	Ок-37	_''_	магнезит 10–11	7–8		0.33			
7	Ок-38	_''_	магнезит 4–5, доломит – сл.	до 3	5.29	6.52			
8	Ок-126	_''_	магнезит 5-6	до 3		0.22			
9	Ок-244	_''_	магнезит 10–11, доломит – сл.	до 3	3.67	0.15			
10	Ок-113	углеродизированный лей-	0	1		13.93			
		когранит							

Таблица 1. Суммарное содержание РЗЭ, содержаний карбонатов и углеродистого вещества в пробах углеродизированных пород

Примечание. Сл. – следы.

Рис. 2. Термограмма лейкогранита.

На кривой DTA видны эндо- и экзоэффекты кварца (Q) и углеродистого вещества (УВ).

порфиробластовой. В них проявлена интенсивная грануляция и перекристаллизация. В изученных нами образцах в породах в сопоставимых количествах присутствуют кварц, К-Na полевой шпатпертит, альбит, а также редкие реликтовые темноцветные минералы. Углеродистое вещество очень тонкое развивается по ослабленным зонкам, микротрещинкам.

По имеющимся в литературе данным, УВ в углеродистых метасоматитах Оспинско-Китойского массива представлено "углеподобным битумом", "антраксолитом-керитом", "тонкодисперсным графитом", "полнокристаллическим графитом", и даже "тонкокристаллическим алмазом" [5, 11 и др.]. Полученные нами данные, базирующиеся на высокоточном термическом анализе, подтверждают высокую степень графитизации углеродистого вещества вплоть до графита. На термограммах фиксируется, что начало термоокисления УВ происходит при температуре выше 600°С. Термические эффекты УВ в этой области температур маскируются эффектами дегидратации серпентина. При отсутствии серпентина для образца углеродизированного лейкогранита удается точно определить диапазон окисления УВ - 600-820°С при максимуме в диапазоне 720-730°С (рис. 2). Потери веса в диапазоне 200-400°С, которые возможно принадлежат битумам, составляют в разных образцах от 0.2 до 0.5 мас. %, что составляет не более 10% от общего содержания в них углерода. В целом, таким образом, наши данные подтверждают ранее сделанное заключение, что углеродистое вещество сингенетично наиболее высокотемпературным породообразующим минералам [7].

Изучение химического состава в различной степени углеродизированных пород не обнаружило значимого привноса компонентов по отношению к окружающим неуглеродистым породам. В тоже время среди них фиксируются две группы проб существенно различающиеся по микроэлементному составу. Особенно контрастно это видно при анализе распределения редкоземельных элементов (РЗЭ). На хондрит-нормализованных диаграммах распределения РЗЭ (рис. 3) фиксируется, что основная часть проб характеризуется U-образным распределением РЗЭ при уровне отношения порода/хондрит около 0.1, и La/Yb = 1.25-4.21. Эти характеристики соответствуют характеру распределения РЗЭ в серпентинитах офиолитовых комплексов, в том числе уральских. Суммарное содержание РЗЭ в этих пробах находится в пределах 0.18-0.33 г/т. Тренды распределения РЗЭ двух проб углеродизированных серпентинитов – ОК-36 и 38, а также пробы

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

Рис. 3. Нормализованные по хондриту [12] тренды распределения РЗЭ в пробах углеродизированных лейкогранита (ОК-113) и серпентинитов (остальные кривые).

Затененная область – распределение РЗЭ в гарцбургитах Оспинско-Китойского массива [2].

углеродизированного лейкогранита (ОК-113) описываются нисходящим прямолинейным трендом с резким преобладанием легких РЗЭ над тяжелыми (La/Yb = 9.76–19.74). Суммарное содержание РЗЭ (2.63–13.93 г/т) в них на более чем порядок выше, чем в первой группе проб. Повышенные содержания РЗЭ в этих пробах наряду с более высоким содержанием фосфора (до 73 г/т в лейкограните), а также характер трендов их распределения свидетельствует о наиболее вероятной форме их носителя - монацита. Редкоземельные спектры слабо измененных гарцбургитов Оспинско-Китойского массива имеют форму близкую к U-образной, характеризуясь относительным обогащением легкими РЗЭ и занимают промежуточное положение между двумя выделенными группами углеродистых метасоматитов.

Кроме РЗЭ пробы ОК-36,38 и 113 существенно обогащены (в 5-10 и более раз) по-сравнению с остальными пробами углеродизированных серпентинитов, такими элементами, как Zr, Y, Hf, Nb, Th, U (табл. 2). Для них также характерно наиболее высокое торий-урановое отношение (Th/U = 0.87-2.1 при Th/U = 0.14 - 1.0 в остальных пробах). Очевидно, что повышенные содержания этих элементов связаны с присутствием в породах кроме монацита и циркона. Циркон, для которого характерно резкое преобладание тяжелых РЗЭ над легкими [9], не определяет в целом "монацитовый" профиль трендов распределения РЗЭ в этих пробах. Проведенные нами минералогические исследования протолочек углеродистых метасоматитов подтвердили наличие в них минералов некогерентных элементов - циркона, монацита, бадделеита, Th-U минералов и др.

Содержания РЗЭ, редких и радиоактивных элементов по имеющимся данным термического и рент-

Таблица 2. Микрокомпонентный состав пород по данным ICP-MS анализа, г/т

-		,					
	113	121	36	37	38	126	244
Li	5.991	1.163	0.706	7.892	1.158	0.889	0.584
Be	0.404	0.013	0.037	0.013	0.036	0.013	0.004
В	0.499	4.497	4.426	1.537	4.382	4.397	1.802
Р	72.67	н/о	н/о	1.677	1.170	н/о	н/о
S	521	303	151	132	77	251	167
Sc	0.280	6.244	5.245	4.398	5.886	3.974	4.761
Ti	186.2	30.4	112.9	43.65	157.8	35.3	33.5
V	1.09	25.19	16.18	14.58	15.87	11.72	17.77
Cr	76	1315	1023	861	1080	690	962
Mn	24	406	365	449	420	233	360
Со	95	83	89	95	81	76	76
Ni	24	1207	1235	1286	1280	1100	1043
Cu	14.71	7.39	7.36	7.84	12.88	8.35	6.28
Zn	10.26	28.84	44.22	24.73	30.76	21.94	37.67
Ga	6.596	0.510	0.627	0.327	1.057	0.329	0.371
Ge	0.291	0.691	0.699	0.597	0.648	0.647	0.615
As	0.642	1.090	2.078	2.684	22.02	6.988	6.192
Rb	4.160	0.286	0.350	2.231	0.344	0.207	0.049
Sr	11.08	3.973	2.709	3.502	4.908	3.629	19.61
Y	1.256	0.131	0.396	0.062	0.870	0.053	0.036
Zr	35.02	0.334	3.139	0.164	10.16	0.114	0.072
Nb	2.305	0.020	0.239	0.004	0.477	н/о	0.006
Мо	0.405	0.966	1.057	0.811	1.578	0.808	0.782
Cd	0.281	0.061	0.047	0.196	0.200	0.111	0.284
Sn	0 779	0 1 2 7	0 248	0 422	0 737	0 189	0.208
Sh	0.059	0.069	0.074	0 109	0.097	0.301	0.033
Te	H/O	н/о	н/о	0.004	н/о	0.001	0.024
Cs	0.047	0.104	0.051	1.675	0.067	0.031	0.023
Ba	51 65	4 543	3 113	7 555	8 4 3 2	4 288	1 847
Re	0.008	0.002	0.001	0.001	0.000	0.001	0.001
La	3.283	0.067	0.469	0.053	1.248	0.025	0.020
Ce	5 7 3 9	0 1 4 4	0 995	0 100	2 562	0.054	0.038
Pr	0.741	0.017	0.125	0.014	0.319	0.012	0.005
Nd	2.669	0.078	0.590	0.101	1.321	0.069	0.056
Sm	0.488	0.709	0.117	0.016	0.278	0.011	0.003
Eu	0.059	0.004	0.033	0.003	0.080	0.002	0.001
Gd	0.306	0.010	0.082	0.006	0.212	0.005	0.003
Tb	0.038	0.003	0.012	0.001	0.031	0.001	0.001
Dy	0.217	0.022	0.077	0.014	0.181	0.008	0.005
Ho	0.044	0.005	0.015	0.002	0.036	0.001	0.001
Er	0.133	0.018	0.053	0.009	0.101	0.010	0.007
Tm	0.020	0.002	0.006	0.002	0.017	0.001	0.001
Yb	0.166	0.034	0.048	0.013	0.118	0.020	0.012
Lu	0.026	0.005	0.009	0.002	0.016	0.003	0.003
Hf	1.548	0.008	0.105	0.007	0.218	0.005	0.005
Та	0.144	0.001	0.020	н/о	0.019	н/о	н/о
W	326.9	16.50	8.247	8.751	5.695	7.931	4.195
Hg	7.698	0.258	0.107	0.119	0.086	0.115	0.043
ΤĬ	0.040	2.090	3.078	0.431	3.466	1.866	1.170
Pb	3.159	1.540	1.679	6.772	5.936	1.330	0.305
Bi	0.509	0.118	0.118	0.227	0.396	0.247	0.283
Th	0.755	0.011	0.115	0.006	0.106	0.003	0.001
U	0.867	0.014	0.055	0.015	0.113	0.007	0.004
Th/U	0.87	0.75	2.10	0.43	0.94	0.35	0.24
La/Yb	19.74	1.97	9.76	4.08	10.54	1.25	1.69
$\Sigma P33$	13.93	1 12	2 63	0.33	6 52	0.22	0.15

Примечание. 113 – лейкогранит, 121 – серпентинит неуглеродизированный, остальные пробы – в различной степени углеродизированные антигоритовые серпентиниты; н/о – элемент не обнаружен.

,	, , 1	1 / /	5	1 , 1	1 / /			,
№ п/п	№ обр.	Ag	Au	Pt	Pd	Rh	Ru	Ir
1	ОК-27	0.68	0.004	< 0.02	< 0.004	< 0.008	< 0.02	< 0.02
2	ОК-29	0.34	< 0.004	< 0.02	0.004	< 0.008	< 0.02	< 0.02
3	ОК-30	0.10	< 0.004	< 0.02	< 0.004	< 0.008	< 0.02	< 0.02
4	ОК-36	0.084	< 0.004	< 0.02	< 0.004	< 0.008	< 0.02	< 0.02
5	ОК-37	0.063	< 0.004	< 0.02	< 0.004	< 0.008	< 0.02	< 0.02
6	ОК-38	0.062	0.004	< 0.02	< 0.004	< 0.008	< 0.02	< 0.02
7	ОК-113	0.27	0.004	< 0.02	< 0.004	< 0.008	< 0.02	< 0.02
8	ОК-121	0.10	< 0.004	< 0.02	< 0.004	< 0.008	< 0.02	< 0.02
9	ОК-126	0.056	< 0.004	< 0.02	0.004	< 0.008	< 0.02	< 0.02
10	ОК-244	0.040	0.004	< 0.02	0.010	< 0.008	< 0.02	< 0.02
11	XO-1	0.56	0.068	0.40	0.86	0.10	0.034	< 0.02
	станд. знач.	0.58	0.07	0.43	0.84	0.096	0.029	0.010
12	ШЛ-1	0.67	0.013	0.058	0.16	0.009	< 0.02	< 0.02
	станд. знач.	0.61	0.010	0.05	0.16	0.011	0.006	0.0052

Таблица 3. Содержание благородных металлов в углеродизированных породах Оспинско-Китойского массива, г/т

Примечание. Анализы выполнены Л.В. Филиппычевой в лаборатории анализа благородных металлов № 47 Геологического института КНЦ РАН по методике, аттестованной в 1993 г. в Институте Неорганической химии СО РАН "Методика количественного экстракционного – атомно-абсорбционного анализа. Определение платиновых металлов и золота". ХО-1 и ШЛ-1 аттестованные стандартные образцы.

генофазового анализа проб не обнаруживают прямой корреляции с содержаниями углеродистого вещества и степенью карбонатизации (содержаниями магнезита и доломита). Более того, намечается обратная зависимость между этими характеристиками.

Характер обогащения углеродистых серпентинитов РЗЭ, редкими и радиоактивными элементами связан, по-видимому, с сильно неравномерным распределением этих элементов в телах углеродистых метасоматитов. По данным сибирских исследователей в них крайне неравномерно распределены и благородные металлы – частицы минералов Au, Pt, Pd и Ag могут фиксироваться в значительном количестве или отсутствовать совсем в протолочках проб, отобранных близко друг от друга и в породах имеющих одинаковый минеральный и химический состав [7, 10]. В исследованных нами пробах (табл. 3) лишь концентрации серебра достигают содержаний на уровне сотен мг/т, остальные металлы присутствуют в количествах менее 20 мг/т, что, по существу, близко к кларковым их значениям в основных и ультраосновных породах.

Анализ изотопного состава углеродистого вещества из углеродистых гипербазитов Оспинско-Китойского массива (10 проб после кислотного удаления содержащегося в породе карбоната) указывает на вариации δ^{13} С в пределах от –9.8 до –15.6 ‰. Практически эти же значения δ^{13} С – от –10.4 до –15.8‰ приводятся для данных образований в работах [4, 7]. Приведенный диапазон значений δ^{13} С, соответствует источнику углерода корово-мантийного происхождения. Наиболее вероятно, что он отвечает смеси мантийного углерода (δ^{13} С = –6 ± 2‰) и осадочного биогенного углерода из вмещающих ультрабазиты черных сланцев для Оспинско-Китойского массива (δ^{13} С от –20.3 до –23.8‰ по данным [7]. Таким образом, углеродистые гипербазиты Оспинско-Китойского массива характеризуются высоким содержанием углерода, высокой степенью его метаморфизации и отложением при относительно высоких температурных условиях, близких к образованию антигорита (400–450°С). Учитывая, что черносланцевые формации многих регионов мира обогащены легкими РЗЭ, золотом и ЭПГ, которые присутствуют в породах в виде очень мелких частиц, можно предположить, что именно эти породы, являлись источником редких, редкоземельных и благородных металлов в изучаемых образованиях.

Данные о невысоких концентрациях РЗЭ и благородных металлов, резкой неравномерности их распределения в телах углеродистых гипербазитов, а также об отсутствии корреляции содержаний этих элементов с содержаниями углеродистого вещества и степенью карбонатизации логичнее вписываются в модель, предполагающую вовлечение углеродистого вещества осадочных пород в зонах тектонического меланжа. Последующий относительно высокотемпературный метаморфизм тектонизированных пород привел к увеличению степени графитизации углистого вещества, его перераспределению с образованием более крупных частиц в трещинах кливажа и разрыва, но не дополнительному обогащению их благородными металлами и РЗЭ. Изотопный состав "легкого" биогенного углерода вмещающих осадочных пород при этом мог существенно "утяжелиться" как при смешении его с углеродом мантийного происхождения, возможно изначально распыленного в первичных ультрабазитах, так и при изотопном обмене с карбонатным материалом в процессе метаморфизма.

Работа выполнена при поддержке программы фундаментальных исследований УрО РАН, проект № 12-У-5-1042.

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

149

СПИСОК ЛИТЕРАТУРЫ

- Азовскова О.Б. Углеродистые метасоматиты северной части Восточно-Тагильского массива: геологическая позиция и основные характеристики // Ежегодник-2011. Тр. Ин-та геол. им. акад. А.Н. Заварицкого. Вып. 159. 2012. С. 149–153.
- Анциферова Т.Н. Петролого-минералогические особенности гипербазитов Оспинского массива: Восточный Саян // Автореф. дис. на соиск. уч.ст. канд. геол.-мин. наук. Улан-Удэ: Изд-во БНЦ СО РАН, 2006. 27 с.
- Дамдинов Б.Б. Углеродизированные гипербазиты Джидинского офиолитового пояса (вещественный состав, рудная минерализация) // Ультрабазитбазитовые комплексы складчатых областей и связанные с ними месторождения. Т. 1. Екатеринбург: ИГГ УрО РАН, 2009. С. 161–164.
- 4. Галимов Э.М., Миронов А.Г., Жмодик С.М. Природа углеродизации высокоуглеродизированных пород Восточного Саяна // Геохимия. 2000. № 4. С. 355–360.
- 5. Данилова Ю. В., Шумилова Т. Г. Минералогические особенности нанокристаллического графита метасоматитов Тункинского разлома // Вестник Института геологии Коми НЦ УрО РАН. 2012. № 7. С. 7–11.
- 6. Жмодик С.М., Миронов АГ., Агафонов Л.В. и др. Углеродизация гипербазитов Восточного Саяна и

золото-палладий-платиновая минерализация // Геология и геофизика. 2004. Т. 45, № 2. С. 228–243.

- Жмодик С.М., Миронов А.Г., Жмодик А.С. Золотоконцентрирующие системы офиолитовых поясов (на примере Саяно-Байкало-Муйского пояса). Новосибирск: Гео, 2008. 304 с.
- Кислов Е.В., Дамдинов Б.Б. Гидротермально-метасоматические сульфидные проявления, связанные с офиолитовыми гипербазитами Саяно-Байкальской горной области // Литосфера. 2011. № 1. С. 106–114.
- Леснов Ф.П. Редкоземельные элементы в ультрамафитовых и мафитовых породах и их минералах. Кн. 2. Второстепенные и акцессорные минералы. Новосибирск: ГЕО, 2009. 190 с.
- Летников Ф.А., Савельева В.Б., Аникина Ю.В., Смогунова М.М. Высокоуглеродистые тектониты – новый тип концентрирования золота и платины // Докл. АН. 1996. Т. 347, № 6. С. 795–798.
- 11. Миронов А.Г., Жмодик С.М., Миронов В.А. Сравнительный анализ углеродистых образований осадочного и магматического генезиса (Восточный Саян) // Углеродсодержащие формации в геологической истории: труды Междунар. симп. Петрозаводск: ИГ КарНЦ РАН, 2000. С. 50–57.
- Evensen N.M., Hamilion P.J., O'Nions R.K. Rare earth abundences in chondritic meteorites // Geochim. Cosmochim. Acta. 1978. V. 42. P. 1199–1212.